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The Lee annihilation model in quantum electrodynamics is considered, in which the only al
lowed transitions are of the type :y =<= e- + e+. The model is so constructed that it leads to a 
causal description of the processes. The photon state is constructed; electron-positron 
scattering is discussed (and certain limiting expressions for the cross section for this 
process are obtained). The conditions for the appearance of ghost states are investigated. 
The expressions for the amplitudes and cross sections of the processes thus derived can 
apparently be viewed as majorants of the corresponding quantities in the exact theory in 
the limit of high energies. 

1. INTRODUCTION 

JN this paper we shall study a model of quantum 
electrodynamics, which to a large extent preserves 
the basic features of the exact theory such as rela
tivistic invariance and causality and which there
fore may be considered as a more or less realistic 
model for certain electrodynamic processes. We 
have in mind an annihilation model of the type of 
the Lee model, in which the only virtual processes 
are of the form y+:!: e- + e+. The quantum electro
dynamics Lee model in the form considered pre
viously[t-aJ cannot be ascribed real content because 
of absence of causality in it. For the same reason 
the Lee model considered by Mashida [4 J and Gold
stein [ sJ cannot be looked upon as realistic. Just 
like the Hamiltonian of the type (2.1) (without the 
operators ~ , Tl , ?; ) , this model does not lead to a 
causal description of processes. The reason is that 
in this model the causal Green's function is re
placed by the positive frequency part of the retar
ded Green's function. The situation here is similar 
to that discussed in [sJ. 

From the point of view of diagrams describing 
some arbitrary process (for example the one shown 
in Fig. 2 below) this means that in place of the 
Feynman diagrams, which give a causal description 
of the process, Heitler[ 7 J diagrams are used (in 
Fig. 2 diagrams a and b). An arbitrary process in 
the model of[4, 5] is described by a certain number 
of Heitler diagrams, the totality of which does not 
lead to a causal description. This in turn gives 
rise to meaningless results, such as an infinite 
cross section for the scattering of electrons by 
positrons in the c.m.s., etc. 

This difficulty is removed in the present paper. 
To this end we introduce into the Hamiltonian (2.1) 

the operators ~ , Tl, ?; , connected respectively with 
the electron, positron, and photon, and whose role 
reduces to the reestablishing of causality in the 
model by taking into account the missing Heitler 
diagrams (the totality of the Heitler diagrams now 
produces some of the Feynman diagrams corre
sponding to an arbitrary process of the exact 
theory). At that the model continues to be allowed 
(for more details on the operators ~ , Tl, ?; see Ap
pendix I). 

The expressions for the amplitudes of processes 
and cross sections in this model, represented in 
the form of a perturbation theory series, may be 
obtained from the conventional theory by selective 
summation of Feynman diagrams. Thus, for exam
ple, the expression that the model gives for the 
photon Green's function coincides with the expres
sion obtained by Landau [sJ, and the Compton ef
fect is described by the diagrams which in the con
ventional theory give the largest contribution to the 
total cross section for this process. This corre
spondence shows the region of applicability of the 
present model. Namely it describes to some degree 
correctly electrodynamic processes in the region 
of large energies and momentum transfers. It is 
difficult to establish the region of applicability 
directly. Apparently the expressions for the am
plitudes and cross sections obtained from the model 
may be viewed as majorants for the corresponding 
quantities in quantum electrodynamics. 

In this paper we solve on the basis of the model 
the problem of obtaining the photon state veCtor, 
we find the renormalization constant Z, and we 
study the "ghost" states and their dependence on 
the cut-off constant. Electron -positron scattering 
is investigated. Limiting expressions for the cross 
section of this process are found. 
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2. PHOTON, RENORMALIZATION CONSTANT, 
"GHOSTS" 

A. The model under consideration deals with 
processes of the type y ~ e- + e+ . The Hamiltonian 
describing only such processes has the form 0 

H = Ho+H;, 

Ho = ~ lkiCJ..+(k) CJ.. (k) 
k, A 

p, r 

r, r', ~ .. 

X b,,+ (k- p) Cf- (k) + ieo ~ (21 k I v('"fi -ki?' 
p, k p 

1·, r', I. 

