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The problem of establishing the correct connection between the renormalized Heisenberg
representation operators and the free operators is considered in the framework of pertur
bation theory. For this purpose we introduce the concept of two types of T -products (Wick 
and Dyson products), in which the contractions differ by quasi-local terms in the case of 
derivatives of fields. Then in any local field theory, although the S matrix can be expressed 
in terms of either of the T -products with simultaneous replacement of qn ( x) by - Hln ( x, a), 
there are two possibilities for the definition of the Heisenberg operators. The possibility 
chosen here corresponds to a nonunitary connection between the operators in question and 
assures that the renormalized Heisenberg operator is independent of a. We also propose 
a correct method for determining the matrix S(a,- oo) and the interaction Hamiltonian in 
the interaction representation. 

1. STATEMENT OF THE PROBLEM 

IN recent years there has been a rapid develop
ment of axiomatic methods for constructing quan
tum field theory (see in particular [i, 2J). Anum
ber of well known successes have been achieved in 
this way, but at present it still cannot be asserted 
that we know about all of the peculiarities of the 
mathematical apparatus of the theory. Further 
study of this apparatus in the framework of any 
one system of axioms is in practice an extremely 
complicated task. Owing to this there is a ten
dency [3 J toward using in such investigations con
cepts from various systems of axioms, and also 
toward bringing in, within reasonable limits, ap
paratus borrowed from the Lagrangian formalism. 
Along with this, in this sort of research there is, 
as before, insufficient use of the apparatus of the 
Hamiltonian formalism; this is in all probability 
due to a widespread prejudice against the funda
mental quantity of this formalism-the "half-way" 
S matrix. In a series of studies which we have 
made we have attacked the problem of showing that 
this prejudice is to a large extent without any 
foundation. At the same time the use of the Hamil
tonian formalism in the study of the mathematical 
structure of field theory allows the elucidation of 
a number of complex questions which do not yield 
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readily to study by other methods.1> 
As is well known, the basis of the covariant 

Hamiltonian formalism [4] is an assumption taken 
over from nonrelativistic quantum mechanics, that 
there exists an interaction representation, the op
erators and state vectors of which are connected 
with the analogous quantities in the Heisenberg 
representation by a unitary transformation which 
makes the average values equal: 

F(.r) = S+(a, ---oo)r'int(x; a)S(a, -oo), (1) 

qtint(a) = S(a, -oo)V(-oo), (2) 

with 

ibS(a, --oo) / 6a(x) = IJ1int(x; a)S(a, -oo). (3) 

Furthermore one of the essential postulates of the 
theory is that the Heisenberg-representation oper
ator F (x ), as an observable quantity which is 
therefore truly local, is independent of the space
like surface a. 

The Dyson matrix [5] or "half-way" S matrix 
S(a, -oo) which realizes the transformations (1) 
and (2) must satisfy the following general require-

l)The first communication about these results was con
tained in the author's report at the All-union Conference on 
Colliding-beam Accelerators and the Physics of High
energy Particles (Novosibirsk, June 1963). 



882 A. D. SUKHANOV 

ments: 1) relativistic covariance; 2) independence 
of the particular choice of cr; 3) unitarity: 

S(CJ, -oo)S+(G, -oo) = S+(CJ, -oo)S(G, -oo) = 1; (4) 

4) the group property: 

S(oo,G)S(G,-oo) =S(oo,-oo) =S, (5) 

where the operator S is the scattering matrix; 
5) the boundary conditions 

limS(G,-oo) =S, lim S(G,- oo) = 1; (6) 
(J~OO cr~~oo 

6) finiteness. 
Up to now it has been possible in perturbation 

theory to obtain an expression for the matrix 
S( cr, - oo) which satisfies only the requirements 
1) -5). At the same time, the question of the finite
ness of the matrix S( cr, - oo) has remained open 
even in renormalizable theories, because it turned 
outC6J that, unlike the S matrix, the formally ob
tained expression for S ( cr, - oo ) contains besides 
the "ultraviolet" divergences also special "sur
face'' divergences (even for finite regularization 
masses MU. Our earlier investigations C7J have 
shown, however, that at least for fixed MI the 
problem of "surface" divergences in the matrix 
S(cr, -oo) can be successfully solved. Owing to 
this the obtaining of a finite matrix S ( cr, - oo ) in 
perturbation theory now does not seem such a 
hopeless task. 

