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The nonlinear interaction of long transverse waves with transverse or longitudinal waves is 
considered by means of the nonlinear equation for evolution of field fluctuations in a plasma. 
The effect of a transverse field on the nonlinear relaxation of longitudinal waves is deter­
mined. 

INTRODUCTION 

THIS paper is devoted to the theory of nonlinear 
interaction of electromagnetic waves in a plasma. 
The theory is based on the equations of nonlinear 
electrodynamics, the statistical averaging of which 
makes it possible to obtain a nonlinear equation for 
the evolution of the electromagnetic field fluctua­
tions. Principal attention is paid to effects con­
nected with the transverse field. 

The general equation for the change in oscilla­
tion energy was used in the past primarily for the 
analysis of the nonlinear interaction of electron 
Langmuir waves. Unlike in our earlier paper [t] 

in which only the Coulomb interaction of the plasma 
particles was taken into account, we determine 
here, first, the role of the formation of transverse 
waves by coalescence of longitudinal wavestl and, 
second, the conditions under which nonlinear in­
teraction is determined by the intermediate trans­
verse wave. 

We then consider the interaction between long 
transverse and longitudinal Langmuir waves in a 
plasma. First, we disclose the conditions under 
which scattering of the oscillations by the ions 
predominates, and show that in this case the inter­
action of the oscillations with the ions is several 
orders of magnitude larger than the previously 
considered interaction with electrons [5-s]. Second, 
we determine the conditions under which the time 
of transformation of the oscillations is deter­
mined by the interaction with the electrons, an in­
teraction characterized by the intermediate trans­
verse wave. Third, we consider the effect of co­
alescence of a longitudinal and a long transverse 
wave to produce a transverse wave. Last, we 

l)See also[2 • 4 ] concerning the coalescence (and decay) of 
waves. 

study the induced scattering of long transverse 
waves and show that in this case an important role 
is played by the interaction with the intermediate 
transverse wave. No such interaction was previ­
ously observed, because the analysis was confined 
either to the theory of scattering by longitudinal 
plasma flue tuations or to short waves [7- s] 2l. 

1. EVOLUTION OF ELECTROMAGNETIC 
FLUCTUATIONS 

The kinetics of the interacting waves in a 
plasma should be based on the equations of non­
linear electrodynamics. The nonlinearity is due 
here to the nonlinear material equation. For a 
collision-free plasma the latter can be easily ob­
tained by solving the kinetic equation in the self­
consistent approximation, represented in the form 
of a series in powers of the field 

f(p, 1', t) = /u(P, r, t) 

00 

+ ~ (- ie) 11 ~ rltoJdke-iwt+,kr dtol 1r/k1 .•• dw 11 dk, 
TI=i 

X g+(w, k, v) I'i(1)g+<1>I'icz> ... g+<n-t)fi(n)/o(lun, kn, p) 

X E;cn( (J)- l!Jt, k- kt) ... Ej(n)( (J)n-1- Wn, kn-1- kn). 

(1.1) 

Here e-charge, v-velocity, p-particle momen­
tum, f0 ( p, r, t )-zeroth-approximation distribu­
tion function, and 

E(r, t) = ~ rlwdke·-i<•>~+ikr E(w, k); 

fo (p, r, t) = ~ dwdke-iwt+i .. r fo ( w, k, p), (1.2) 

2)Sholokhov[•] showed that the transverse fluctuations 
affect the scattering of transverse waves in a plasma with a 
beam. 

967 
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1 
u+("l=g+(wn,kn,v)= k , .0 , 
" Wn- nV T l 

(1.3) 

1 
---,-._()[Ozj(nJ(Wn-1- Wn - (k 11-t- kn·V)) 

Wn-1- Wn T l 

(1.4) 

The Green's function of the free motion g + and 
the vertex part r j have been written out for the 
case of a plasma without strong fields. 

The solution (1.1) corresponds to the custom­
arily employed approximation of adiabatically 
turning-on the field in an infinitely remote past. 
As follows from the papers of Klimontovich and 
one of the authors [10• 11], such a solution does not 
make it possible to construct a complete statisti­
cal field theory. However, this solution is just 
sufficient for the description of the processes that 
are of the higher order in nonlinearity. For ex­
ample, the solution (1.1) is sufficient to describe 
the induced scattering of waves by particles and, 
strictly speaking, is not sufficient for the descrip­
tion of simple scattering. We shall be interested 
in what follows only in the processes of higher 
order in nonlinearity. We therefore confine our­
selves to the solution of (1.1), which corresponds 
to adiabatically turning-on the interaction in the 
infinitely remote past. 

Substituting (1.1) into the definition of the cur­
rent density 

j = ~e fdpjv, 

we obviously obtain immediately the sought non­
linear material equation, with the aid of which we 
can write the field equations in the form 

c2k2 ( k;ki) "" • -- On--"- Ei(w,k)=~ I dwj ... dkn 
w2 , k- .l 

n=1 

X IOij(l) ... j(Tt) ( W, k, Wt, kt, ... , (1) 11 , kn) 

(1.5) 

where it is assumed that the plasma in the state 
with f0 contains no space charges or currents, 
and where we also use the notation 

IOij(l) ... j(n) ( W, k, Wt, kt, ... , Wn, kn) = Onli;/J ( W1) Ok1) 

- ~ 4n(-ie)n+1 dp(v;/w)g+(w,k,v)fi(1Jg+<1lfi(Zl 

(1.6) 

The right side of (1.6) is a sum over all the parti­
cle species. 

We are interested in the case when the depend-
ence of fo on the time and on the coordinates can 
be neglected. In such a case 

IOij(1) ... j(n) ( W, k, W1, k1, ... , Wn, kn) 

= O(wn)O(kn)e;_j(1} .. j(n)(W, k, (J)1, k1, ... , Wn-1, kn-1). 