(2.1) 

Here e0 is the unrenormalized electron charge, 
E = (p2 + m 2)112 , e =yf.J.ef.J. (YJ..I. are the Dirac ma
trices), Vis the normalization volume, and L YJ, 
{; are certain operators whose meaning will be 
clarified below. We use the system of units in 
which ti = c = 1 and a metric such that the scalar 
product is given by pq = p · q- p0q0• The Dirac 
matrices y fJ. are hermitian: y ~ = y fJ. . The creation 
and annihilation operators for the electrons, posi
trons and photons, a+, a, b+, b, c+, c, satisfy the 
usual commutation relations: 

{ar(P), br,+(p')} = 0, 

[ar(P), c~.+(k)] = [br(p), c~.+(k)] =0. (2.2) 

It is easy to show that the Hamiltonian H com
mutes with the operators 

iV1 =}:; c,.+ (k) C) (k) +~a/ (p) ar (p), 
k. I. p,r 

so that we have separately conservation of the num
ber of electrons plus photons Ny + Ne- and posi
trons plus photons Ny + Ne+. The conservation of 
these numbers has as a consequence that the Hil
bert space of the state vectors of the Hamiltonian 
H0 breaks up into separate sectors, as in [ 3]. Such 
sectors are, for example, I y ; e-, e+) and 
I y, e-; 2e-, e+). Only these sectors will be con
sidered in the following. 

!)Throughout the remainder of the paper we write for sim
plicity ~ u (p) instead of ~pu(p). 

B. We first construct in the sector I y; e-, e+) 
the photon state vector of the total Hamiltonian H: 

!r,.(k)> = z'1'W)cA+(k)IO> 

+ ~ ID/r' (p, k) a/ (p) br,+ (k- p) I 0), (2.3) 
p, r, r' 

where I 0) is the vacuum state vector of the Hamil
tonian H0• The state vector (2.3) satisfies the 
Schrodinger equation zl 

(2.4) 

Equating in Eq. (2.4) the coefficients of the rays 
cA_(k)l o) and a~(p)b~' (p- k)l o) we obtain 

z'1• (k2) 1 k 1 bf..f..' + ieo l] (21 k I vr'1•11-l?' (p- k) ~~~· (k) 
p, r. r' 

(2.5a) 

(2.5b) 

In the following we set e~ (k) = 6~, hence eA. = Y.\· 
The term of the type akt..kt..' has been added 3) in 
(2.5a) to make that equation valid for all .\ and A.' . 
(The expression for a will be found below.) 

From Eq. (2.5b) we obtain first 

I!JArr' (p, k) = ieoz'!, (k2 ) (roo- Ep - Ek-pf1 (21 k I V(1·~!i" (p) 

X~~/.. (k) ytv''(p-k). (2.5b') 

Substituting this expression for q,~r' (p, k) into 
(2.5a) we find 

z'1• (k2 ) <I k 1- roo) bn·- eo2Z'1• Wl lJ (21 k 1 vr'1• 
p, r, r' 

__ r, -"A' -~ 

X (roo- Ep- Ek vt 1 ytv (p- k) ~e (kgur (pgur 

x(p) ~~" (k) TJvr' (p- k) + bm2Z'1• (k2 ) (2\ k \f1~~bn· 

(2.5a') 

In (2.5a') we perform a summation over the 
polarizations making use, as is usual, of[ 9J 

'V --r ip-m 
.i.J GU' (p) GU (p) =-~' 
r p 

whereas 
L ytvr (p- k) T]v' (p - k) = i (k- p) + m 
r roo-Ep-Ek-p (k-p)2 + m2 ' 

(2.6) 

2)We note that the one-particle electron and positron states 
are simultaneously eigenvectors of both the Hamiltonians H0 

and H; for this reason the mass of these particles is not re
normalized. 

3)This can be done in view of the Fermi condition usually 
imposed on the photon state vectors, which is of the form 
kt.c .~ (k)\ 0>. Let us note that Eq. (2.4) is satisfied by the 
solutions of Eqs. (2.Sa) and (2.5b) for arbitrary a. 
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The last equality defines the operation 1111. (For 
more details see Appendix I.) Having this in mind 
we rewrite Eq. (2.5a') as 

z'i, (k2 ) (I k 1- wo) 6""' + z'1• (k2)(21 k lt1 ~6fln· (k2 ) 

+ f:nn2Z'1• (k2) (21 k [)-1t6<h~..· + ak~..k~..· = 0, (2. 7) 

where 

-, 2 _e02 ,1 Sp{y~..(ip-m)r~...(i(k-p)+m)} 
Ilu (k ) - V --; 2Ep ((k- p)2 + m2) 

I k1..k"J..')-
= \ bu:-~ II (k2) + Abu·, (2.8) 

with 

- 1 ( - k,..k).' - ) 
rr (k2) = 3 rr,..,..(k2)- 4 k2 n,._,._, (k2); , 

k,..k,._,-
A =~n,._,..,(k2 ). (2.9) 