A more serious argument against the existence 
of the matrix S ( cr, - oo ) has arisen in the frame
work of the axiomatic method. Namely, on the 
basis of the Kallen-Lehmann theorem [SJ we have 
the following formula for the renormalized oper
ator of a scalar field in the Heisenberg represen
tation 

<OI[A.(x), A(y)JI IO> = -iZ3-1o(x- y), 
xo=yo 

00 

z3-1 = ~ p (m2) dm2 > 1. 
0 

(7) 

Meanwhile, if we choose as the operator corre
sponding to A ( x) in the interaction representation 
the operator <Pin(x) of a free scalar field, [9] 

which satisfies the conditions 

(Dx-m2)(jlin(x) =0, 

[~in(x), (jlin(y)]Jx'=Y'= -io(x-y), (8) 

where m 2 is the physical mass, we get an obvious 
contradiction between the formulas (1), (8), and (7), 
because there is no unitary transformation that can 
turn Z:J1 > 1 into unity. 

This contradiction is usually [10 ] interpreted to 
mean that the connection between the renormalized 

operator A( x), which satisfies (7), and the free 
operator <Pin (x), which satisfies (8), must actually 
be of a nonunitary nature, and therefore, it is said, 
a finite and unitary "half-way" S matrix cannot 
exist in quantum field theory. 

Meanwhile Yang and Feldman, [9] in discussing 
the example of a theory of the neutral vector field, 
had already actually suggested, but not used, a dif
ferent way to liquidate this contradiction. In fact, 
although the connection between the operators A ( x) 
and <Pin(x) may be of a nonunitary nature, we can
not conclude from this at all that the matrix 
S ( cr, - oo) does exist, but only that the operator in 
the interaction representation that corresponds to 
A ( x) according to (1) is not identical with the free 
operator <Pin(x) that satisfies (8). 

This idea was developed to some extent in 
papers by Takahashi and Umezawa, [1l] and was 
recently used again by Kirzhnits [ 12 ] in nonlocal 
field theory. What he suggested was that we sep
arate the problem of obtaining a finite matrix 
S(cr, -oo) and that of the connection between the 
field operators A(x) and <Pin(x ), and think of 
this connection in the explicitly nonunitary form 

A(x) = S+(G, -oo)qJin(x)S(G, -oo) + x(x; G), (9) 

where x(x; cr) is an operator which depends on the 
point x and is a functional of cr, and the matrix 
S ( cr, - oo ) is obtained not in the usual way [ 4• 5 J 
from (3), but directly from the S matrix. 

In the present paper we shall develop a formal 
mathematical apparatus which enables us within 
the framework of perturbation theory on one hand 
to define the matrix S ( cr, - oo) and the Hamiltonian 
Htn(x; cr) more concretely than is usual, and on 
the other hand to introduce a nonunitary connection 
between an arbitrary renormalized Heisenberg 
operator and the corresponding free operator in 
local quantum field theory. In subsequent papers 
these results will be applied to concrete Reisen
berg operators. 2> 

2)8efore going on to expound the main results, we make 
only one further remark. All of our further arguments are 
made on the assumption that in the expressions used a Pauli
Villars regularization has been carried out and that all of the 
M~ are fixed. It will be seen from what follows that actually 
there remain no grounds for supposing that in the limit M~ ~oo 
the matrix S(o-, - oo) cannot be made finite in at least some 
sense, but we shall for the time being defer the practical 
realization of the passage to the limit, and also the proof of 
the existence of the matrix S(o-, - oo) within the framework 
of the purely axiomatic method. 
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2. THE TWO TYPES OF CHRONOLOGICAL 
PRODUCTS 

Already in [13] we called attention to a fact 
which has been known in principle but not suffi
ciently appreciated. Namely, in theories with de
rivative couplings (or vector fields) -and because 
of the presence of counter terms in the effective 
interaction Lagrangian Lin(x; 1) [t4J this includes 
practically all local field theories -for a particular 
S matrix one formally uses always the same ex
pression (the T-exponential) in two functional ar
guments which are different in such a case -the 
Lagrangian L~n(x) and the Hamiltonian H~n(x; u ). 
In this connection it was shown that the apparent 
contradiction between the two expressions for the 
S matrix can be eliminated if we understand that 
actually we are acquainted with not one, but two 
different (of course, for identical arguments) 
types of chronological products, which we shall 
hereafter call the Wick product ( Tw) and the 
Dyson product ( TD). 

