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A complete solution is obtained for the problem of the motion of a charged particle in the 
field of a plane electromagnetic wave of arbitrary form, the radiation-reaction force being 
taken into account. For the case in which the plane wave consists of a set of monochromatic 
waves with arbitrary frequencies, polarizations, and intensities a general formula is derived 
for the pressure of the wave on the particle; the well known Thomson formula is a special 
case of this expression. A general formula is found for the pressure of a monochromatic 
plane wave on a charge moving in a magnetic field. The limit is found which in principle is 
imposed on the mechanism of autoresonance acceleration by the radiation reaction. 

1. INTRODUCTION 

THE motion of a charge in the field of a plane 
electromagnetic wave has been treated in a number 
of papers (see, e.g.,C1,2J). In these papers, however, 
the effect of the radiation reaction on the charge 
was taken into account only for particular special 
cases, for example for a wave of small intensity, 
for which the effective scattering cross section is 
described by the Thomson formula. Meanwhile, 
owing to the recent development and application of 
extremely powerful beams of microwaves and of 
light, a further development of the theory of the 
interaction of such beams with charged particles 
may be not only of general physical interest, but 
also of practical interest. 

In the present paper we obtain the solution of the 
problem of the motion of a free charged particle in 
the field of a plane wave of large intensity which is 
made up of a set of monochromatic waves of arbi
trary polarizations, and that of the problem of the 
motion of a charge in the field of a monochromatic 
plane wave of arbitrary polarization together with 
a constant uniform magnetic field, with the radia
tion reaction force taken into account. We find gen
eral formulas expressing the radiation pressure 
on a free charge and on a charge moving in a mag
netic field. These formulas are generalizations of 
the expression for the Thomson light pressure. 
Furthermore, in this work no restrictions of any 
kind are imposed on the intensity or wavelength of 
the electromagnetic wave, and the results can be 
used for calculations in various topics where one 
encounters the interaction of waves with charges in 

a magnetic field (acceleration of particles, ampli
fication and generation of waves, interaction of 
radio waves with particles in the earth's magnetic 
field or in interstellar magnetic fields, and so on) .. 

This problem is also of interest in connection 
with the recently investigated phenomenon of auto
resonance between an electromagnetic wave and a 
particle moving in a magnetic field (see [ 3]). In the 
case of autoresonance the radiation reaction force 
also plays a definite role, since in principle it de
tunes the exact resonance and limits the time dur
ing which it acts. In this paper we obtain estimates 
of the limitations on the effectiveness of the auto
resonant reaction between a wave and a particle in 
a magnetic field which appear when radiation reac
tion is taken into account. 

If we introduce the notations 

T = ct' y = 1 I y 1 - r 2 ' 

e = qE I mc2, h = qH I mc2, g = 2q2 I 3mc2, (1) 

then we can write the equations of motion of a 
charge q in the field E, H, with the radiation reac
tion force included, in the following way (cf. [1] ): 

d . . 
d-r (yr) = e + [rh] + f, (2) * 

where 

f=g{r(8~ +rV)e+r[r(8~ +rV)h]+[(e+[rhl)hJ 

+e(ei·)-y2r((e+ [rhl)2 -(er)2)} (3) 

*[r h] = r x h. 
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is the radiation reaction force. Here y is the rela
tivistic factor, and 3g/2 is the classical radius of 
the electron. 

For an arbitrary plane wave E, H travelling in 
the direction of the unit vector n (alone the z axis) 
and a constant magnetic field H0 directed along n 
we have 

e=e(£), £=•-z, (en) =0, h= [ne] +nh0• 

(4) 
Let us substitute (4) in (2) and (3) and change from 
the variables r, T to new variables J, p, ~ by using 
the relations 

y(1-i) = J, 

rj_ 
p=--., 

1-z 

j. = rj_ + nz, 
d J d 

d• -r d£ • 
(5) 

where r 1 is the component of the radius vector of 
the particle that lies in a plane perpendicular to the 
vector n. 