For a in (2. 7) we obtain 

a= Z'h(k2) (21 k I )-1IT(k2 ). (2.10) 

For a free photon w 0 = I k 1. Under that condition 
we get for the quantity 6m2 

.. 2 1 -
um = - 4 n),).. (0) = 

e02 ~ Sp{y"A(ip-m)y"A(i(k.:._p)+m)} 

- 4V P' 2Ep ((k- p)2 + m2) ' 

k2 = 0. (2.11) 

C. Having, further, in mind that 4l 

(2 .12) 

we find 

(the term f3kt..kt..' may be added in view of the 
Fermi condition), where Z = Z (k2 = 0). The re
normalization constant Z appears in the definition 
of the renormalized charge in the form 

Z'l•e0 =e. (2.14) 

Consequently (2 .13) gives for the renormalization 
constant the expression 

e2 1 
z = 1 + 241kl v 

~ ~iJ"' (p- k) y"A£ur (p) ~~/ (p) y"A 'l]Vr' (p- k) _ 
X LJ E E 2 66· p, r, r' (I k 1- p- p-k) 

(2.15) 

Performing in (2.15) the summation over the 
polarizations, keeping in mind the equality (2.6) 
and the fact that 

4 )In quantizing the electromagnetic field use was made of 
the indefinite metric. [•, 10] 

~k6k I I k I (I k 1-Ep- Ek-p) = 2 I w- (Ep + Ek-p)2) (2.16) 

(see Appendix I), and going over in (2.15) to inte
gration over the four-dimensional volume, we ob
tain for Z the manifestly relativistically invariant 
expression: Sl 

2e2 

z = 1 - 3i (2:rt)4 

(' 2m2 + p2 -kp 
X j d4p (p2 + m2) ((k- p)2 + m2) (k2- (Ep + Ek-p)2). 

(2.15a) 

D. Taking into account (2.14) and the fact that 

1k6k/ [k[ (lkl- wo) = 2/ k2, 

one can express Eq. (2. 7) in the form 

h(k2) = k2Z + n(k2) + k,:2).' rr""' (k2)- ~ n,..,..(O) = o. 

fiJ..J..•=Zri,._,._,, (2.17) 

The zeros of the function h(k2) introduced in this 
manner give the mass spectrum of the states in the 
model under consideration. The explicit form of 
this function is 

(2.18) 

where[1i] 

( 5 4 m2 ) 2 ( 2m2 ) ( 4m2 \ 'f, 
J(k2)=- ----- +- 1-- 1+- I 

9 3k2 . 3 k2 k2i 

1( 4m2 \-'/, Xcoth- 1 +-1 -8(-k2-4m2) 
k2 I 

i:rt ( 2m2\ ( 4m2)'/, X- 1--1 1+-
3 k2 / k2,' 

(2.19) 

This expression was obtained in the limit of no 
regularization, which corresponds to the cut-off 
parameter M = oo (we regularize all expressions 
using the Pauli-Villars method[ttJ). With regular
ization we have h = h(k2, M2). 

Along with the photon state (k2 = O) and the con
tinuous spectrum of the electron-positron pair 
(k2 :::::-4m2, for these values h(k2) is a complex 
function) Eq. (2.18) has a root for k 2 ~ m 2 x 
exp (247r 2 I e2) (in this connection see Appendix II). 
This is the so called "ghost" state. If the cut-off 
parameter M2 < m 2 exp (247r 21e2) then the equation 
h(k2, M2) = 0 does not have this root. The root 
k! ~ m 2 exp (247r 21e2) appears when M2 ;t m 2 x 
exp (247r 2 I e 2), and as M is increased further de-

S)ln (2.15a) it is understood that the poles are to be 
handled according to the Feyman prescription (the last fac
tor in the denominator is independent of p0). Integration of 
(2.15a) over Po yields expression (2.15). 
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pends on M very weakly. As in [ 2] it can be shown 
that the norm of the ghost state is negative. This 
is also connected with the fact that for M2 > m 2 x 
exp (247r 2/e2) the renormalization constant Z < 0. 
As M -- oo the quantity Z -- -oo. 

It is interesting to note the dependence of the 
position k~ of the ghost on the size of the coupling 
constant e. In the limit e = 0 the ghost state goes 
off to infinity: ~ -- oo; for e -- oo the quantity 
k~ -- 0. Figure 1 is a graph of Re h (k2) for e = 0, 
e ;£ 0 and e = oo • 

e=oo e=oa 

FIG.l 

3. ELECTRON-POSITRON SCATTERING 

A. The state vector of an electron-positron 
pair with momenta p and p' and spin variables r 
and r' is constructed from the vectors of the sec
tor I y ; e-, e +) in the following manner: 

I e,- (p), e/ (p')) =a/ (p) br·+ (p') I 0) 

+ ~ . N~~; (p, k, Pl) a/ (PI) b •. + (k- PI) I 0) 
p, s, s 

+ z'i·~ !p~r· (p, k) C).+ (k) I 0), 
). 