In particular 

IO;j(W, k, w', k') = O(w')o(k')e;j(W, k), 

where Eij ( w, k )-complex dielectric tensor. 
We must make one essential remark. Namely, 

the Green's functions g+(w, k, v) in (1.1) and 
(1.6) become infinite, in accordance with (1.3), 
when the frequency and the wave vector are equal 
to zero. However, zero Green's-function argu­
ments correspond to a homogeneous and static 
state of the medium, or, more generally speaking, 
to a slowly varying state. Assuming that the de­
scription of the slow variation of the plasma is 
given by the function f0, we exclude from the in­
tegrals (1.1) and (1.5) the points that correspond 
simultaneously to zero values of the frequencies 
and the wave numbers which are arguments of the 
Green's functions. In other words, we shall as­
sume that only wn and kn can assume simultane­
ously zero values. 

Assuming the nonlinearity to be slowly varying, 
we can readily obtain the spectra of the natural 
oscillations of the electromagnetic field in the 
plasma with the aid of the usual procedure of time­
averaging of the following expression, which de­
termines the time variation of the amplitudes of 
weakly-damped almost-monochromatic oscilla­
tions: 

d { iJ(we·.H(w k) c2k2 ( k·k· )} -{£.*( k)E ( k)} 'l ' +- 6··--'-J 
dt ' w, J w, iJw w2 'J /c2 '. 

00 

+ div S = iw ~ ~ dw~, . .. , dkn-110ij(1) ... j(n) 
n=1 

X ( W, k, Wt, kt, ... , Wn-1, kn-1) E;' ( lll, k) E'j(1) 

X ( (J)- W1, k- kt) ... Ej(n-1) ( Wn-2- Wn-1, kn-2- kn-!) 

(1.7) 

Here Etl ( w, k )-Hermitian part of the dielectric 

tensor, and S-field energy flux density vector in 
the medium [12 •13]. Equation (1.7), which is the r 
equation of energy conservation, actually corre­
sponds to the abbreviated field equations custom­
arily used in nonlinear optics [14]. As is well 
known, such equations are useful when the phase 
relations between the different waves are fixed. 
For the case of random phases of interest to us it 
is necessary to make one more step, connected 
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with the averaging of (1.7) over the phases or over 
the statistical ensemble. 

We confine ourselves below to a description of 
processes for which it is sufficient to retain in 
(1.7) terms of fourth power in the field inclusive. 
In the statistical averaging of the products of the 
components of the electric field we take into ac­
count the fact that 

(E/(w', k')E;(w, k)>=c'l{w-ro')cS{k-k')(E;E;)ro,k· 

If we neglect the correlation between the ampli­
tudes of the different waves, which is equivalent 
to neglecting the nonlinear effects, the average of 
the product of the field amplitudes can be repre­
sented in the form of a sum of products of pair 
correlators. In the same approximation, the aver­
age of the product of three field amplitudes 
vanishes. However, an account of the first non­
linear correction, which can be readily obtained 
with the aid of (1.5), makes the average of the 
product of the three field amplitudes proportional 
to the product of two pair correlators. We then 
obtain from (1. 7) after averaging 

_1_ ~(E-E) {a (roe;iH (w,k)) + c2k2 (II··_ k;ki )} 
ro dt ' ; w,k aw I ro2 '' kz 

+ div ( S ) = i [e;; (w, k) - e;/ (w, k)] (EiEi)w, k 
(jJ oo,k 

- 2 Im { (Ei(l)Ei)oo, k ~ dw' d k' {E;(2) Ej(aJ)oo•, k' 

XVii<2Ji<lli<a>(w, k, ro', k')}+Im ~dro'dk'{A;r(ro,k) 

x S; (ro, k,w', k') s;i<aJi(4)(w, k, ro', k') 

+2Sii(l)i(2J(w,k, ro', k')Aj(l)r (ro-w' ,k-k') 

X Sri(4)i!a) (w- ro', k- k', ro, k) (Ei(2) E;(4J)w',k' 

X (Ei<aJ E;)w,k}, (1.8) 

l";;(Z)J(t)j(aJ( w, k, ro', k') = EiJ(ZJi(!JJ(aJ( w, k, ro + w', k + k', w', k') 

+ EiJ(2JJ<aJJ(IJ ( (1), k, w + w', k + k', w,'k), (1.10) 

S;j(IJ.i(2J(w, k, (1)1 , k') = EiJ(tJi(2J((J), k, w', k') 

+ Eij(2)i(l) ( (1), k, C•l- (1) 1 , k- k'). (1.11) 

When using Eq. (1.8), which describes the evo­
lution of the electromagnetic field fluctuations, we 
must take into account the fact that the index i re­
members the polarization of the oscillations. 
Then, for example, for an isotropic plasma, we 
obtain from (1.8) two equations that enable us to 

consider the time variation of the longitudinal and 
transverse field fluctuations. 

We note here that Eq. (1.8) does not correspond 
to the equation obtained by Kadomtsev and 
Petviashvili [15• 16] with the aid of the Wiener 
method; in our opinion this method not only fails 
to facilitate the construction of the vector field 
fluctuation theory, but does not permit a descrip­
tion of all the nonlinear interactions of equal order 
in nonlinearity. Our derivation of (1.8) is close in 
spirit to that used in [16] to describe stationary 
turbulence in a plasma, with account taken of 
Coulomb interaction only. 