The difference between them is that the con
tractions in the Tw-product are actually defined 
in the momentum representation, for example for 
a scalar field [ 14 ] 

IJc(x) = ~-1- \ 
( 2:rt) 4 .l 

eil<xdk 

mz- k 2 - ie' 
(10) 

whereas the contractions in the TD -product are 
defined in the coordinate representation, and this 
gives 

IJc(x) = 8(.rO)IJ-(x)- O(-x0)IJ+(x). (11) 

For scalar fields themselves these two expres
sions are identical (on some class of regular func
tions ), but for chronological products of deriva
tives of scalar fields there is a difference of quasi
local terms with definite coefficients, because in 
the Tw-product, in accordance with the require
ments of Wick's theorem, the derivatives act on 
DC (x) as a whole and are simply applied to the ex
ponential, so that we have equations of the type 

( 1 , / ocp'" (x) ocp'" (y) \ \ 
_ 0 1 7 n·l ~-~--- ~---,- 11 0 ) 
\ ' . OX"- oyl' .· I 

o r] I . .· . ' 
=-----(0 T -(m'"(x)m"'(u)) (); 

OXa oyil I 11 'f' 't' .; i • (12) 

and this is so also for x = y, whereas in the TD
product the derivatives act only on the D- and D+ 

functions and not on the (} functions. 3> 

The difference between the Tw- and TD-prod
ucts is a special case of the well known possibil
ity [ 14 ] of defining the chronological product for 
equal arguments while keeping the S matrix un
changed. 4 > In particular, the following special 
cases are of interest in principle for what follows: 

( I : ocp'"(x) ocp'"(y) \/ )- 1 1 (ocp'"o_cp'".)l \ 0 T1r ( - ~ - ~ 1 0 -\ 0 TD ----- 0 ' 
\ . oxa oyB ' I oxa r7y11 ' / 

+ inanBb (x- y), 

( () I T W ( 0 x((l in (X) 0 yep in ( !J) ) I 0 ) 

= ( 0 I TD( Oxcp 111 (:c) Oycp 111 (y)) I 0) 

+ i(Ox + m2)6(x- y), 

(13) 

(14) 

where na is the unit vector normal to the surface 
u through the point x = y. It can be seen from (13) 
that by its definition the Tw-product is independ
ent of o-, whereas the TD-product in the general 
case will depend on o-. This is due to the fact that 
the expression (10) actually does not depend on any 
surface o-, whereas (11) involves (} functions, 
which because of relativistic covariance must be 
written (} ( u), where u is an arbitrary spacelike 
surface. The result is that differentiation with 
respect to particular components gives rise to an 
explicit dependence on u in the TD-product. At 
the same time it can be seen from (14) that the 
Tw-product can contain quasi-local terms with 
derivatives in coordinate space. 

We call attention to the fact that formulas of the 
type of (13) and (14) are algebraic relations which 
are externally extremely reminiscent of the for
mula for passage from ordinary products to nor
mal products according to Wick's theorem. Indeed, 
for this case we can establish a remarkable analog 
of Wick's theorem, according to which every Tw-

3 )Particular attempts to deal with the different expres
sions for the contractions in calculating the S matrix in 
theories with derivatives have been made in [15 , 11 ], but the 
point of view was not applied consistently and was not de
veloped further. Recently a treatment of this problem much 
like ours has been given in ~·] for the case of contractions 
of vector fields, but the exposition in that paper contains 
a number of inaccuracies and mistakesJ17l Outside the 
framework of perturbation theory the Tw -product has ac

tually been used in [ts], and recently (together with the Tn
product) in ['] . 

