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The electrical conductivity of metals at low temperatures is treated for the case where, 
aside from scattering of electrons by static lattice defects and sample boundaries, the only 
processes with any sizable probability are collisions between electrons and phonons without 
umklapp. The effect of such collisions is very dependent on the nature of the residual re
sistance. If scattering of electrons at sample boundaries (or any other macroscopic objects) 
predominates, then under certain conditions the conduction process resembles the flow of a 
viscous charged fluid. The dependence of the resistance on the temperature and the trans
verse dimensions of the san1ple is then peculiar and, in particular, there should be a tem
perature minimum in the resistance. A different situation arises when the residual resist
ance results from microscopic lattice defects like impurity atoms. In this case a plateau 
appears in the plot of resistance vs. temperature. 

1. EFFECT OF DIFFERENT ELECTRON SCAT
TERING MECHANISMS ON LOW-TEMPERA
TURE CONDUCTIVITY 

IT is known that at sufficiently low temperatures 
the electrical resistance is usually constant and 
is determined by the scattering of electrons by 
impurity atoms and other structural defects of the 
lattice as well as at sample boundaries. The tem
perature dependence results from the different in
teractions in the electron-phonon system. Usually 
one uses the formula 

p(T) =Po+ aT2 + ~TS, (1) 

where Po is the residual resistance, the second 
term is related to electron-electron and the third 
to electron-phonon collisions; for simplicity we 
have omitted tensor indices. In the following we 
shall be considering single crystal samples which 
are sufficiently pure and large so that the residual 
resistance is reached only at helium tempera
tures. 

A. Electron-electron collisions. A Born ap
proximation calculation shows that at helium tem
peratures the dependence of the resistance should 
be given by the second term in (1), i.e., p ( T) 
-Po~ T2 (Landau and Pomeranchuk,[l] cf. also 
Ginzburg and Silin [2] ). In principle there is no 
question that such a dependence exists. But if we 
exclude the transition metals this dependence is 
not observed experimentally. The problem reduces 

to estimating the numerical coefficient of T2• 

First we note that the Born approximation 
gives somewhat too high a value for the electron
electron scattering cross section (according to 
Abrahams,C3J about a factor of 4 too large). In ad
dition one should take account of the fact that the 
only collisions that contribute directly to the re
sistance are those accompanied by umklapp (the 
so-called U-processes). Obviously such collisions 
are possible only between electrons located in 
certain definite regions which are cut out of the 
Fermi surface by planes perpendicular to the 
umklapp vector and bisecting the line from the 
center of the Brillouin zone to its boundary. The 
most important point is probably the fact that the 
matrix element for the U-process contains an in
terference factor which is small compared to 
unity (cf. Ziman,C4J pp. 181, 369). We note that N
processes (i.e. collisions without umklapp) can 
also give a term proportional to T2 if the Fermi 
surface is nonspherical (analogous to the case of 
Sec. 3 of the present paper). 

From our remarks it is clear that at present 
theoretical arguments do not permit a sufficiently 
reliable estimate of the order of magnitude of the 
coefficient a in (1), nor do they say what experi
mental accuracy is needed to observe the quadratic 
dependence of the resistance in any particular 
metal. In this connection it is of interest to make 
a comparison with data on infrared absorption of 
metals. According to [5J, the effective frequency 
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of electron-electron collisions can be written in 
the following form, valid for both the static and 
high-frequency cases: 

(2) 

(where Tee is the free time between collisions, 
Eo is the limiting energy, and w is the frequency 
of the electromagnetic wave). Thus electron
electron collisions in the near infrared region 
(A = 2nc/ w ~ 1-20 11' nw ~ 103 - 104 OK) are 
therefore 10 3 - 105 times more probable than in 
the static case at helium temperatures. 