2. NONLINEAR INTERACTION BETWEEN 
LONGITUDINAL AND LONGITUDINAL WAVES 

By way of a first application of the general 
equation (1.8), we consider longitudinal oscillations 
of an isotropic plasma. We can then write down 
the following equation for the nonlinear interac­
tion of longitudinal waves: 

d (E 2) Bel' ((I), k) ·- 2e1" (w k) (Ez2)w,k -rTt 1 w,k 0(1) - - ' 

- 2 (Et2)w,k ~dw'dk'(Et2)w',k' 
I V ( k , k') k;k,.k/ ks' X Ill ijrs (1), , (I) , k2 (k')Z 

+ ~ d(J)'dk'd(J)"dk"c'l (w- (I)'- (I)") 

X c'l (k - k' - k") { 2 (Et2)w,k (Ez2)w',k' 

1 kiks"km'k/"kr,'ki 
X Im. 81 ((I)", k") (kk' k")2 Sism ( (1) 1 k, w', k') 

X Srni (w", k", (1), k) + n sign e1" ((1), k) ll[e1' (w, k)] 

X I kil ~:" Sirj ( (1), k, (I)', k') 1
2 (Et2)w• ,k' (Et2)w",k"} 

+ 2 ~ dw'dk'd(J)"dk"ll ((I)- (I)' - w") II (k- k'- k") 

X (E 2) (E 2) 1 Usr - s r i m n j { " k "k " 1 k"2 k k 'k 'k 
l w,k l w', k' Ill e,lr (w", k")- c2k"2/(1)"2 (kk')2 

X Sism ((1), k, (1)', k') Srnj ((1)", k", (1), k)}. (2.1) 

Here Etr and Ez are respectively the transverse 
and longitudinal dielectric constants, with EZ' and 
El" the real and imaginary parts. In deriving (2.1) 
from (1.8) we assumed that ( EiEj )w,k = ( Ei )w,kX 
kikjlk2, meaning that only longitudinal oscillations 
of the electromagnetic field are considered. 

Equation (2.1) without the last term of the right 
side is equivalent to Eq. (10) of [17] and Eq. (1.1) 
of [t]. For the time-independent oscillation inten­
sity, Eq. (2.1) goes over into that used by Petvia­
shvili [16 • 18] (see also [15]) only under conditions 
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when the last term of the right side of (2 .1) can be 
neglected. This difference is due to the fact that 
our equation describes the influence of the trans­
verse field in a plasma on the longitudinal oscilla­
tions. In the present section we expose the role of 
this influence and determine the conditions under 
which the effects of the transverse field turn out 
to be essential for the nonlinear interaction of 
longitudinal oscillations. 

For convenience we write first an expression 
for the rate of time variation of the energy of the 
electronic Langmuir longitudinal oscillations 

00 

Wz (k) = (2n)3 s dw (E~~w,k f) [wel~~w, k)]' (2.2) 
0 

in which no account is taken of the last term of the 
right side of (2 .1), and which was considered in 
detail in [i] 3 l. When the influence of the ions on 
the wave scattering is insignificant, as is the case 
when 

(w- w') 2 = ._2_ Vre2 TDe2 (k2 - k'2 )2 » Vy; 2 (k- k')2 
4 

[ e;2MTe3 J 
x ln e2mT;3 ' 

the principal role is assumed by scattering from 
the electrons and 

(2. 3)* 

In the case of the opposite inequality 

the scattering by ions predominates and 

dW1 (k) = _ 3 _ _ WLe Wz (k) Vre rD 4 i dk'Wz (k') 
dt 8(2n)'l2 i1irDe3 xTe Vy; e J 

(k2- k'2)2} 

(k- k') 2 

(2 .4) 

Here e, ei, m, M, Te, and Ti-charge, mass, and 
temperature of the electrons and ions, respec­
tively, WLe = ..j 47Te2N/m-Langmuir frequency of 
the electrons, vTe = ..j KTe/m and vTi = ..j KT/M­
thermal velocities, rne = ..j KTe/47Te2N and rni = 

3)The results o£[1] were also partially used subsequently 
by GaYlitis and Tsytovich.['] 

*(kk') = k X k'. 

..j KT/47T I e I eiN-Debye radii of the electrons and 
ions. Finally, 

F = 0, if 1 ~vr;2 (k- k')2 I (w- w')2 

(2 .5) 

F=1, if vr;2 (k-k') 2 ~(w-w')2. (2.6) 

The first effect of the nonlinear interaction of 
longitudinal waves, due to the last term of the 
right side of (2.1), is the coalescence of two longi­
tudinal waves into a single transverse one. The 
corresponding contribution is due to the vanishing 
of the expression 

(2. 7) 

The coalescence of two longitudinal waves with 
frequencies that are approximately equal to the 
electronic Langmuir frequency leads here to the 
occurrence of a transverse wave of frequency 
2wLe and wave vector of absolute magnitude 
V:fwLe/c. All the oscillation frequencies partici­
pating in such a process are large compared with 
the electron thermal velocity divided by the oscil­
lation wavelength. We can therefore use the follow­
ing approximate formula 

i 4ne3N { k/ k; kr'' l_ 
S;rj(W, k, w', k') = --,-,--2- b;r-,+ brj-- + b;j ~,j 

www m w w w 

(2.8) 

As a result we get for the rate of decrease of the 
energy of the transverse oscillations, due to their 
coalescence and transformation into transverse 
oscillations, 

[ dWz(k) J 1 WLe Wz(k) c2 ~ ---- = - -----~--I'D 7 dk'Wz k' 
dt coal 12(2n) 2 NrDe3 xTe Vre2 e ( ) 

[kk']Z [ cz l 
X~~ (k2 - k'2 ) 2 6 3-- (k + k') 2 

( kk')2 WLe2 j. 
(2.9) 

From this, for example for an isotropic distribu­
tion of the longitudinal oscillations with wave­
lengths on the order of c/wLe = A. 0, it follows that 
the time within which the energy of the longitudinal 
oscillations is decreased at the expense of the 
formation of the transverse waves is given by the 
formula 

103 Nrve3 xTe ( c )5 
't.coal I"'V ~--- -- • 

WLe Wz Vre 
(2 .10) 

A time of the same order characterizes the co­
alescence of the longitudinal oscillations in wave 
packets with larger wave vectors but with width 
~ WLe/c. 