4)A deeper reason for the difference is evidently that 
when contractions with derivatives are formed there is a 
contribution to the corresponding spectral representations 
from the integral over a large circle, which is included in 
one type ofT-product and not in the other.['] 
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product can be expressed in terms of a set of Tn
products with all possible "quasi -contractions." 
These latter will be quasi-local terms of the type 
of those shown in the right members of (13) and 
(14), and of course will differ in accordance with 
the number of derivatives and the types of fields. 
We shall give a general expression for these terms 
later. 

In concluding our examination of the differences 
between Tw- and Tu-products, we shall observe 
how these differences show up in the S matrix when 
it is put in the form of a functional expansion in 
normal products of the fields cpin(x), as is usually 
done [1, 2] in constructing the matrix by the axio
matic method. In this connection we call attention 
to the fact that the derivatives of the field opera
tors can be written in the following form 

i)cpin (x) r a 
axo = .l axo6(x-y)cpin(y)dy, (15) 

-00 

and because of this the question arises as to which 
of the arguments, x or y, should be used for the 
chronological ordering. If it is made with the ar
gument y, this corresponds to the Tw-product, 
and use of x corresponds to the Tu-product. It 
is clear that when we have to do with an expansion 
of the S matrix in the operators cpin(x) alone 
(without derivatives )-that is, when its coefficient 
functions include also terms with derivatives of c5 
functions -then chronological ordering between the 
S matrix and any other bperators, such as we shall 
be making here, will lead to a Tw-product, in 
which one first orders chronologically and then 
differentiates. In the opposite case we arrive at 
a Tu-product. 

3. THE T-PRODUCT IN THE S MATRIX AND 
THE DEFINITION OF THE MATRIX S(a,- oo) 

Historically, the first way [4•5] to obtain the 
matrix S(u, -oo) was to solve the Tomonaga
Schwinger equation (3). In [ 7] we showed that in 
a local renormalizable theory one can in principle 
obtain by this method an expression for the ''half
way" S matrix which satisfies all of the require
ments stated in Sec. 1 (for Mf = const), but as so
ciated with this there is the necessity of obtaining 
the Hamiltonian Hln(x; u) by an independent 
method, in theories with higher derivatives -and 
because of the presence of counterterms this 
means practically all known theories. At the same 
time, the usual waysC19J of obtaining Hin(x, u) 
lead to the correct expression only in special 
cases, when the Lagrangian involves only first 
powers of first derivatives of the fields. In par-

ticular, these ways do not enable us to bring out 
possible added terms in the Hamiltonian which do 
not depend on u. Only the method for obtaining 
Hln(x; u) proposed in [9] and developed in [20J 
allows us to obtain the expression for it in a 
broader class of theories, but this method also, 
while extremely complicated, is still not exhaus
tive. 

As for the "half-way" S matrix, it has been 
shown in [7] that the expression 

S(a,- oo) = limS(g), 
g~tJ(J 

(16) 

where S(g) is the effective scattering matrix, [14] 

will, after a "surface" renormalization has been 
carried out, satisfy all of the conditions imposed 
on S(u, -oo) (for Mf =canst). And once the ex
istence of such an expression has been proved, it 
can also be obtained directly from the complete S 
matrix by following definite rules. This approach 
is the most convenient to take for the definition of 
the "half-way" S matrix, as it avoids the compli
cated procedure of "surface" renormalization. 

We shall start from the expression for the S 
matrix proposed in [14], which is naturally to be 
written in terms of the Tw-product in the form 

S = Twexp{ ~~ L 1in(x; 1)dx}, (17) 

where Lin(x; 1) is the effective interaction La
grangian [14 J including counterterms 

00 

+ L: ~ A~~~ (x, Y!, ... , Yn) dy1 ... dyn. (18) 
71=1 -00 

The simplest way to get the matrix S(u, -oo) 

from an S matrix of the form (17) is to "cut" it 
into two "halves" by taking some surface u as 
the limit of integration for each variable-that is, 
by constructing the quantity 

Tw exp {if L1i" (x; 1)dx l (19) 
-00 

As explained in [7], a necessary preliminary step 
is to remove all of the integrations over y i in (18); 
this does not destroy the finiteness of the S matrix, 
but prevents the appearance in S ( CT, - oo ) of. ''sur
face" divergences associated with the presence of 
counterterms Ah1! 1 which contain derivatives. 

