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The numbers of topologically nonequivalent Feynman diagrams for the one-particle and two
particle Green's functions are calculated for arbitrary order of perturbation theory, with 
both the symmetrized and the nonsymmetrized techniques. 

IN statistical physics there is now wide applica
tion of Green's-function methods together with the 
Feynman diagram technique. In this technique all 
of the terms of perturbation theory that make 
equal contributions can be summed easily. Terms 
that make different contributions correspond to 
topologically different diagrams. Therefore it is 
of great interest to count up the number of topo
logically nonequivalent connected diagrams in an 
arbitrary order of perturbation theory. This 
offers a possibility for studying the convergence 
of the series of perturbation theory. Here we 
shall count up the numbers of topologically non
equivalent connected diagrams for the one-particle 
and two -particle Green's functions in arbitrary 
order in perturbation theory. 

We shall construct the perturbation theory for 
the one-particle Green's function G~/3 ( x, x') in 
the usual way.[!] Then in the term of n-th order 
in Hint there will be 2n + 1 creation operators 
>¥~ ( x) and this same number of annihilation oper
ators >¥ 13 ( x'). Since chronological contractions 
of the types 

I~ I I 
"ll'"a (x) '¥ fi {x'), "ll'"a + (x) 'I' 11+ {x') 

are identically equal to zero, in the n-th order 
there are ( 2n + 1)! ways of making the pairings, 
which correspond to all possible permutations of 
the creation operators relative to the "stationary" 
annihilation operators. Thus in n-th order for the 
one-particle function the total number of diagrams 
( both connected and unconnected) is ( 2n + 1) ! 

We denote the number of connected n-th order 
diagrams by tn and count up the total number of 
diagrams in which the part connected with the ex
ternal G(O) lines contains n - m interaction 
operators. This number is 

( =) (2m)! tn-m, 

since the m "disconnected" interaction operators, 
which can be chosen in ( ;) ways from the n 

operators present, give (2m)! diagrams. When we 
take successively 1, 2, ... , n disconnected inter
action operators, we arrive at the equation 

(2n + 1)1 =,!(:)(2m)! tn-m· (1) 

Among the tn connected diagrams, however, 
there are sets which are topologically equivalent; 
these are obtained by taking all possible permuta
tions of the interaction operators, which gives n! 
equivalent diagrams, and also by interchanging 
the places of two vertices, which gives 2n topo
logically equivalent diagrams. Thus the number 
of topologically nonequivalent diagrams in n-th 
order is 

z. = t. /2"nl. 

Using (1), we find a system of equations for the 
Zn: 

" ~[2(n-m)-1]!!lm=(2n+1)11, (2) 
m==O 

where we have set ( -1)!! = 1. The solution of 
this system is (see [ 2J, formulas 0.313 and 0.430) 

For very large n 

ln= (2n+1}!!{1+0{1/n}}. (4) 

Now let us consider the two-particle Green's 
function G~, y 6 ( x 1x2, x3x4 ). [ t] The counting-up 

of the number of diagrams for the two-particle 
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function is analogous to the procedure for the one
particle function. In this case, however, for each 
diagram there is a topologically equivalent one 
which makes a different contribution. The out
coming lines of these diagrams are interchanged 
( x3 ~ x4 ). An example of such diagrams is given 
in Fig. 1, which shows the zeroth-order diagrams. 
Although the contributions from such diagrams are 
different, we shall regard them as topologically 
equivalent. 

,'['-
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FIG. 1 

All topologically nonequivalent connected dia
grams can be divided into two types. Diagrams of 
the first type break apart into two parts. These 
are diagrams like those of Fig. 1 with proper
energy parts strung along the lines. Diagrams of 
the second type are those that do not break apart 
in this way. If we denote by au the number of 
connected diagrams of the second type in n-th 
order, then the number of topologically noneq ui va
lent n-th order diagrams of the second type is 

dn = an /2n+in!, 

and we get a system of equations for the dn: 

" 
~ [2(n- m)-1]11 dm = -(n +2) (2n + 1)11 + lnH· (5) 

m-1 

The solution of this system is of the form 

1 n 

dn = 2ln+1 - ~ lmln-m• 
m=O 

(6) 

On the other hand the total number of topologically 
nonequivalent n-th order diagrams for the two
particle function is ln+t/2. 

Let us now go on to the consideration of dia
grams in the symmetrized technique.[!] In this 
technique the interaction operator is written as a 
function of four variables, r~01\ 2 y 3 y 4 (x 1x2 , x3x4 ), 

which is antisymmetric with respect to the inter
changes 1 ~ 2 and 3 ~ 4. In a diagram r(O) is 
represented as a square. In the symmetrized 
technique the number of topologically nonequiva
lent diagrams is smaller than in the unsym
metrized technique. For example, to the two 
topologically different connected first-order dia
grams in the unsymmetrized technique there cor-

responds only one diagram in the symmetrized 
technique. For the one-particle Green's function 
a symmetrized diagram replaces 2n topologically 
nonequivalent unsymmetrized diagrams. We can 
regard each square as giving two unsymmetrized 
diagrams. Diagrams with the element shown in 
Fig. 2 are an exception. To these two squares 
there correspond only two unsymmetrized dia
grams, since the interchange of the two output 
lines of the first square, as shown in Fig. 3, is 
equivalent to interchange of the two input lines 
of the second square. We call such an element a 
couple. Thus to each symmetrized diagram with 
n interaction operators there correspond 2n-m 
topologically different diagrams in the unsym
metrized technique, where m is the number of 
couples, and we must affix to each symmetrized 
diagram the factor ( Y2 )min. This result differs 
from the rule given by Abrikosov, Gor'kov, and 
Dzyaloshinski'l (see [tJ, page 108). 

FIG. 2 

FIG. 3 

It is now easy to count up the number of topo
logically different symmetrized diagrams in the 
n-th order of perturbation theory. We denote by 
L~ the number of n-th order symmetrized dia
grams without couples. Any other symmetrized 
n-th order diagram is obtained from an m-th 
order diagram ( m < n) ·without couples by adding 
n - m couples. The number of such diagrams is 
equal to the number of ways we can distribute 
n - m balls in m boxes, multiplied by L~. To 
all such diagrams there will correspond in the un
symmetrized technique a total of 

(n -1)! 
2m. L 0 

(n-m)!(m-1)! m 

topologically different unsymmetrized diagrams. 
Thus we have the formula 

(7) 

The solution of the system (7) is of the form (see 
[ 3], Problem 390) 
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" 1 ~ ( n-,f) 
L,o= 2"LJ (-,1)"-m m-.1 lm. 

m=! 

(8) 

On the other hand the total number of topologically 
different symmetrized diagrams in nth order is 
given by 

"(n-1) Ln = ~ Lm0• m-1 
m=1 

(9) 

In an analogous way one can count up the topo
logically nonequivalent connected diagrams for the 
two-particle function in the symmetrized technique, 
but because of their cumbersomeness we do not 
give these formulas. 

I regard it as my pleasant duty to express my 
gratitude to A. A. Abrikosov and E. I. Rashba for 
a discussion of this work. 
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