In the variables J, p, ~ the equations (2) take a 
form which is simpler and more convenient for 
analysis: 

dp e ho { de h0 h02 } 
d£ =j+-y[pn]+g d[-J[ne]-Jp, (6a) 

d~ ( ~) = g (hop+ [nel)2, (6b) 

and the original quantities are expressed in terms 
of the new variables by the formulas 

. J 1- J2 
yz =2p2 + 2]• 

(7) 

2. THE MOTION OF A FREE CHARGE AND THE 
RADIATION REACTION IN THE FIELD OF AN 
INTENSE PLANE WAVE 

We at first assume that there is no constant 
magnetic field (h0 = O). Then the equations (6) take 
the simple form 

d ( 1 \ 2 
d£ ]} = ge (8) 

and can be integrated immediately: 

+ = ; 0 + g ~ e2d£, 

P =Po+ ]
0 
~ed£ + ge+g ~ e (~ e2d£) d£, (9) 

where J 0 = const, Po = const. 
Substituting (9) in (7), we can find any charac

teristics of the motion. For example, dropping 
higher powers of the small quantity g, we get as 
the expression for the longitudinal momentum 

. 1 (" 2 1- Jo2 
2pz = ;:?,yz = lo (Po+ lo .\ ed£) + ---y;-

+ g {(1 + lo2 ) ~ e2d£ + 2Jo ( p0 + ;
0 

~ ed£) 

x [e+~e(~e2d£)d£]-Jo~(Po+ ; 0 ~ed£f~e2d£}. 

In the case of a free charge we can solve the 
problem for the general case in which the wave 
e(~) is a superposition of monochromatic waves 
with wave numbers ki and arbitrary elliptical 
polarizations: 

[ ey(£)=~ (e;2-eil)~in(k;£+q;;) 

e(£) = i 

(10) 

t e,(£) = ~ (e;1 + e;2)cos(k;£ + cp;) (11) 

Substituting (11) in (9), we can verify that if we 
neglect the radiation reaction force (i.e., set g = O) 
the particle executes a periodic motion, and the 
average result of the action of the wave is zero. 
In this case the quantity J [see (5)] is an integral 
of the motion J = J 0• 

It must be emphasized that the wave pressure 
force F press, defined as the average value of the 
longitudinal force acting on the particle, is not 
equal to the average value of the longitudinal com
ponent of the radiation reaction force (3), i.e., 
Fpress "' (fz). This can be seen intuitively, for 
example, in the case of a monochromatic wave with 
circular polarization, if we choose a coordinate 
system in which the particle describes a circle 
and is at rest on the average. In this case the lon
gitudinal component of the radiation reaction force 
is zero, as is quite clear, since as the particle 
moves in a circle the radiation does not carry 
away any longitudinal momentum. At the same 
time the pressure force of the light is of course 
different from zero, since Fpress includes besides 
(fz) the average of the Lorentz force component 
ec-1 [~rH] z associated with ~r, the increment of 
the velocity of the particle which occurs under the 
effect of the radiation reaction. Therefore we shall 
define the pressure force Fpress as the average 
value of the quantity d(yz)/dr in the actual motion 
of the particle: 

(12) 

In calculating (12) we use the expressions (7) 
and (10), and keep in (10) only the terms that con-
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tain the factor ~ , dropping all oscillatory terms. 
When we carry out the calculations, we get 

1 + 1 o2 - 1 o2po2 + ~ 
Fpress=gL (e;l+ei22)-1+ ___ 21J--::2-+--J· -2'-;; (13) 

po-,-o O"'-' 

. 2 
(z)=1--1 + 2-_~--1--- 2 J--J 2 ~, <r_L>= po(1-<i>), 

Po : o - o 

where we have used the notation 

e· 2+e·22 
~ = ~~--'-. 

,:._J k;2 

(14) 

In the general case the formula (13) contains 
two parameters, p 0 and J 0• For convenience we 
can replace them by more intuitive quantities, 
which we choose to be ( i) and the half sum of the 
maximum and minimum values of the energy y 0: 

Yo = Y max t Y min= ~- [] oPo2 + _!__~f 02 ~ J . (15) 

We get 

Fpress= g L (ei12 + ei22)[1- (i)] 

X [1 + ~ - yo2 (i) ( 1- (i)) ]. (16) 

The formulas (13) and (16) take a simpler form 
if we choose a coordinate system in which the par
ticle moves on the average only along the z axis, 
which means that we must set the parameter p 0 

equal to zero. In this case we can eliminate the 
second parameter J 0 from the expressions (12) and 
(13) and get 