(3.1) 

where k = p + p'. The vector (3.1) satisfies the 
Schrodinger equation 

Equating in Eq. (3.2) the coefficients of the rays 
a+r (p) b~' (p' )[ 0) and c~ (k)[ 0) we obtain 

N~~· (p, k; Pl) = ie (2[ k I V)-'1• ~ ~z? (pl) ~~" (k) 1Jv•' (Pl- k) 
A (Ep + Ek-p - Ep,- Ek-p,) 

X !p~r· (p, k) (3.3a) 

and 

Z (Ep + Ek-p -I k 1- (21 k lt16m2~~) qJ~;. (p, k) 6A;..· 

- ie ~ (21 k I V(1'1]il"' (Pl- k) ~~A£u• (PI) 
P1. s, s' 

(3.3b) 

The term aki\ki\' cp~~~ may be added in view of the 
Fermi condition (the a here is the same as in 
(2.5a)). 

Substituting (3.3a) in (3.3b) we obtain the equa
tion for cp~r': 

~· l' - (21 k I ri Tin· (k2) (jlrr' (p, k)-ctkAkA·!prr' (p, k) 

= ie (2[k JV t'l•tiv"' (p-k)1~A' (k)Su" (p) b._._. (3.4) 

(k = p + p'), where IlAA.' (k2) has the form (2 .17). 
Further, keeping (2.16) in mind we rewrite (3.4) in 
the form 

h (k2) qJ~r· (p, k) = ie (21 k I V(1'k2 (I k 1-Ep- Ek-priTii?' 

X (p- k) ~~A (k) £u" (p), (3.5) 

where h(k2) is given by Eq. (2 .17). Substituting the 
expression for cp~r' from (3.5) into (3.3a) we find 

N~s;. (p, k; P1) = 

_ !:.._ ~ u" (pl) ~A (k) v•' (pl- k) i/' (p- k) ~'A (k) ur (p) 
v A h (,k2) (Ep + Ek-p- Ep,-Ek-p,) 

(3.6) 
I 

B. The quantity N~~' obtained in this manner 
is related to the matrix element for electron
positron scattering by 

(p, r; p', r' IS I q, s; q', s') = (0 I ar (p) br· (p') I e.- (q) e •. + (q')) 

= llrsllr•s•bpqllp•q• + N~~·. (p, k; q) bp+p', q+q' (3. 7) 

(S-the scattering matrix). We then have for the 
differential cross section 

da = (2n)-li[M[ 264 (p + p'- q- q')dqdq', (3.8) 

where 

M = -i(2n)2e2 ~ h-1(k2)u•(q)e"vs'(-q')iF'(-p')e"u"(P). 
I. 

(3.9) 

Averaged over the polarizations of the electron 
and positron the cross section has in the high en
ergy limit E » m the form (in the c.m.s.) 

da e4 I A A ]
2 

-- = -- ~ u•(q)e"v•'(-q')v"'(-p')e"u"(P) 
dQ (2n) 2 ,_ 

X Eq(Reh(k2))2+ (Imh(k2))2]-1. (3.10) 

If the cut-off parameter M2 < m 2 exp (247r 2/e2), then 
in the limit E -- oo 

(3.11) 

If M 2 > m 2 exp (247r 2/e2), then for E 2 « m 2 x 
exp (247!" 2 I e 2) the cross section has the form (3.11), 
and for E 2 » m 2 exp (247r 2/e 2) 

da I dQ ~ E-2 lu-2 ( E I m) . (3.12) 

In that case the cross section is independent of the 
coupling,constant e. Such a behavior is due to the 
presence in the theory of the ghost state. In the 
neighborhood of E 2 ~ m 2 exp (247r 2/e2) the cross 
section (3.10) has a resonant character: 
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dcr ,...., e4E-2[( 1-~ ln (!.-)2
)

2 + n;z e4]-t. (3.13) 
dQ 24n:2 m 9 

In conclusion the authors express their grati
tude to Professor A. I. Akhiezer for discussion of 
the problems here considered. 