For a not too dirty metal the infrared absorp
tion coefficient can be written as 

A = Ao + 2 / Wo'tee, ( 3) 

where the quantity A0, which is independent of w 
and T, is related to collisions of the electrons 
with phonons and sample boundaries, w0 

= ( 4nne2/m )1/ 2 is the plasma frequency, n is the 
electron density, e the charge and m the electron 
mass. On the other hand, at helium temperatures, 
if we consider the electron-electron collisions as 
a small contribution along with the impurity scat
tering, the static resistance can be written as 
(cf. Sec. 3) 

(4) 

where T~f is the effective frequency of collisions 
with impurities. The important point is that (3) 
and (4) are obtained under analogous assumptions, 
the first for WTee » 1, the second for T;ATee 
» 1. This is the reason why (2) is applicable to 
both cases. True, the interaction with impurities 
is described by an operator whereas w is a num
ber, and moreover in the infrared region, unlike 
the static case, there are Fermi liquid effects. 
But apparently neither of these has a strong in
fluence on the value of T0• 

A quadratic dependence A ( w) for the noble 
metals was seen by Biondi [sJ (cf. also Dingle [7]). 

Comparison of these results with formulas (2), (3) 
and (4) shows that at helium temperatures the 
aT2 term in (1) should be only a few percent of 
the residual resistance Po even in the purest 
samples, where the mean free path for impurity 
collisions is lei ~ 0.1 em. 

B. Interaction with phonons. The T 5 law for 
the resistance was found by Bloch on the assump
tion that the phonons are in equilibrium, i.e., there 
is some mechanism for dissipation of the quasi
momentum in the phonon system. As Peierls 
showed, one such mechanism is phonon-phonon 
collisions with umklapp. But as the temperature 
is lowered the probability for these U-processes 

falls exponentially like e-y®/T, where ® is the 
De bye temperature. The numerical coefficient y 
is difficult to estimate since it is determined by 
the behavior of the acoustic branches for sizable 
values of the quasimomentum. Crudely speaking, 
2y® is equal to the smallest value of the sum of 
the energies of the phonons participating in the 
collision, when we take account of the appropriate 
momentum conservation law for the U-process. It 
is clear that for each metal there should be some 
definite temperature below which the U-processes 
can no longer guarantee equilibrium of the pho
nons, and the corresponding contribution to the 
resistance must drop exponentially. From a com
parison with data on thermal conductivity of die
lectrics (Peierls [8]) it follows that such a situa
tion should occur over a quite wide range of low 
temperatures, say for T/® :::, 1/10. 

According to Klemens, [9] U-processes are im
portant down to much lower temperatures. But the 
treatment given in his paper is hardly justified. 
We also note that, contrary to Klemens' assertion, 
the collisions of phonons with metal boundaries 
cannot guarantee the validity of the Bloch solution 
at the very lowest temperatures. In fact, when 
T « ® the electron-electron free path is much 
greater than the electron-phonon free path, so 
that with decreasing temperature the electrons 
"feel" the presence of the boundaries earlier than 
do the phonons. 

In principle, there is still another possibility, 
which was also pointed out by Peierls. [8] This is 
electron-phonon collisions with umklapp. The 
question whether such U-processes together with 
N-processes can assure a stationary state of the 
electron-phonon system in an electric field is re
lated essentially to the topology of the Fermi sur
face and the direction of the field. According to 
Peierls, it is necessary that certain sections of 
the Fermi surface by planes parallel to the field 
be open. This question requires special consider
ation, but it is clear beforehand that in many 
metals such processes are surely unimportant at 
low temperatures. This is the case, for example, 
for the alkali metals and aluminum. In the follow
ing we shall not consider electron-phonon U
processes. 

C. Formulation of the problem. From our re
marks it is clear that in many metals, at suffi
ciently low temperatures, in addition to scattering 
of electrons by various static objects, the only 
process with significant probability is the collision 
of electrons and phonons. The study of the electri
cal conductivity of metals in this case is the ob
ject of our remaining discussion. 
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We denote by Zep and Zpe respectively the ef
fective free paths for scattering of electrons by 
phonons and of phonons by electrons. The essen
tial point is that although both free paths are re
lated to the same interaction processes, at low 
temperatures we always have Zep » Zpe (cf. Sec. 
2). Thus the phonon radiated by an electron, after 
a very small path and consequently very short 
time will be absorbed by another electron. Thus 
we are in fact dealing with electron-electron col
lisions, which are characterized by the free path 

Zep· 
Since quasimomentum is conserved in these 

collisions, they do not give rise directly to an 
electrical resistance. It turns out, however, that 
these collisions can have a very important influ
ence on the process of transfer of momentum from 
the electron gas to static objects, and thus change 
the resistance. The mechanism for this is deter
mined by the nature of the residual resistance. 
More precisely, everything depends on the behav
ior of the free path Zep and the characteristic 
separation between the static objects, d, at those 
temperatures where the probabilities for electron
electron collisions and collisions with static ob
jects become comparable. 