In this case, however, even in renormalizable 
theories the expression (19), as has already been 
pointed out in [21], will not only contain "surface" 
divergences (for Mi = const) but will also not sat-
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isfy the group property (5) and the unitarity condi
tion (4). This last is not hard to understand if we 
recall that the definition of contractions in the Tw
product includes quasi -local terms with derivatives 
[ cf. (14)], which for the same reason as applies to 
the counterterms A}l! 1 will lead in the expression 
(19) to nonintegrable products of the type 6 ( cr- x0 ) x 
6 ( cr- x0 ) and to loss of the properties (5) and (4). 
This is actually the way the fact that the Tw
product (unlike the Tn -product) is nonunitary 
manifests itself; we shall discuss this in more 
detail below. 

To avoid this difficulty, the natural first pro
posal is to transform the S matrix in the form (1 7) 
identically from a Tw-product to a Tu-product, 
using for this purpose the analog of Wick's theorem 
which we formulated above. This transformation 
does not disturb any of the properties of the S ma
trix, including its finiteness. Moreover, a number 
of properties of the complete S matrix become 
more understandable. The result obtained by the 
transformation is 

S = Twexp{i ~ L 1i"(x; i)dx} 
-00 

=Tvexp{-if Hii"(x;u)dx}. (20) 
-oo 

The formally introduced expression for the op
erator Hin(x; cr) is the most natural one to adopt 
as the definition of the interaction Hamiltonian in 
the interaction representation. In other words, we 
give the name of the Hamiltonian Hin(x; cr) to the 
"Lagrangian" with which the S matrix is expressed 
in terms of a Tu-product. Then, if the S matrix 
satisfies the usual requirements, [1'] in particular 
the condition of unitarity, the Hin(x; cr) so defined 
will satisfy the conditions of: a) relativistic covari
ance, b) hermiticity, c) integrability, and d) finite
ness (for M~ = const). 

Having made the transformation (20), we now de
define the "half-way" S matrix by the relation 

S (u, - oo) = Tv exp{- i ( H1in (x'; u')dx'}, (21) 

from which we can obtain Hin(x; cr) directly by the 
formula inverse to (3). In the next section we con
sider the question: in what sort of local field theo
ries will the matrix S ( cr, - oo ) in the form (21) 
satisfy (for M~ = const) all of the requirements 
that we have imposed above? -and also the ques
tion of the most general expression for Hin(x; cr). 

It must also be pointed out that whereas previ
ously [13 ] we emphasized only the fact that "sur-

face" terms (involving normals) and terms with 
"surface" divergences are in principle different 
in their operator structures (in renormalizable 
theories ) and must not be confused, it is now clear 
that both types of terms are, speaking generally, 
different aspects of the same phenomenon, associ
ated with the derivation of correct expressions for 
the matrix S( cr, - oo) and for Hin(x; cr ). In par
ticular, if the Lagrangian contains only first de
riv::j.tives, then already Hin(x; cr) is not equal to 
- Lln<x) and contains terms which depend through 
the na on the concrete choice of the surface cr, 
but not only the expression (21) but also (19) will 
still satisfy all of the requirements imposed on 
S( cr, - oo ). If, on the other hand, the Lagrangian 
contains derivatives of higher orders, then not 
only is Hin(x; cr) ;o< - Lin<x ), but also there is a 
dependence on the mere fact that the surface cr is 
introduced, and owing to this the group property 
and unitarity are maintained only for S( cr, - oo) 

in the form (21). At the same time, the property 
of being independent of the choice of the surface 
cr is safely maintained only for the expression 
(19), as a result of the properties of the Tw
product which we have noted, and this must be 
taken into account in what follows. 

4. THE INTERACTION HAMILTONIAN IN LOCAL 
QUANTUM FIELD THEORY 

We have dealt with the problem of obtaining the 
Hamiltonian Hin(x; cr) by the method just indi
cated, in the case when there are first and second 
derivatives in the first degree in the Lagrangian, 
in [13] and [ 21 ] , and obtained results which agree 
with the results of other methods for getting 
Hin(x; cr ). [s,u,2o] Here we shall consider this 
problem in the general case. 