When the interaction between the ions is the 
principal factor, it is necessary to compare for­
mula (2.10) with the time of the spectral energy 
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pumping due to the scattering by the ions. For 
wavelengths ~ A.0 the order of magnitude of this 
time, as follows from (2.4), is 

(2.11) 

and turns out to be smaller than the coalescence 
time (2.10). In other words, in this case, when the 
longitudinal oscillations relax, only a small frac­
tion of their energy goes over as a result of co­
alescence into the transverse oscillations. The 
fraction of this energy is characterized by the 
ratio of the time of the spectral pumping, due to 
the scattering by the ions, to the coalescence 
time. This ratio, in accordance with (2.10) and 
(2.12), is equal to (VTi/c ). We note that inasmuch 
as the intensity of the longitudinal oscillations can 
exceed greatly the intensity of the equilibrium 
noise, the transverse radiation resulting from the 
coalescence of the longitudinal waves can be quite 
large. 

It must be pointed out, finally, that for wave­
lengths of the order of A.0 the scattering by the 
ions greatly exceeds the scattering by the elec­
trons under eonditions when ( Te/Ti )KTe 
« ( m/M )mc 2• In the opposite case, scattering by 
the ions is negligible. In particular, scattering by 
ions is neglible if ( T e/Ti) K Te > 2 x 106 deg, in 
a hydrogen plasma and ( Te/Ti )KTe > 104 deg in a 
mercury plasma. The spectral pumping is deter­
mined here by the scattering from the electrons 
and, as follows from (2.5), takes place for wave­
lengths ~ A. 0 within a time on the order of (see [tJ 

for more details) 

(2 .12) 

From a comparison of (2.10) and (2.12) we see that 
under such conditions the pumping over the longi­
tudinal-wave spectrum is insignificant. 

In addition to the already considered coales­
cence effect, another nonlinear interaction of longi­
tudinal waves arises, again as a result of the last 
term in the right side of (2.1). Such an interaction 
arises as a contribution from the region of values 
of w" and k" for which (2.7) can no longer vanish. 
We have in mind here the contribution made to the 
induced scattering of the longitudinal insulation by 
the interaction, which can be set in correspondence 
with the following picture: The lines of the incident 
and scattering longitudinal waves enter the two 
vertices of the triangle produced by the virtual­
electron lines, while the line going out of the third 
vertex is that of the intermediate transverse wave, 
which is absorbed by the electron, thereby pro­
ducing the scattering. We shall refer to such an 

interaction as "scattering via an intermediate 
wave" to distinguish it from the previously con­
sidered process [1J, when the longitudinal wave was 
intermediate (for brevity we shall use the expres­
sion "Coulomb scattering" for this interaction). 

The contribution made to the rate of change of 
the energy of the longitudinal oscillations at the 
expense of scattering via the transverse wave is 

[kk1
] 2 I k - k 1 I [ c2kk1 J X~ dkiWz(kl) (kkl)2 (k2- kl2) 1- 4-WLe2 

(2 .13) 

In deriving this relation we use for the tensor S 
the following approximate expression, obtained 
for an isotropic particle distribution under the 
conditions w » k ·v and w 1 » k 1 .v: 

, 1 1 i 4ne"iV { i [ ( kz k/ \ S;,·z(w,k,w,k) =--.---.,- -----,- b,; - --~ 1 
(J)(J) In" (J) (J) w ' 

. ( k; k;')] k,." 
-Or\ W- -WI + (k")4 

[ kk" k 1k" kk1 l 
X -- k k ·" + .. - k •1 k II -+- -- k ll k II J w2 z • wl2 • t ' ww' • z 

l {) 1+ r • + • { 6 r l [ k( k"k·") k· 1
' k"k")] 

- w ri ~ w1 \ zr-~ 

1 dpju kr'1 

X-\ +-
N J w" + iV- k"' (k")Z 

X 6· + l • + . l I l ' kk" [ w" (kk·" k-'k") (w")Z(kk·" 
tl (k"f2 ----;- ~...,- T .k" ~ 

, k 1k" k _, k, + kk1 k·" k, )11_ i dp (k"8f0/ 8p) 
1 w12 ' 1 ww 1 ' 

1 . J N .l w" + i!J - k"v 

- __ r_ l k. k II I 1. k I - k II { k" [ k ( kk" ) k-'( k1k" ) 
(k"P c.;z • - k"2 i 'c.;~, l k"2 l 

kk1 
( k;'1k{' )] + --, 6;z- -k"2 

ww ' 

k [ ( kk" \ ' k·"k" )] + w2~"2 k;'l k, - k"2 k," .J + kkl ( b;r- ~"2r 

+ --'- k{' k,.' - ----- kr'1 + k1k" {)1,.- - 1---'---
k .' [ ( k 1k" ) ( k "k ll ) ] 

w12k"~ k"Z k"2 

kk1 
[ ( k"k") ( k·"k")]} + wwlkl/2 k/' brz- ~~~~zl_ + k{' _b;r- 'k,; 

1 r k"v } 
X-N J dpfo w"+iO-k"v , (2.14) 

and also the expression derivable from it 
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S;sm (w, k, w1 , l'') Srni (w", k", w, k) ( 6sr- ks''k/1 
) 