F - ~ ( 2 + 2) [1 ] 1 - (i) . ) 
press-gLJ ei1 ei2 +~ 1 +<i> ((r..L)=O). (17 

' 
The quantity 1: (ei~ + ei~) is the average energy 

density in the wave, so that for(~) = 0 Eq. (17) 
goes over into an expression which we can call a 
generalized Thomson formula. The additional fac
tor 1 + 1: by which (17) differs from the ordinary 
Thomson formula is usually very close to unity. 
In principle, however, it can become significant for 
waves of very great intensity, and also for very 
long waves. In these cases the average kinetic en
ergy of the particle under the action of the wave 
becomes relativistic already in a time of the order 
of the period of the wave. In fact, we can rewrite 
the formula (15) in the following form: 

yo2 = (1 +~)I (1- (i) 2 - ( r..L) 2), (18) 

from which it can be seen that Y5 2: 1 + 1:. 
Thus it has been shown that the pressure force 

is proportional to the mean energy density of the 
wave also in the case in which the wave is a super
position of plane waves with arbitrary frequencies 

and polarizations. At very high intensities, when 
the oscillations of the energy of the particle under 
the action of the wave come to be of the order of 
the rest energy, the magnitude of the pressure can 
be considerably larger than that indicated by the 
Thomson formula. 

Besides this, we point out that, as can be seen 
from (7), the pressure force in the relativistic case 
(j rl R:j z = 1) has a decided dependence on the direc
tions of motion of the particle and the wave. If 
these directions are the same, F press is dimin
ished by a factor of approximately 4y2, and if the 
directions are opposite, Fpress is increased by 
this same factor. 

3. THE PRESSURE OF AN ELECTROMAGNETIC 
WAVE ON A CHARGE IN A MAGNETIC FIELD 1> 

Now let h0 "" 0, and let e(~) be a monochromatic 
plane wave with elliptical polarization: 

( ex = ( er + e2 ) cos 'ljJ 

e= ~ ey=(e2 -e1)sin'ljl, 'ljl=k~, (19) 
l ez = 0 

where 1/J is the phase of the wave and k is the wave 
vector. 

It is easy to see that the case h0/ Jk = a = ± 1 
corresponds to resonance acceleration of the par
ticle by one of the circular components which can 
be separated out from the assumed elliptically 
polarized wave. The direction of rotation in this 
circular component is the same as the direction of 
revolution of the particle in the magnetic field H0• 

The resonance acceleration, which in the absence 
of radiative effects (g = 0) can continue for an in
definitely long time, is the previously mentioned 
autoresonance effect investigated in [ 3]. We shall 
assume at first that the conditions of the motion 
are such that there is no resonance, i.e., a ..= ± 1. 
Then, if we neglect radiation, we find that the par
ticle executes a periodic motion, and on the aver
age is moving uniformly in a straight line. To take 
the radiation reaction into account we have only to 
solve the equations (6) in first order with respect 
to the extremely small quantity g. To do this we 
set 

P =Po+gpl..L, 1 I I = 1 I lo + gj1 (20) 

and get for p 0, p 1, j 1 the solutions 

l)The problem of the pressure of a wave on a charge in the 
presence of a magnetic field has also been treated in a paper by 
Fatnberg and Kurilko [4 ] in the approximation of weak nonlinearity. 
Effects associated with autoresonance were not taken into consid
eration in that paper. 
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\
. e dtiJ 

flo= A (atiJ) fioo +A (at!') A(- atiJ) -1 ----,, 
• 0 If 

(21) 

fit= A (atiJ) ~A(- at~J) {ite + k ~~ + hoitA ( ~) p0 

+ ~A (~) - ho2 } ~ 
lo 2 e ] 0 Po k ' (22) 

· . I (h h )2 dt~J h = .l oflo + [ e l T, (23) 

where J 0 = const, p 00 = const, and A(<p) is the 
operator for rotation by the angle <p, with the ma
trix 

A(IJl) =I C~Sijl 
-Slllljl 

sin IJl I 
cos ljJ 

Equations (21)-(23) contain the law of motion of 
the particle, with radiation reaction taken into ac
count. To determine the pressure force of the wave 
on the particle, Fpress• we must take the time 
average of the derivative of the longitudinal momen
tum in the actual motion. Our aim is to include not 
only the radiation reaction force which appears 
directly in the equations of motion, but also the 
increment of velocity owing to the action of this 
force. Since the independent variable in the equa
tions is the phase If!, the mean value corresponding 
to Fpress is found in the following way: 

d T d T 

Fpress= < -(yi)) = 5 d(yi)dT I~ d,; 
d,; 0 T 0 

'P ¢ 

= \ !:_ (vi)dtiJjl \ _v ~.! =/ -~ (yi)) /<_!) (24) 
J dt~J . J J k ""'dt~J Jk 

'~ ¢ 

and analogously 

<i>, = (~ ""'/ j( l""' 'J <l> ,] /<1>' (25) 

where ( ) T and ( ) <p denote averages with respect 

to T and with respect to <p. 

