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Growth of sound fluctuations in a piezoelectric semiconductor is considered for the case of 
sound instability due to the effect of a stationary electric field. An equation is obtained 
which makes it possible to determine the intensity of the fluctuations in a much wider fre­
quency range than the analogous equation of the previous paper.CsJ The possibility of apply­
ing the method of description of growing fluctuations to consideration of other cases of in­
stability is considered. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

LAsT year, a sound instability was discovered in 
piezoelectric semiconductors [1] and was investi­
gated in a number of works [2- 7]. The instability 
consists in the fact that in constant electric field E 
in which the drift velocity of the conduction elec­
trons V exceeds the phase velocity of the sound, 
the sound absorption is replaced by its amplifica­
tion; in this case the noise (i.e., small sound fluc­
tuations ) begins to grow and can increase to a very 
high level. 

The sound instability in the simplest cases is 
convective.1) This means that at a given point of 
space the intensity of sound fluctuations is sta­
tionary in time but on the other hand it reveals a 
spatial growth "along the current." The growth is 
limited only by the finite dimensions of the semi­
conductor or by the nonlinear scattering of the in­
dividual growing vibrations on one another. In this 
paper we consider the case in which the dimensions 
of the semiconductor limit the growing fluctuations 
to such a level that nonlinear effects do not yet 
play a role. 

We shall be interested in fluctuations at an in­
stant of time which can be charactetized by the 
quantity UQ(R, t) introduced previously in [S] 2>; 
this quantity has the meaning of a mean-square dis­
placement amplitude in a traveling sound wave with 
wave vector Q. This function is connected with the 
more useful quantity NQ -the number of phonons 
in a state with wave vector Q -by the simple rela-

l)The concept of convective instability was introduced in 
the book of Landau and Lifshitz.[•] 

2)Referred to hereinafter as I. 

tion NQ = pV0wQUQ/ti, where p is the density of 
the crystal, v0 is its volume, WQ is the frequency 
of the sound vibrations. 

In our case of classical fluctuations it is natural 
to use the quantity UQ, and not NQ. We shall show 
that if WQ does not depend on the time, then the 
function U Q ( R) satisfies an equation of the form 

auQ + aroQ auQ + u = [auQ J (1.1) 
at oQ aR r Q ot T • 

where y is the damping coefficient of the sound vi­
brations, which is negative in the region of insta­
bility. The left hand side of this equation has the 
usual form. The role of the right hand side in the 
kinetic equation for phonons is played by the opera­
tor of phonon -phonon and phonon -electron colli­
sions. 

However, in the given case, we cannot describe 
the right hand side of (1.1) in terms of this opera­
tor, since we are interested in low frequency sound 
fluctuations whose period 27r/WQ is much greater 
than the electron relaxation time T e• or than the 
relaxation time Tp of "thermal" phonons (that is, 
phonons with energy ,; T, where T is the lattice 
temperature in energy units). Therefore, the in­
teraction of the low frequency vibrations with elec­
trons and thermal phonons cannot be considered as 
an elementary act, and it is necessary to apply the 
phenomenological theory of hydrogynamic fluctua­
tions. 

The theory of hydrodynamic fluctuations in the 
state of thermodynamic equilibrium was introduced 
by Landau and Lifshitz. [10] The equations of the 
theory of elasticity are obtained in it, and on the 
right hand sides of these equations there are ran­
dom forces, while correlations are found between 
these random forces. The prescription for appli­
cation of these equations is that in order to express 
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their solution -the random deformation -in terms 
of a random force, and then to compute the observed 
mean of the products of the random deformations, 
use is made of the correlation equations for random 
forces. 3> 

In the present work we show, first, that the 
sound fluctuations in the piezoelectric can be de­
scribed in terms of equations of the type written 
down in [tO-i2], and that it is possible to calculate 
the correlators between the random forces in the 
nonequilibrium state which arises under the action 
of the stationary electric field. Second, from these 
equations we can derive directly an equation for the 
observed averages of the products of random quan­
tities. This equation of the kinetics of the fluctua­
tions is easily generalized for the spatially inhomo­
geneous case also, in which it takes the form (1.1). 
Its right hand side has the meaning of the power of 
the source of fluctuations and is expressed in terms 
of the coefficients that figure in the correlation re­
lations between the random forces. The form of 
the left hand side is quite natural, although there 
it is necessary to note one particular circumstance. 