/{12 I 

1 ( 4nNe3 )2{ 
= { 1 ") 2 --2- 6;skm"- 6smk/1 

www m 

1 1 w" } 
- (km6is + k/6sm) -N J dp fo u:i" + iO _ k"v 

X { 6;rkn"- 6rnk/' - (kn6jr + k/6rn) ,~.-

'" 1•' 11 } • ks'' k,." ) 
X~ dp fo w" + iO _ k"v ( 6sr-~ (2 .15) 

We note immediately that under the conditions 
when the wavelength of the longitudinal oscillations 
is small compared with A.0, expression (2.13) 
leads to effects which are only small corrections 
to the effects resulting from the theory that takes 
into account only the longitudinal (Coulomb) inter­
action of the plasma particles. We shall therefore 
focus our attention on the opposite case. We as­
sume that the following inequality is satisfied: 

(2.16) 

where ~k = I k- k'l. Then the right side of (2.13) 
takes on the form 

2 WLe Wl(k') ~ 1 ·' 1 [kk1)2 lk-k1 13 
3(2n)'h NrDe3 xTe rDe J dk Wl(k) (kk1 ) 2 (k2- k 12) 

(2 .17) 

This expression corresponds to a situation wherein 
the oscillation energy is not transferred to the 
particles, and the relaxations of the oscillations 
constitute pumping of the longitudinal oscillations 
over the spectrum, from the short waves to the 
long ones. 

The corresponding time of spectral pumping is 

[kk1J2 (k2- k'2) 
X 
- < kk') 2 1 k - k1 1a · 

(2 .19) 

The spectral pumping time corresponding to this 
expression is equal to 

NrDe3 xTe ( c )~ 1 '(;"' 102 --
WLe Wl(k) Vre . rDe2kf't.k. 

(2 .20) 

This time is much shorter than the Coulomb time 
of scattering of the wave by the electrons. There­
fore formula (2.19) describes spectral pumping of 
waves only when the scattering by the ions is 
small compared with the Coulomb scattering by 
the electrons, or when the time (2 .20) is short 
compared with the time of induced scattering by 
the ions. The latter is satisfied if c 2k2 

« 0.1wte<vTivTe/c2 ). On the other hand, scat­
tering by the ions is small compared with the 
Coulomb scattering by the electrons if VTic2 

3 « vTe· 
In concluding this section we note that at first 

glance it may appear that the relativistic correc­
tions to the Coulomb scattering could turn out to 
be of the same order of magnitude as the effects 
connected with the transverse intermediate waves. 
The analysis actually shows, however, that the 
relativistic additions to the Coulomb scattering 
are always corrections, whereas, as shown above, 
the scattering connected with the transverse in­
termediate wave may become the principal factor 
in the spectral distribution of the longitudinal os­
cillations. We note that this takes place not only 
in the case of interaction of longitudinal waves, 
but in all other cases considered below. 

3. NONLINEAR INTERACTION OF LONGITUDI-
(2.18) NAL AND TRANSVERSE WAVES 

This section is devoted to the nonlinear inter-

and is much shorter than the value obtained for the time action between longitudinal and transverse waves. 

connected with the induced scattering of the waves 
by the electrons when only the Coulomb interac­
tion is taken into account. The latter, in turn, is 
shorter than the time of scattering by the waves if 
VTic 2 « v 3Te for wave numbers k 
» ( VTi/VTe )rile· On the other hand, if the spec­
tral pumping time connected with the scattering 
by the ions is shorter than the Coulomb time of 
scattering by the electrons, then (2.18) turns out 
to be smaller than the ion relaxation time if & 
< 0.3 kVVTilvTe· 

Finally, if the inequality WLeVTe& « c 2k2, the 
opposite of (2.16), is satisfied, then the right side 
of (2 .13) can be written in the form 

Here 

k;ki 2 1 ( 6 k;ki ) E • {E;E;)oo,k = "7f_2 {Ez )oo,k + 2 ii - ~- ·{ 1 tr-lo>,k· 

(3.1) 
Confining ourselves to the interaction between 
longitudinal and transverse waves, we obtain from 
(1.8) the following two equations: 

d (E 2) 8e1' (m, k) _ 
dt ~l oo,k aw --

- {El)oo,k~ dw'dk'(Etr2)w',k' k~~r lmV;jrs(w,k,(r>',k') 

X ( 6js - k%~;' ) + (E!2)oo,k lm ~ dw'dk'dw"dk" 

X6(w- w'- w") 6 (k-k'- k") k~~i ( 6mn- km~~;' ) 
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X(Err2)w',k'Sism(tu, k, w', k')Srni(w", k", w,k) 

X {k,"k/ 1 6sr- ks"k/"jk"2 } 

~ el (w", k") + etr (w 11 , k")- c 2k"2jw"2 

:rt \ • + -2- sign e!" (w, k) 6 [e1' (w, k)] .) dw'dk'dw"dk" 

X6(w- w'- w") 6 (k- k'- k") 

X {k;k/ lcnkm' ( 6 k,"kr" ) (E 2) (E 2) 
(kk')2 sr -~ 'l w',k' tr w",k" 

+ k;k/" knks" ( 6 k;' km' ) (E 2) (E 2) 
(kk")2 jm - 72· l w",k" jtr w', k' 

1 k;kn ( 6 k/km' \ ( 6 ks''kr") +Tv jm-~J '"---p2 

X (Etr2)w•, k' (Err2)w",k"} Sirj (w,k,w' ,k')Snsm*(w,k,w' ,k'), 

(3.2) 

_r!_(E 2) _1_{8 [wetr (w, k)] + c2k2 } 
dt tr w,k (J) O(J) (J)2 

=- 2e1r" (w, k) (Err 2)w,k- (Err2)w,k lm ~ dw'dk' 

( k;kr ) (k/ ks') E 2) XV;irs(w,k,w',k')\6;r-Jf'i"" /2""2 ( z w',k' 