If the residual resistance is connected with 
scattering of electrons by macroscopic objects 
(sample boundaries, dislocations, etc), the in
equality Zep « d may be satisfied. A special 
mechanism then arises for the conductivity, which 
reminds one of the Poiseuille flow of a viscous 
fluid. The resistance depends in an unusual way 
on the parameters d and T, and in particular 
there should be a minimum in the temperature de
pendence p ( T) (cf. Sec. 2). 

But if the residual resistance is caused by 
microscopic lattice defects (like impurity atoms), 
then in the temperature region of interest we al
ways have Zep » d. Here N-processes occur only 
if the electron dispersion law is anisotropic. The 
resistance first increases with temperature, then 
saturates, and then again begins to grow (Sec. 3). 

2. ELECTRICAL CONDUCTIVITY OF THIN 
SAMPLES 

In this section for concreteness we shall con
sider the case where the residual resistance 
arises because of scattering of electrons by the 
sample boundaries, although it will be clear that 
the results are qualitatively correct for any 
macroscopic defects. 

In order of magnitude, 

eo ( e )5 
lep ~ a 8 T (5) 

where a is the lattice constant (cf. Peierls [1oJ ). 
As already remarked, from the inequality Zep 
» Zpe it follows that the electron-phonon interac
tions practically reduce to electron-electron col
lisions, characterized by the free path Zep ( T ). 

To understand the physical reason for the in
fluence of normal collisions on the electrical con
ductivity we consider the limiting cases: Zep » d 
and Zep « d. In the first case the electron, be
tween two collisions with the walls, covers a dis
tance d with essentially no collisions in the in
terior. Consequently p ~ d- 1, and is independent 
of the temperature. If Zep « d, the electron in 
the bulk of the sample undergoes a large number 
of collisions with other electrons before reaching 
the wall. It is clear that the path covered by the 
electron between two collisions with the boundaries 
is markedly increased. During all this time the 
electron is accelerated by the electric field. The 
fact that in the collisions there is an exchange of 
momentum with other electrons does not change 
the situation.!) Using the standard formulas for 
Brownian motion it is easy to show that the length 
of the trajectory between two collisions with the 
boundary is of order d2/Zep· Since this quantity 
has the meaning of an effective mean free path, 
p ~ Zep/d2• Thus, in contrast to the Knudsen case, 
the resistance contains the square of the sample 
thickness and, most important, has an unusual 
temperature dependence-together with the free 
path Zep it drops with increasing temperature. 

Starting from these qualitative arguments it is 
now easy to find the qualitative behavior of the 
resistance (cf. Fig. 1). At very low temperatures, 
when Zep » d, the resistance is roughly speaking 
independent of temperature 2) and is proportional 
to d- 1• In addition, starting from the temperature 
where Zep ~ d, the resistance drops with in
creasing T according to the law p ~ T- 5 d- 2 (for 

p 

T 
FIG. 1. Resistance of thin sample. 

l)Similar arguments were presented briefly by the author 
[ 11] for the case of the ordinary electron-electron N-collisions. 

2)The relatively small increase of the resistance in this 
region may be related to the fact that volume collisions limit 
the free path for electrons which move almost parallel to the 
boundaries of the sample (cf., for example, [ 12]). 
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lep « d). This drop will continue so long as 
d2/lep is not comparable to one of the lengths 
which characterize the volume collisions with mo
mentum loss. If this is the impurity length the 
resistance will remain constant and equal to the 
resistance for an infinitely large sample. A rise 
in the resistance should occur later because of 
phonon-phonon U-processes. The corresponding 
free path lU varies essentially as e-y®/T and 
will be estimated below. There should be an ex
ponential increase starting from the temperature 
where lei ~ lV ( T ), up to the temperature where 
lv ( T) ~ lep ( T ), and then the resistance should 
vary as T5. 