APPENDIX I 

Let us clarify the meaning of the operations ~, 
11, !; . First of all, the spinor amplitudes. ur ( -p + k) 
and vr (p - k) satisfy the Dirac equation for free 
particles, with 

~ iv(k- p) - v4Ek-p + m 
.L.i vr(p- k)vr(p- k) =---------

r=1,2 2Ek-p 

~ iv(k- p)- v4Ek-p + m 
.L.i ur(-p+k)u'(-p+k)= ' 

r=l,2 2Ek-p 

where Ek-p = [ (k- p) 2 + m 2 ] 112, so that 

(I. I) 
r=l,2 

We do not define the operations YJ and Y} separ
ately. But the operation YJYJ is defined in the follow
ing manner: 

~ - va.' (p-k) v{ (p- k) 
.L.i TJp-k TJp-k (I k 1-E - E ) 
-~ p ~ 

= 2} ( va.' (p- k) :vr: (P- k) 
r=l, 2 I k r-Ep- Ek-p 

+Ua.'(-p+k)u~'(-p+ k)) _ [i(h- p)+ m] 
I k 1-Ep + Ek-p - (k- p)2 + m2 a./3 

(I.2) 

[where we make use of the relations (I.l )]. This 
operation, consequently, symmetrizes the Heitler 
propagator, converting it into the Feynman propa
gator. In this manner causality is restored. In the 
case of the Compton effect the operation YJTJ means 
taking into account along with the Heitler diagram 
a in Fig. 2 also the diagram b. Together these dia
grams give the Feynman diagram c. 

The operation ft has a similar meaning: 

- 1 
~k ~"' I k I (I k 1- roo) lkl(lkl-roo) 

1 2 + =--lkl (-!kl- roo) k2 ' 
(I.3) 

a b 

FIG. 2 

a b 

FIG. 3 

In the case of electron-positron scattering this 
operation means taking along with the diagram a of 
Fig. 3 also the diagram b. 

APPENDIX II 

We give the expression for the function 
IIA.A.' (k2, M 2) regularized according to the Pauli
Villars method [ 11]: 

where 

F~.1:(k2, M2; x)=[2ix(1-x)(k'Ak'!.'-f)'!.'!.'k2) 

. { J ( 1 - x) M2 + xm2 - x ( 1 - x) k21 + zm26J..'!.' ] In 
m2 - x(1- x)k2 

+In I xM2 +(1-x)m2-x(1-x)k21} 
M 2 - x(1- x)k2 

_. , { 2 j (1-x)M2+xm2-x(1-x)k2[ 
2z(h'!. x m ln . mz- x(1- x)k2 

J M2-x(1-x)k2 I} 
-M2ln xA-12+ (1-x)m2-x(1-x)k2 · · (ILl) 

In order to obtain an explicit expression for the 
regularized renormalization constant Z(M2) we 
make use of the known relation between it and 
II(k2, M2) [9]: 

Z(M2) = 1- aii(k2, M 2) I ak2 ln' = o. 

So that 

ez MZ 5e2 
Z(M2)-1--ln +--

- 24n:2 m2 72n:2' 
Z= lim Z(M2). (II.2) 

Then 

e2 M 2 5e2 
.1---ln-+--

24n:2 m2 72n:2 

M-+oo 

e2 ~1 {' / m2- (1-x)k2 I -- x 1-x dx ln 
4n;2 ( ) /(1-x)M2+xm2-x(1-x)k2 

0 

] M2-x(1-x)k2 J} 
+ ln xM2 + (1- x)m2- x(1- x)k2 

t 
ez mzr 

+---J dx ~c;(x) 
4n:2 k2 0 i 

(II. 3) 
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where ci(x), ai(x), ... , ai(x) are functions of the 
type x, 1 - x, x( 1 - x). The function (2 .17) is given 
by 

h(k2 ) =lim h(k2, M2). 
M-+oo 

We study now the dependence of the position k~ 
of the ghost on the cut-off constant M. For 
k2 > - 4m2 and M2 » k~ the equation 

(II.4) 

takes the form 

(II.5) 

so that a root of this equation is k~ ~ m 2 x 
exp (247r 2/e2) » m 2• For M2 ~k2 tlie equation (II.4) 
assumes the form 

(II. 6) 

and the root of this equation is k~ ~ m 2 x 
exp (247r2 (1 + E)/e2 ), E > 0. If M2 « k2 then Eq. (II.4) 
goes into 

(II. 7) 

which for l\!I2 < m 2 exp (247r 2/e2) has no root in the 
region k2 > 0. For M2 > m 2 exp (247r2je2) Eq. (II. 7) 
has no root satisfying the condition k~ » M2. Thus 

the "ghost" appears only for a cut-off constant 
M2 ;;;:, m 2 exp (247r 2/e2). 
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