+ (Err2)w,k lm ~ dw'd k'dw"dk" 

, " 1 " {k,"kr" 1 x o (w - w - w ) o (k- k - k) ~ 81 (w", k") 

Osr- ks''k/"jk" 2 } ( k;kj \ + etr(w"' k") - c2k"2jw"2 O;j - -Jt2-) 

( k ' k') S ( " k" k) km' kn' (E 2) X Sism ffi, ' (!) ' rnj (t) ' ' {1), ----p2 f l w', k' 

+ n sign etr" (w, k) o [ etr' (w, k)- c;: J 
X~ dw'dk'dw"dk"o (w- w'- w") o (k- k'- k") 

Under conditions where it is necessary to take 
into account the linear damping of the longitudinal 
waves, and also the nonlinear interaction of the 
longitudinal waves with the longitudinal waves, 
Eq. (3.2) is supplemented by the right side of (2.1). 
In the present section we are interested only in the 
nonlinear interaction of longitudinal waves with 
transverse ones. We therefore confine ourselves 
to a consideration of (3.2) and (3.3). We are inter­
ested in an interaction of waves having frequencies 
that differ little from the Langmuir frequency of 
electrons. For longitudinal electron oscillations 

this is always satisfied and corresponds to the fact 
that their wavelength is large compared with the 
electronic Debye radius. For transverse oscilla­
tions we assume that .\0 is small compared with 
the length of the transverse waves. We start our 
analysis with the induced scattering of the waves 
under conditions when only the interaction with the 
ions is significant, and when it is also possible to 
neglect the contribution of the interaction that is 
characterized by the intermediate transverse os­
cillation. These conditions will be spelled out be­
low. 

The scattering by electrons only, without ac­
count of the interaction characterized by the inter­
mediate transverse oscillations, is described by a 
tensor which has in our case of long-wave oscilla­
tions the form 

lm {vijsr (w, k, w', k')- Sini (w, k, w', k') 

X" ( " k" k)kn"km"rer (w" k")J-1}~·· 
Omrs W , , W, k"2 ' 

{ ( k·"k" ) ( X kj kr 6is - ~,28 + kjks' 6ir 

k·"k") (' k·"k") 
-- 'k"~ + k/kr 6js- ~,2' 

4n2e4w" 
m 2 (ww')3 

+ k;'ks' ( oir- k{,~r" ) } ~ dp j6 (w"- k"v). (3.4) 

We have used here formula (2.14). Formula (3.4) 
enables us to write down the following equations 
for the time variation of the energies of the longi­
tudinal and transverse oscillations: 

dWz (k) 
dt 

{3PrDe2- Ao2k'2} {[kk']2 [Pk'2- 4 (kk')2 
X I k - k' I a (kk')2 c 

+ 2k'2 (kk')] + 2 (~~') 2 (k- k') 2 }' (3.5) 

Wtr (k) 
dt 

1 ffiLe Wu- (k) 4 
-:-16~(2,-n""')'-,-:, N r De 3 ~ r De 

X (' dk'W (k'){Ao2k2- 3k'2rDe2} {[kk']2 
~ 1 1 k - k' 1 a (kk')2 

X [k2k' 2 - 4 (kk')2 + 2k2 (kk')l + 2 (~~/ (k- k')2 }. 

(3.6) 

In deriving these formulas we have assumed that 
the particles have a Maxwellian distribution, and 
that the energy density of the transverse oscilla­
tions is determined by the relation 

(3.7) 
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In the particular case when the wavelengths of 
the transverse oscillations are much larger than 
those of the longitudinal waves, formulas (3.5) and 
(3.6) go over into those obtained by Gallitis and 
Tsytovich [5] on the basis of the results of their 
paper [s]. We note that in accordance with ( 3 .5) and 
(3.6) the oscillation energy is conserved and shifts 
from the high frequency oscillations to the low 
frequency ones. The fact that the scattering of the 
oscillations is elastic and that the energy is not 
transferred to the particles is manifest in the 
symmetry of the kernels of (3.5) and (3.6). We 
confine ourselves below to the elastic-scattering 
approximation. Therefore, bearing this symmetry 
in mind, we consider only the equation for the 
rate of change of the energy of longitudinal oscilla­
tions with time. 4) 

Equation (3.5) is no longer suitable if the follow­
ing inequality takes place 

(w- w')2 = [ {WLe(3k2rve2 - Ao2k'2) r < VTi 2(k- k')2 

X ln [ e;2MT.3]. 
e2mTi3 

(3.8) 

The decisive factor then becomes the scattering 
by the ions (see [t] ). As a result we get in lieu of 
(3.5) 

(3.9) 

where the function F is characterized by formulas 
(2.5) and (2.6). The time of spectral redistribution, 
described by (3.9) has an order of magnitude (in 
the case when the exponential in this equation can 
be set equal to unity) 

't;"' 103[ WLe 3 Wz VTe rve2k2(3k2rv.2-'J.Q2k'2)]-l. (3.10) 
Nrve xTe VTi 

The ratio of this time to the spectral redistribu­
tion time described by (3.5) is approximately equal 
to ( krne )2 ( vTi/vTe), which turns out to be 
smaller than ( VTiiVTe) 3ln [ e~ MT~/ e2m T{] when 
krne ~ A.ok'. Therefore, for wavelengths where 
scattering by the ions is decisive the time of 
spectral redistribution in an isothermal hydrogen 

4)The difference between (3.5) and the corresponding for­
mula (3.2) of Matsuura[19 ] is due to the latter neglecting the 
terms -e• or, in other words, the terms containing the tensorS 
in our formula (3.2). 

plasma turns out to be four orders of magnitude 
smaller than the value previously obtained without 
account of scattering from the ions. For a mer­
cury plasma Ti turns out to be approximately 
eight orders of magnitude smaller 5). 