For this it is first necessary to know the ex
pression for the "quasi-contractions" in the case 
of an arbitrary number of derivatives. These ex
pressions can be obtained if we consider the 
Fourier transforms of the Tu-products in question 
and use the formula for covariant separation of a 
four-vector into transverse and longitudinal parts, 

krz = krzlong+ krztrans, krztrans = llrz(nk). (22) 

Then, if for convenience we introduce the "quasi
contractions" in the momentum representation by 
the formula 

( 0 I Tw (ax~~~:~~:~.~;" (y)) J 0) 
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=~a, 'X,(x-y)=(2-~j~~ eik(x-y)~a, ... an(k)dk, (23) 

then in a straightforward way we get for the 6a1 
... an ( k) (beginning with the second derivative) 

(24a) 

~a~v ( k) = i4 [ kallJJil1• + k~nanv -:- kvnailB - 2nanBnv ( nk)], 

(24b) 

~aB'io ( k )= i 5 { [ kakJJIIyll6 + kakyllBilo + kakonBnv + kBkvnano 

+ k~konanv + kvkonanB] - 2 (nk) [kanBnvno + kBnanyno 

+ kvnanBno+konan/lnv]+nanBnvna[m2 - k2 + 4(nk)2]}. 

(24c) 

It is then easy to apply mathematical induction, but 
we shall not do this owing to lack of space. 

As will be seen from what follows, the most im
portant special cases of formulas of the type (24) 
are expressions in which covariant summation is 
taken over either all pairs of ai or over all pairs 
of indices except one or two. These formulas can 
be obtained by making the summations in (24a)
(24c) and going further by induction. They are as 
follows: 

s-t 

~.(k) = in+tenz L (m2)i(k2)•-1-i, (25a) 
j=O 

s-1 
~a s(k) = in+ISnzka L (m2)i(k2)s-1-i, 

j=O 

(25b) 

s-2 
~aB, s-dk)= i 11 +18nz{(m2)s-1 nanB + L (m2)i(k2)•-Z-j kakB }, 

j=O, 

(25c) 

where s = [ n/2] and the symbol 6s means that s 
d' Alembertians have been formed as the result of 
covariant summation of [ n/2] pairs of ai. 

But knowing the expressions for the "quasi
contractions" still does not solve the problem of 
deriving the general expression for Hin(x; u). In 
practice there are a number of difficulties, which 
it is simplest to explain with examples. As one of 
these we consider the theory with Lin (x) 
= g : [ <Pin(x )] 4 :. Then 

£ 1 in (x, 1) = gZ4 : [qJin (x) )4: + ~ [Zs-1] {: (jlin (x) Dx(jlin (x): 
2 

(26) 

wher-e in perturbation theory z3 and z4 are sums 
of terms, each of which diverges logarithmically 
for MI - oo • This example is sufficiently general 
for the renormalizable theories, since (26) occurs 
in the Lagrangian both of scalar electrodynamics 
and of pseudoscalar meson theory. 

If we apply in this case the analog of Wick's 
theorem, it turns out [21 ] that there is a contribu
tion to. Hin(x; u~ not only from the treatment of 
Tw[ qn(x; 1) Lin(y; 1 )], as in the case of the bare 

Lin(x) for scalar electrodynamics, [13 ] but also 
from ~ultiple p~oducts o~ Lagrangians, 
Tw[ L}n(x; 1) qn(y; 1) L}n(z;_1 )] and so on. Thus 
to obtain the expression for Hin(x; u) it is neces
sary to carry out a summation of a large number 
of quasi-local terms by applying rather complex 
combinatory procedures. Furthermore it can be 
shown that in this case the additional terms in 
Hin(x; u) will hav.e the same operator structure 
as the terms in L}n(x; 1 ). This means that they 
do not depend on u and cannot be brought out, as 
in [19], by starting from the integrability condition 
(see also [20 ]). 