Let us formulate the conditions for the appear
ance of the diffusion mechanism for the electrical 
conductivity: 

a) the sample thickness should be small com
pared to the electron-impurity free path: d « lei; 

b) the phonon-phonon U-processes should still 
be unimportant when lep ( T) ~ d. More precisely, 
the inequalities lep ( T) « d « lD ( T) should be 
satisfied in a certain temperature range; 

c) electron-phonon U-processes are unimpor
tant, which is surely true for the case of closed 
Fermi surfaces (cf. Sec. 1). 

For a rough orientation we note that, when lei 
~ 1 em and d ~ 10-2-10- 3 em, condition b) 
should be satisfied over the region between helium 
and hydrogen temperatures, though the situation 
depends on the precise properties of the metal. 

For a quantitative description of this mecha
nism it is natural to use a hydrodynamic approach. 
This method is especially suited to the present 
case, since it enables us to take account of bulk 
collisions with momentum loss (when they are less 
probable than N-processes), as well as the influ
ence of the boundaries. The hydrodynamic equa
tion for the electron-phonon gas can be obtained 
in the usual fashion, starting from the correspond
ing kinetic equations (cf, for example, Landau and 
Lifshitz [t 3J ). We shall write the equations in the 
form 

vat I or + eEvofo I oe = lep {/, N} + le; {!, N}, 

saN I or= lpe{l, N} + lppN{N} + ippU{N}. (6) 

Here f ( p, r) and N ( q, r) are the distribution 
functions for the electrons and phonons; 

/o(e) = [1 + exp {(e- e0) IT} ]-1, 

v = oepl op, s = o(hvq} 1 aq; 

hvq is the phonon energy; Jep is the electron
phonon collision operator, Jpe th: collision oper
ator for phonons with electrons, Jei for electrons 

with impurities; J~ and J~ respectively de
scribe phonon-phonon N- and U-processes. The 
scattering of phonons by impurities is not taken 
into account. We know that at low temperatures 
the probability for this process is roughly ( T/®)4 

times smaller than the probability for scattering 
of electrons by impurities.a> In addition, as will 
become clear from the sequel, the contribution of 
phonon-impurity scattering to the hydrodynamic 
equation is further reduced by an additional factor 
(v/s) ( T/®)4• 

For an approximate solution of (6) it is natural 
to use the fact that N-processes are the most 
probable. The solution will be in the form of a 
series in the small parameters lep/d, lepllei and 
lep/lv. The method of successive approximations 
leads to the following system of equations: 

voj(O) I or= J:p{j(I>, N(I>}, 

saN<O) I ar = J pe{J<l>, N<I>} + j PPN {N<I>}; (8) 

voj<l> I or + eEvofa I oe = l:p {f<2>, N<2>} + J.i{j<O>}' 

saN< I) I ar =I pe{f.2l, N(2J} + ippN {N<2>} +I ppu {N<O>}. (9) 

From the pair of equations (7) it follows that 
f(o) = f0 ( E- p·u) and N(o) = N0 (hv- u·q), where 
N0 is the Bose distribution function and u ( r) 
represents the drift velocity of the equilibrium 
electron-phonon system as a whole. 

To solve Eqs. (8), which now take the form 

OUk ofo A 

- ViPk---- = lep{j<1>, N<t>}, 
OX; oe 

ouk 8No A A 

- s;qk-- = lpe{.f<il, N<tl} + lppN {N<t>}, (8') 
ox; ohv 

we must use the explicit form of the collision in
tegrals. We write the Hamiltonian for the electron
phonon interaction in the form 

H= ~A(p,q)ap+ap+qbq++c.c., 
p,q 

where ap and bq are Fermi and Bose operators. 
For the following it is important that for small 
I q I we have I A ( p, q) 12 ~ I q 1. It is easily 

J)The situation is diff~rent if the metal contains a consid
erable quantity of isotopes. But the probability of scattering of 
phonons in this case contains the additional small factor 
(~M/M)2 (where~ is the mass difference between the isotope 
and the main constituent atoms). The direct scattering of elec
trons from isotopes, caused by the inhomogeneity of the zero
point oscillations (Pomeranchuk [ 14]), may be even more impor
tant at helium temperatures. 
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shown that in the approximation linear in f(1 l and 
NC1l, 

J.P {itl' N<tl} = ~ dq L~~~ ( <pp+q - <pp -'ljlq) 