In order to make use of the solutions (21)- (23), 
we use (20) to transform (6) to the form 

d . {1 + J 2 J 2 1 
kd\jl(rz)=(poe)+g _2___(J_e2+_o 2 ho2Po2 

+ lo2ho (Po [ne]) + lo ( fiok ~~) 

- 1f Po2 (h0fio + [nel)2 + (pleJ}. (26) 

Substituting the expressions (21)-(23) in (26) and 
averaging, we get after a number of transformations 
the desired formula for the radiation pressure of a 
wave on a particle in a magnetic field: 

F . [ 1 ( e 1 \ 2 1 ( e2 \ 2 

press=gho2(z) 1+ (1-a)Z\k) +{i+a)z,T} 

_ fo2 1 + (~) ]+ g [1 _ (i) J [(- ___12__ ) 2+ (- e2 Y] 
1 - (z) 1 - a 1 + a 1 

. r ae12 ae22 J [ ? 1 + <Z> J 
+g[1-<z)] (1-a)3-(1+;t):i 1-ln-1-(i)' 

(27) 

where the parameter p 00 has now been expressed 
in terms of < z)' the mean longitudinal velocity of 
the particle. 

A characteristic feature of this expression is 
the presence of the coefficient g, which shows that 
the radiation pressure force is relatively extremely 
small, and also the presence of resonance denom
inators 1 ± a. The quantity I al ~ 1/J increases 
monotonically during the motion, since according 
to (6b) the quantity J decreases monotonically 
owing to emission of radiation. Therefore we can 
distinguish two physically different cases, accord
ing to whether the motion begins before or after 
resonance sets in. If the initial conditions are such 
that I al < 1, then subsequently the particle will in
evitably pass through the resonance region, in 
which, owing to the part of the force which is linear 
in the field, there is a great increase in the parti
cle's energy. If, on the other hand, lal > 1 at the 
beginning of the motion, then the particle will never 
pass through resonance and will be subject only to 
the action of radiation pressure. 

If there is no applied constant magnetic field, or 
if this field is so small that I al « 1, then, as we 
find from (14), the pressure force is given by the 
formula 

Fpress= g[i- (i)](e!2 + Cz2 ) 

(28) 

which is a special case of the formula (16). 
Since we have defined F press by Eq. (24), there 

has appeared in (27) the term 

Fh = gho2 <z> [1- lo2 --:i_+_<:-:z-:-) J 
0 1- (i) , ' 

(29) 

which is independent of the field of the wave and 
corresponds to the radiative energy loss of the 
particle in its motion in the external magnetic field 
H0. It can be seen that Fh0 is always directed op
posite to the motion of the particle. If the magnetic 
field H0 is so large that I al » 1, this term becomes 
the decisive one in the expression for Fpress· 

Let us now turn to the case of resonance, 
I al ""' 1. If we neglect the radiation reaction, then, 

setting J = h0/k in Eq. (6a) and neglecting the last, 
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"radiative," term in this equation, we get the re
sult known from [ 3], 

(30) 

which gives the way p and y increase with increase 
of lf!. The effect of the radiation reaction is that the 
increase of p and y according to (30) cannot continue 
indefinitely. Owing to the effects of radiation there 
will be a disturbance, albeit a very slow one, of the 
resonance condition I al = 1, because there is a 
change of the phase .6.4> of the particle relative to 
the wave. 

Let us estimate the size of the maximum energy 
Ymax that the electron can acquire before the 
resonance gets out of tune. Substituting (30) in (6a) 
and making the justified assumption hop » e, we 
get an expression for .6.4> 

~ hod¢ (e1 )2¢4 
~<!>=~ --~o·h0 -- -l k .~ k 12. 

(31) 

It is obvious that the resonance will have got out 
of tune at phases lf! ~ 1/Jmax for which .6.4>(1/Jmax) 
~ 1. Then we have 

(32) 

and the value we get for the maximum energy the 
particle acquires in the resonance region is 

Y max ~ 0.5 · 103E I Ho'f, (34) 

(where E is in kV /em and H0 is in G). 
It can be verified that the assumptions we have 

made and the estimate obtained are valid under the 
conditions 

g2ho2 (12 / gho)'" ~ e I k ~ (12 I gho)'f,, (35) 

which are practically always satisfied. 
It is not hard to see that at values of the par am

eters for which the autoresonance method of ac
celeration is feasible the limit that the radiation 
reaction in principle imposes on the acceleration 
mechanism is an extremely high one. 
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