In. particular it is interesting to obtain the part 
of _H}n (x; u). that has the operator structure 
: cpm(x )Dx<Pm(x):. It is of the form 

. 1 . . 
-H1 m (x; a)= Z (Z3 - 1): (jlm (x) DxqJ'" (x): 

( Z3-1\315 . . + -2·- I ::l! : rp11' (x) D,qJ'" (x): + ... 
(27) 

The summation in (27) is of course rather for
mal, but, firstly, we are taking MI = const, and 
then z3 is finite, and, secondly, we inevitably have 
to resort to such summations when we deal with re
normalization constants in perturbation theory .[5,14] 

As for the coefficients in the series, the denomi
nators are obvious, and the numerators are deter
mined by a direct counting up of the number of 
quasi-local terms. 

The next important peculiarity of the derivation 
of Hin (x; u) is that in theories with higher deriva
tives the direct change (20) from a Tw-product 
to a TD-product gives rise to products of "quasi
contractions" with identical arguments, which give 
contributions to Hin ( x; u) of the type i64 ( 0 ) , which 
are infinite (for MI = const), and in addition are 
nonhermitian. In renormalizable theories such ex
pressions appear only in the vacuum terms, and 
therefore can be ignored altogether. In nonrenor
malizable theories, however, since the unitarity 
of the S matrix in the form (20) is a direct conse
quence of the h~rmiticity of Hin(x; u), such con
tributions to Hin(x; u) will lead to violation of 
unitarity. If now we wish to preserve the unitarity 
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of the S matrix, then for this it is necessary to in
troduce corresponding nonhermitian and infinite 
(for MI == const ) additions to the Lagrangian so 
that they will cancel out when the transformation 
(20) is made. An analogous situation has already 
been observed in nonlocal theory. [22 J It follows 
that if we start from a unitary S matrix, then in 
deriving Hin(x; cr) we must include in i~ only 
quasi-.local terms obtained from Tw[ qn(x1 ) 

... qn(xn)l with single "quasi-contractions" of 
an adjacent pair of Lagrangians. 

Finally, we must call attention to the fact that 
if Lin(x) involves higher derivatives taken with 
respect to separate components, then the expres
sion for Hin(x; cr) will be a purely formal one, 
since in this case the group property (and also 
unitarity ) cannot be made compatible with the con
dition that S ( cr, - oo ) be independent of the con
crete choice of cr. In fact, as long as we have to 
do with the ''quasi -contraction'' (24a) we can al
ways return in S ( cr, - oo ) from the Tw-product 
to the TD -product, but this is impossible in the 
cases (24b) and (24c). Therefore it is reasonable 
to searc~ for a Hin (x; cr) only in theories in 
which qn(x) contains the first derivatives with 
respect to separate components, but the d'Alem
bertian can still occur to any power. Owing to this 
the "quasi-contractions" (25a)-(25c) are most in
teresting, and Hin(x; cr) cannot involve more than 
two normals na. [13] In particular, vector electro
dynamics is not a theory of this type. 5> 

Going over from scalar fields to fields of other 
types, we note that since sc ( x - y ) contains only 
the first derivative, for spinor fields themselves 
Hin(x; cr) == -Lin(x). From the point of view of 
the derivation of H}n(x; cr) the vector field is 
equivalent to the first derivative of a scalar field, 
and the derivatives of vector (and spinor) fields 
correspond to higher derivatives of a scalar field. 

5. DETERMINATION OF THE RENORMALIZED 
OPERATORS IN THE HEISENBERG REPRE
SENTATION 

As has already been noted, the possibility of a 
nonunitary connection between corresponding op
erators in local field theory follows from a num
ber of results in both nonlocal [ 12] and also 
local [9- 11 •12 ] theory. Moreover, in this case a 
nonlocal connection is not only possible, but also 

S)It is interesting to note that in the attempt to get a 
H1i"(x; a) in such a theory, [••] starting from a Hermitian 
Llin(x), only the fact that the additional terms that arise are 
infinite was noted, and not the fact that they are not Hermi
tian. 

necessary, because the assumption that the connec
tion between the operators F(x) and Fin(x) is 
unitary is in contradiction with the requirement 
that the renormalized operator F ( x ) in the Heis
enberg representation be independent of cr. 