+ ~ dq Lg-q,q ( <pp-q- <pp + '¢q), 

lpe{/1l, N<1l} = 2 ~ dpL&-q,q(<pp-q-<pp-'¢q), 

Lg~J= ~:n: ~3 IA(p,q)!2 6(Ep+q-Ep-hvq)/0 (Ep)No(hvq) 

X [1-fo (Ep+q)], 

£p-q,q 2:n: 1 I A ( \ 2 .. ( ) p = T Ji3 p- q, q>' I u Ep-q- lip --r tl'Vq 

X / 0 (Ep) [1- / 0 (Ep-q)] [1 +No (hvq)], 

(10) 

The phonon-phonon collision integral has not been 
written since the term J~p {N(1)} can be neglected 

compared to Jpe{fCil, N(il}. As the analysis shows, 

the ratio of these terms is of order ( T/®) 4, are
sult that could have been foreseen from the ratio 
of the free paths: 

Eo 8 
lpe"' a 8 T' 

(cf, for example, [15] ). 

Ms2 (8)5 
lppN,....., a-- -

8 T 

Now the second of Eqs. (8') can be solved for 
1/Jq ( cf. (10)) and the result substituted in the first 
equation. The equation obtained for the function 
<pp can be solved in principle for the case of ar
bitrary dispersion laws for the electrons and pho
nons. We shall, however, limit ourselves to the 
isotropic case, because the result of the general 
treatment still contains undetermined numerical 
coefficients of order unity. The angular depend
ence is then obviously eliminated, and the solution 
is conveniently sought in the form 

8/o 8uk ( 8 ) 3 ( E -Eo ) 
j(!) = ----g;: V;Pk 8x; To T P T ' 

where To is of the same order of magnitude as 
the electron-phonon mean free time when T == @. 

After rather involved transformations, the equa
tion for x can be written in the form 

+oo T 2 +oo 
~Kxx•x(x')dx'+( 8 ) ~Qxx•x(x')dx=exfo2(x), (11) 

-oo 

where 

+oo 
Kxx' = 6 (x ~ x') ~ Rxx" dx"- Rxx' + s;~., 

Qxx' = (x- x') 2 Rxx' + S~~·, 

Rxx' = (x- x') 2 /o(x) /o(x') I e-x- e-x' j-1, 

s~~)· = /o(x)/o(x') exp (x + x') 

+oo 
X~ I z In /o(x + z) [ezfo(x' + z)- fo(x'- z)Jdz, 

Unimportant numerical factors of order unity have 
been dropped. The important thing for us is that 
all the kernels, K, Q, Rand sCnl are symmetric, 
and 

+oo +oo 

~ Kxx' dx' = 0, ~ s~n;. dx' = o. (12) 

Proceeding to an approximate solution of (11), 
we note that if we drop the term with ( T/®)2 the 
resulting equation is not solvable. In fact, because 
of the symmetry of the kernel Kxx' and the first 
of Eqs. (12), the corresponding homogeneous 
transposed equation has the solution x == const, 
which is not orthogonal to the right hand side, 
exf~ ( x ). Therefore the successive approximation 
method must be developed as follows: 

+oo 

~ Kxx' x(O) (x') dx' = 0, 

~ T2~ 
~ Kxx•x<1l(x') dx' = exfo2(x)- ( 8 ) ~ Qxx'X(0l(x') dx', ... 
-00 -00 

From the first equation it follows that X(O) 

== const. The condition for solvability of the sec
ond equation for X( 1) gives X(O) = a(®/T)2, where 

+oo +oo 

a-1 = ~ ~ Qxx·dxdx'= ~ ~ (x-x') 2 Kxx•dxdx' 
-oo 

~ 240 ~(5) ~ 250. 