Scattering from electrons which is due to the 
interaction with an intermediate wave or, in other 
words, due to that term of (3.2) which contains 
expression (2. 7) in the denominator, can under 
certain conditions exceed the scattering consid­
ered above in this section. The corresponding 
contribution to the rate of change of the energy of 
the longitudinal oscillations is of the form 

6[ dWz(k) J = _ 1 WLe Wz(k) r 4 \ dk'W (k') 
dt 16(2~)'/, NrDe3 xT. De J tr 

3rDe2k2 - 'Ao2k'2 

X (kk')21 k- k' I 
k'2(k·k- k')2 + (k- k')2(kk')2' 

X 'Ao4(k- k')4+ 1/• (c/vTe)2[1 + n/4J...o2(k- k')2)[3k2--rv-.-=-z-_-'A--=ozc=-k-::'2=-)z·· 

(3.11) 

In the derivation of (3.11) we made use of (2.15). 
It must be emphasized that interaction (3.11) is 

small compared with scattering by ions in the re­
gion where inequality (3.8) is satisfied. Therefore 
only in the region when the opposite inequality is 
satisfied can the interaction (3.11) be significant. 
Depending on the ratio between the lengths of the 
longitudinal and transverse waves, either the 
Coulomb scattering given by (3.5) or scattering by 
the transverse wave in accord with (3.11) will pre­
dominate. Thus, for example, when 

and 

the spectral redistribution is determined by the 
scattering via the transverse wave, and occurs 
within a time of the order of 

103Nrve3 xT. k3 
-r~ --

WLe Wz (krDe) 4k'3 

(3.12) 

In deriving the expressions for the interactions 
between the long transverse and longitudinal waves 
it was assumed that w" = w - w' « k" · Ve· We can 
consider the opposite case, when w ~ w' » w" 
» k" · ve. Using (3.5) we obtain for Coulomb 
scattering of the waves 

5>1n deriving formula (3.9) we did not take into account 
the interaction with the ions, characterized by an intermediate 
transverse wave. The corresponding contribution may turn out 
to be appreciable only if the plasma is very highly isothermal, 
when (T eiTi) » (M/m). 
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- 1 o:JLe Wt(k) r "(" dk'W (k') (A. 2k'2- 3k2rv.2) 
16(2n:)'h Nrve3 xTe De J tr 0 

{ rve2 ( k'2c2 ) 2 } Q (k, k') 
X exp -81 k- k' 12 Ure2 - 3k2 k2k'21 k- k'l3' 

Q(k, k') = [kk']2(k2k'2 - 4(kk') 2 + 2k'2(kk')) 

+ 2 (kk') 2k'2 (k - k') 2. 

(3.13) 

(3.14) 

The scattering of a transverse wave by a longi­
tudinal one via an intermediate transverse wave 
leads to different expressions, depending on the 
ratio of the longitudinal wavelength to i\ 0• If the 
longitudinal wavelength exceeds i\ 0, then we must 
put in (3.13) 

Q(k, k') = /c'2(k- k')2(k·k- k')2 + (k- k')"(kk') 2 

- k'2(k- k')2(kk')2- ( [kk'P + (kk')k'·k- k') )2. 

(3.15) 

For the opposite case, when the longitudinal wave 
is shorter than i\0, the corresponding contribution 
to the change in the transverse-oscillation energy 
is obtained from (3.13) by using the expression 

1 ( u )2 [ (k' k k') 2 Q(k, k') =-- __!"_!_ rv.-2 k" · - + k2k'2(kk') 
2 c (k-k')2 

+ k2(kk') (k'. k- k') J. (3.16) 

The role of the ions is always negligibly small in 
our case, for the ion term contains an exponentially 
small factor with an exponent that is ( VTe/VTi )2 

times larger than the argument of the exponent in 
(3.13). 

Comparison of the time of variation of the in­
tensity of the transverse oscillations due to the 
interaction with the longitudinal shows that the 
principal role is always played by the interaction 
via the intermediate transverse wave, except for 
the case kc/vTe » k' » i\0 1, when interaction via 
the longitudinal wave can be of the same order of 
magnitude. 

In concluding this section we must stop to con­
sider one more possible process of nonlinear in­
teraction of longitudinal and transverse waves. 
Namely, the long-wave oscillations which we are 
considering (both transverse and longitudinal) can 
coalesce into transverse waves with frequency 
2wLe and wave vector v'3wLe/c6 >. The contribu­
tion of such a process to the rate of decrease of 
longitudinal oscillation energy is of the form 

6)The coalescence of short transverse waves (w ~ ck) with 
longitudinal waves was considered by Kovrizhnykh and 
Tsytovich. [ 20] 

(3.17) 

Analogously, for the rate of decrease of energy of 
the transverse oscillations we obtain 

( c2k'2) ( ,2 (kk') 2 ) 
X{) 3--2 k +-k-2- . 

o:JLe ' 
(3.18) 

Inasmuch as the wavelength of the transverse os­
cillation participating in the coalescence is much 
larger than i\0, we can state with a corresponding 
degree of accuracy that the wavelength of the 
longitudinal oscillations in (3.17) and (3.18) is 
equal to i\0//3: 

4. NONLINEAR INTERACTION OF LONG WAVE 
TRANSVERSE OSCILLATIONS 

For the nonlinear interaction of transverse 
waves we obtain from (1.8) the equation 

- (Etr2)w, k + ~ dro' dk' (Etr2)w•, k' 

I V ( k I k') (.. k;_kr) (-' k/ks') X m ijrs w, ' 0) ' Uir- k2 Ujs- ---p2 

+ (E1, 2).,, k } Im ~dw' dk' dro" dk"{) (w-oo' --w") 