As the definition of the connection between the 
renormalized operator in the Heisenberg represen
tation and the free operator in the interaction rep
resentation we choose the following expression: 

F(x) = S+Tw(Fin(x)S). (28) 

The guiding considerations in favor of this formula 
are given by the manner of definition of Heisenberg 
operators, which is independent of the Hamiltonian 
formalism and goes back to Schwinger. [24 ] In this 
procedure one starts from the Lagrangian formal
ism and takes as the foundation an S matrix of the 
form (17), after which one adds to the Lagrangian 
(and not to the Hamiltonian! ) appropriate classical 
functions and takes the variation with respect to 
them. Then there is naturally obtained a formula 
of the form (28) with the Tw-product. 

The advantage of such a definition is primarily 
that in any theory the operator F ( x) in the form 
(28) is surely independent of cr, because, as was 
pointed out above, precisely the Tw-product is 
independent of cr, whereas the TD-product in gen
eral does depend on cr. 

At the same time it is obvious that it is pre
cisely for the TD -product that there is the iden
tity G) 

TD(Jiin(x)S) - S(oo, a)Fin(x)S(a,- oo), (29) 

where the S matrix is of the form (20) and 
S(cr, -oo) is of the form (21), which automatically 
leads to an expression of the type (1) 

F'(x, a) = S+(a, -oo)Fin(x)S(a, -oo) (30) 

instead of (28). 
Thus there is the following interesting situation. 

As long as we are dealing with a theory without de
rivatives, then first, the definitions o~ Tw- and 
TD-p:roducts coincide, and second, Hin(x; cr) 
== - qn ( x). The result is that the expressions 
(17) and (20) for the S matrix coincide, and so 
also do the expressions (28) and (30) for Heisen
berg operators, so that the connection between 
F (x) and Fin(x) is both unitary and preserves 
lack of dependence on the surface. 

If, on the other hand, the theory involves deriv
atives, tnen although the S matrix itself is not af
fected by this, the formulas which before were 

6)Jt is understood throughout that the surface a passes 
through the point x. 
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single are split up, and there are two cases: 
1. Tw-products: the formula (17) for the S 

matrix; formula (28) for F(x), preserving lack 
of dependence on a. 

2. TD-products: formula (20) for the S matrix; 
formula (30) for F'(x, a), preserving the unitary 
character of the connection. 

The definition (28) can also be extended to op
erators which could not be obtained in the original 
formalism of Schwinger. [24.] In particular, we can 
determine in this way the free Lagrangian in the 
Heisenberg representation, and from the sum 
Atot (x) = A0 (x) + AI(x) we can obtain the equa
tions of motion. Then, however, there arises the 
complicated problem of expressing an arbitrary 
Heisenberg operator F ( x ) in terms of the renor
mali zed field operators A ( x ) , since the Tw
product, unlike the TD -product, does not have the 
property of being multiplicative. 

To emphasize the seriousness of the difference 
between the Tw- and TD-products, we point out 
one further fact. The counter terms of the proper 
energy which go into the interaction Lagrangian 
Lin(x; 1) and the current jin(x) are not equal to 
zero (because of the free field equations ) only 
when under the sign of the nonunitary Tw-product. 
Under the sign of the TD-product, on the other 
hand, they are identically equal to zero, so that 
their inclusion does no good. Of course all of this 
also applies to the expressions for the S matrix 
and the matrix S (a, - oo ) • 

Owing to the nonunitarity of the Tw-product the 
expression (28) for the renormalized Heisenberg 
operator is not too convenient for further investi
gation. Besides this, the assumption that the ma
trix S (a, - oo ) exists obliges us to assume that 
in the interaction representation there exists an
other operator Fint(x; a), which in general is not 
equal to Fin(x) [see (1)], and that the connection 
between this other operator and F(x) is unitary. 
Our next aim will be to reduce the expression (28) 
to a form convenient for use by finding operators 
Fint(x; a) corresponding to the various operators 
F ( x ) . The basic apparatus in this research will 
be the analog of Wick's theorem established above, 
which allows us to express the Tw-product in 
terms of the TD-product, and a subsidiary tool 
will be the expression (21) for the matrix S (a, - oo ) 

in terms of Hin(x; a). 
In conclusion I express my sincere gratitude to 
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