Finally we multiply the first of Eqs. (9) by p, 
the second by q, integrate and add. Then the 
terms containing f (2 ) and N(2 ) cancel and we get 
the required hydrodynamic equation for u ( r ). To 
terms of higher order in T /® we find 

eE I m = -v~u + u I 'tv, (13) 

where 

v ~ 1I15Volep(T), 1 I 'tv = 1 I 'tu + 1 I 'tei, 

Tu~ (slv0)(8IT) 4'tppu, Tppu~a(Ms/8)(TI8)'f,eve!T 

(cf., for example, [15] ). 
The quantity Zep ( T) coincides precisely with 

the mean free path which appears in the Bloch 
theory of electrical conductivity. As was to be 
expected from qualitative considerations, the 
kinematic viscosity v is determined in first ap-
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proximation by the electron-phonon length lep 
alone. It is not difficult to show that the correc
tion for the fact that lpe is finite is of order 
v(T/®)8 • The effect of phonon-phonon U-proces
ses is reduced by a factor (v0/s) ( T/®)4, which 
obviously applies to all collisions occurring in the 
phonon system. 

The solution of Eq. (13) must satisfy the 
boundary condition u ( r) = 0 at the sample 
boundaries, which corresponds to diffuse scatter
ing of the electrons. As is easily verified, the 
electric current density j ( r) = neu ( r ), where 
n = %1r (p0/h )3 is the electron density. In com
puting the resistance this expression should be 
averaged over the cross section of the sample. 

As an example we give the results for samples 
in the shape of plates and cylinders. If we write 
the electrical conductivity coefficient in the usual 
form: p - 1 = ne2 Po 1 leff• then for plates 

len= Zv(1- z-1 tanh z) 

and for a cylinder, 

leu =lv(1-2z-1Ii(z) /I2(z)). 

Here z = 'l'2 d(vTv) 112 , lv = v0Tv, dis the plate 
thickness of the cylinder diameter; In ( z) is the 
Bessel function of imaginary argument (In ( z) 
= i-nJn (iz )). We note that the formulas given 
differ only superficially, and actually give very 
similar results. Thus, for z « 1, for a plate 
leff ~ % d2/lep• and for a cylinder leff = 15/ 32 d2/lep• 

while for z » 1 in both cases leff ~ lv, which 
corresponds to a massive sample. Thus the func
tion p ( T, d) is insensitive to the shape of the 
sample and has the form predicted earlier from 
qualitative arguments. Here d is to be regarded 
as some characteristic transverse dimension of 
the sample or as the distance between macrosco
pic defects. 

3. ELECTRICAL CONDUCTIVITY OF MASSIVE 
SAMPLES 

The residual resistance of sufficiently massive 
metallic samples is as a rule associated with the 
scattering of electrons by microscopic defects of 
the crystal lattice such as impurity atoms. As 
already pointed out, the hydrodynamic case cannot 
occur, since the length lep is then always sub
stantially larger than the average separation of 
atoms, ~. In fact, even in the purest metals where 
the electron-impurity length lei ~ 1 em, the 
quantity ~;:, 10- 5 em (lei~ ac- 1, ~ ~ac-11 3 , 
where C is the concentration of impurity atoms). 
Thus the presence of normal collisions in no way 

affects the probability for the electron to encounter 
an impurity atom, even if the former collisions 
occur much more frequently then the latter. But 
as we have seen, this does not mean that the nor
mal collisions cannot affect the resistance, though 
the results of this influence cannot be interpreted 
as easily as in the case of thin samples. 

Proceeding to the computations, we note that in 
this case the electron dispersion law need not be 
assumed to be isotropic. In fact, for E = E( I p I), 
p = mv, and it follows from the momentum con
servation law that the normal collisions have no 
effect whatsoever on the electrical current 
j ~ eL:v. We write the system of kinetic equations 
in the form 

iJfo A iJfo 
eEv- = lep{cp,'ljJ} + WT-0-cp , lpe{cp,'ljJ} = 0. (14) 

iJe e 1 

Here, in contrast to the preceding Section, the op
erator for collision with the impurities is denoted 
by W. We assume as usual that these collisions 
are elastic. Then any function of the energy can 
be commuted through the operator W; in particu-
lar, 

A iJfo 8fo A w Te Cjlp = Te w Cjlp. 

Furthermore, from the hermiticity of the corre
sponding interaction Hamiltonian it follows that 
the operator W is symmetric and real: 

Wp,p' = Wp'.p = w;.p' 
Using the second of Eqs. (14), we eliminate <J!q 

and write the equations for <Pp in expanded form 
(cf. (10)), 

E iJfo T iJfo W 
e vae- Te cpp 

(15) 

Since this equation cannot be solved in the general 
case, we shall consider limiting cases. 