1 11 {ks"k," 1 {)sr- k." k," I k"2 } 

X {)(k-k-k) k"2 el(oo",k")+~:P(w",k")-c2k"2 lw"2 

X ( 6;;- k~~j) S;sm (w, k, w', k') Srn; (w", k", ro, k) 

X ( 6mn- ~~~n') (Etr2)"'·· k' + ~ sign etr" (w, k) 

X {) [ etr' (w, k)- c:~2 ]~ dro' dk' dw" dk"{) (w- ro'- w") 

X b(k-k'- k")(6;n- k;kn I k2 )Sirj (w, k, ro'' k') 

X S~sm(ro, k, ro', k') (6jm-k;'km' I k' 2)(68r-k.''k,." / k"2) 

X (Etr2)w•,k'(Etr2)w",k"• (4.1) 

We confine ourselves below to long-wave trans­
verse oscillations, the frequency of which is close 
to the Langmuir electron frequency. For such os­
cillations, coalescence and decay are impossible. 
Therefore the nonlinear interactions are deter­
mined by the induced scattering of transverse 
waves. Inasmuch as the theory of scattering of 
transverse waves in a plasma is developed, we 
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could make use of the results obtained there. How­
ever, the case of interest to us, that of long waves, 
was never considered before. In addition, it must 
be noted that Akhiezer et al. [7] and Rosenbluth and 
Rostoker [B] considered the scattering of trans­
verse waves within the framework of a theory that 
takes into account only longitudinal plasma fluctu­
ations. In the language of our equation (4.1), this 
means that we have disregarded the term that 
contains expression (2.7) in the denominator. Ac­
tually, however, account of precisely these terms 
when using formula (2.15) for the case of small 
.6-k 

yields 

c l!.kc 
~--­

VTe WLe 

dWtr(k) =-__ 1- WLe_ Wtr(k) rDe4 ( WLe ) 2 \ dk'Wtr(k') 
dt 4(2'Jt)'f,NrDe3 xT. c J 

[kk')2 k2 + k'2- kk' { (k- k')4 
X (kk')2 I k- k'l (k2- k'2) 4 (k2- k'2)2 

(4.2) 

When ( .6./k) « krDe• the characteristic time of 
the spectral redistribution is of the order of 

't"' 103 (_:_ yNrDe3 xT._1_ (4 .3) 
VTe I WLe lf'tr rve2kl!.k. 

In the opposite case ( &/k) » krne « 1 we have 

•"' 1oa(_:_)2NrDea xT. ~ (4.4) 
V7'e WLe Wtr rDe4k5 • 

We note that the characteristic time resulting from 
the remaining terms of (4.1), without account of 
scattering by the ions, is of the order of magnitude 

't _ 103NrDe3 xTe VTi 1 
WLe lVtr c2 rDe6k51!.k ' 

which greatly exceeds the time (4.3) or (4.4). 
When the following inequality is satisfied 

{(!)- (tJ 1 )2 = [c2{k2- k'2) I 2(t)LeJ2 < VTi2(k- k') 2 

Xln(e;2MT.a I e2mT;~), (4.5) 

a sharp increase takes place in the contribution of 
the scattering of waves by ions, which becomes 
essential for the nonlinear interaction of trans­
verse waves. We then obtain 

dlVtr(k) 

dt 

1 k2 - k'2 [ (kk')2 J 
X rDe4 J dk'Wtr(k') Tk- k' I 1 + k2k'2 

[ rv;/rDe ] 2 { c4 (k2 -k'2)2 } X exp - (4.6) 
F + (rDilrDe) 2 8vT;2(t)Li(k- k')2 

where the function F is determined by (2. 5) and 
(2.6). The characteristic time of the spectral re­
distribution is then equal to 

NrDe3 VTeVTi xT. 1 
•. - 103--~-------
, ffiLe c2 TVtr rv84k31!.k 

(4. 7) 

So far we assumed that in the nonlinear inter-
action of long transverse waves w" = w - w' « k 
- k' · Ve· As in Sec. 3, let us consider the opposite 
case w ~ w' » w" » k - k' · Ve. The scattering 
of waves by ions is in this case always negligibly 
small, inasmuch as the times characterizing the 
scattering contain an exponential with a large 
argument. As to the scattering by the electrons, 
the corresponding expressions can be obtained with 
the aid of (3.4) and (2 .14): 

{) [ dWtr(k) J = ___ 1 __ ffiLe lVtr{k) 
dt 16(2'Jt)'/, NrDe3 xTe 

( c )2 [kk')2 (k2-k'2) 
X rve6 VTe ~ dk'Wtr(k') (k/,;')2 lk-k'l 

X(k2 + k'2- kk') [ 1 + 8 ( VTe ) 4-(k-~] 
c rve2(k2- k'2) 2 

X exp {- 1 (-!_-)4 ( k2- k'2) ~rDe2} . 
8 VTe (k-k )2 , 

(4.8) 

The second term in the square brackets of (4.8) is 
due to scattering via a transverse wave, and is 
always negligibly small compared with unity. 
Therefore in the case in question the principal 
role is played by scattering from electrons, with 
account of the Coulomb interaction between parti­
cles only. 

In conclusion attention must be paid to the fol­
lowing circumstance. Eqs. (2.1), (3.2), and (4.1) 
contain terms whose sign depends on the sign of 
the imaginary part of the dielectric constant. If 
the distribution function of the particles in the 
plasma is such that the sign of the imaginary part 
of EZ or Etr is negative, then a new nonlinear 
kinetic instability is possible. At sufficiently large 
oscillation amplitudes this instability can turn out 
to be more significant than the linear instability 
which also takes place in this case. 
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