A. We start with the region of very low tem
peratures, where the N-processes can be re
garded as a small correction (lei « lep ( T)). In 
zeroth approximation 

cpo = T-1 ( iJfo / iJe) W-1Ev. 

The corresponding current density 

2e2 (' iJfo A 

io = --- J dpv--W-1 Ev 
h3 iJe 

(16) 
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is independent of the temperature. The first ap
proximation gives a current j 1 which is propor
tional to T5• 

To get the sign of the corrections to the prin
cipal values of the resistance tensor, we study the 
scalar j 1 ·E. This quantity can be represented in 
the form 

j 1E =- 2:: ~ dq[(F, F)- (F, G) 2]. 

Here 

F (p, q) = T¥-1 Evp+q- l¥-1 Evp, c-z = (' dp Lp+q J p.q' 

where the parentheses denote the scalar product 
with the positive weighting function L~,+J, 

(F, G)= ~ dp F (p, q) G (p, q) Lr:. 

so that, for example, ( G, G) = 1. 
Because of the Schwartz-Bunyakovskil inequal

ity the quantity j 1 • E is nonnegative, and one can 
show that it vanishes only for an isotropic disper
sion law for the electrons. Thus the principal 
values of the resistance tensor vary according to 
the law p = p 0 + aT5, where a > 0 for any aniso
tropic dispersion law. 

B. From general arguments it is clear that 
such an increase of resistance with temperature 
cannot persist too long. In fact, with increasing 
temperature N-processes become the most prob
able, and they cannot of themselves give rise to 
resistance. Let us find the solution of (15) in this 
limiting case. 

In zeroth approximation q;' = - T- 1 u · p. The 
vector u, which has the significance of a drift 
velocity, can be found from the condition for 
solvability of the equation for the first approxima
tion. If we choose the cartesian axes along the 
principal axes of the symmetric tensor 

then 

) fJ!o u· = e" .. - 1 dp--p·Ev 
' '" fJe ' . 

The corresponding current density 

. ' 2e2 S fJjo 
Jo = -h3 dpv(up)-

fJe 

is independent of T, but differs from j 0 (cf. (16)). 
The difference j 0 • E - j 0 · E can be written in the 
form 

(17) 

where <P(p) = E ·vp. Gi (p) = ( Wpi, Wpi )- 112 Wpi, 
and the scalar product is defined as follows: 

(' ( fJ/o ) , 
(<D,G) = J dp -fk <D(p)W-IG(p). 

It is easy to verify that this definition satisfies 
all the necessary conditions. In particular, the 
commutativity fopows from the symmetry and the 
"elasticity" of W. One can verify that the norm 
is positive by using the fact that 

W pp' = - Bpp' + 6 (p- p') ~ dp" BPP"• 

where the quantities Bpp' > 0 are proportional to 
the squares of the matrix elements of the elec
tron-impurity interaction. Then 

(<D, <D)=~~ dpdp'Bpp·[<D(p)-tD(p')J2, 

<D(p) = (-fJ!of8e)'f, vV-1 <D (p). 

Since the functions Gi ( p) are orthonormal, the 
difference ( 17) is nonnegative and vanishes only 
in the case of an isotropic dispersion law. In the 
latter case, Gi ( p) ~ Pi and the function <P ( p) 
= m - 1 EiPi can be expanded in the Gi. Thus in this 
temperature range the resistance in first approxi
mation is constant and larger than the residual 
resistance. It is not difficult to show that in the 
next approximation one gets a correction pro
portional to T- 5• 

L 
FIG. 2. Resistance of bulk sample. 

For convenience we introduce the temperature 
T0 at which the probabilities of electron-phonon 
and electron-impurity collisions are of the same 
order ( Zep ( T 0 ) ~ Zei ). Then the results of this 
section can be written in the form 

where y, 6 > 0 and Po > Po for any isotropic dis
persion law for the electrons. It is clear that, 
with further increase in temperature, phonon
phonon U-processes are included, and the resist
ance again begins to increase (cf. Sec. 2). One can 
hardly expect that in experiment the resistance in 
the intermediate temperature range will be 
strictly constant. Electron-electron collisions 
may have an effect there. 
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