The sound instability arises. as the result of in­
teraction of sound vibrations with vibrations of the 
electron density. The latter, in zeroth approxima­
tion in this interaction, satisfy an equation of first 
order in the time -the equation of continuity, in 
which the ohmic current figures as the density of 
electron current. There is no mechanical system 
which would satisfy an equation of such a type in 
the absence of dissipative processes. Therefore, 
it was not clear in advance that the mean square 
of the Fourier component of the fluctuating elec­
tron density would satisfy an equation of the type 
(1.1) with a left hand side characteristic for purely 
mechanical systems. 

The difference between the system considered 
here and a purely mechanical system is clearly 
demonstrated in Sec. 4 in the example of a weakly 
nonstationary fluctuation. The nonstationarity is 
associated with the change in the external electric 
field E, and leads, for example, to the appearance 
of a contribution to the damping coefficient of the 
sound vibrations y. However, this contribution is 
nowehere equal to WQ I WQ, as it would have been 
according to the theory of adiabatic invariants for 
a purely mechanical system. 

The introduction of equations of the type (1.1), 
which has been done in the present work in the con­
crete example of fluctuations in a piezoelectric, 

3)The procedure applicable for electomagnetic fluctua­
tions of such a type is described in detail in the books of 
Rytov["] and Landau and Lifshitz [12]. 

is easily generalized to include fluctuations of any 
other physical quantities which satisfy equations 
with random forces, the correlator between which 
is proportional to o(t -t' ). The advantage of such 
an approach in the consideration of fluctuations in 
a piezoelectric in comparison with the procedure 
used in I is, in particular, that the limiting case of 
fluctuations whose frequency is larger than 1/TM 
(where TM is the Maxwell relaxation time of the 
electron density fluctuations ) cannot be considered 
by the methods of paper I, but can be studied by the 
methods developed in the present work. 

2. INITIAL EQUATIONS IN THE THEORY OF 
SPATIALLY HOMOGENEOUS FLUCTUATIONS 

In order not to write out the cumbersome tensor 
expressions, let us consider fluctuations of simple 
systems which are propagated in a direction close 
to some symmetry axis of the crystal (the x axis) 
and ultimately write down also the final result 
which is valid for the general case. As shown in 
I, the initial equations for the quantity 

(where u is the x component of the fluctuation 
displacement vector, and n ( r) is the fluctuation 
electron density ) have the form 

82uq (', 4:rt~2 ) 2 ~ 8uq 4ne~ + . P at2 =- ,.+ - 8 - q, Uq-'l')q,"fit + - 8 -nq zq,sq, 

(2.1) 

where 

g• q (t) gq• (t') = (2T .ajV0 ) llq'q() (t'- t), (2.3) 

Sq• (t) sq' (t') = (2Tf)jV0 ) llq'q() (t'- t), (2.4) 

while gq(t)sq'(t') = 0. Here sq is the xx com­
ponent of the tensor of random stresses, gq is the 
density of the random current, p is the crystal 
density, e is the charge on the electron, A.iklm is 
the tensor of the elastic moduli (A. = A.xxxx and 
similarly for the other tensors), /3i,kl is the ten­
sor of piezoelectric moduli, Eik is the tensor of 
dielectric constant, 7Jiklm is the tensor of viscos­
ity coefficients, O"ik is the tensor of differential 
conductivity, Dik is the tensor of diffusion coeffi­
cients, TM = e:/47ru, Te = n0e 2D/u, K2 = 47ru/e:D, 
n0 is the stationary concentration of the electrons. 
The bar indicates averaging over the probabilities 
of all states which can participate in this product 
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(for more details in connection with this meaning 
of averaging, see I). 

For compactness in writing the set (2.1)-(2.2), 
we put 

U = e'(l) 
q- 'oq , 

U• = t'(2) 
q- 'oq ' 

n = t:'(3) 
q- 'oq • 

Then, denoting by gq_ the set of three quantities 
t'(n) we have sq , 

Here 

o£'qlot-a'(q)£'q =yq'· 

_ _.:'l_q 2 
p X 

0 

(2.5) 

(2.6) 

while the matrix Y' which enters into the relations 

'(n)* '(n') , -1 ' " ' 
Yq (t) Yq' (t) = Vo Y n'n (q) Uq•q6 (t - t), (2. 7) 

has two elements different from zero: 

Y22 1 =,2'f1lqx2 I p2, Y3/ = 2Tca I e2, 

Now let us introduce the linear transformation 

!:: (n) _ ~ S t;'(n') 
'oq - Li nn''oq · 

n' 

(2.8) 

Transforming the set (2.5), we have the form 

We shall see below that there are no multiple 
eigenvalues for the matrix a'. In such a case, as 
is well known, one can always select the matrix S 
in such a fashion that the matrix a becomes diag­
onal. Then the set (2.9) takes the form 

(2.10) 

We separate the real and imaginary parts in the 
complex quantity an ( q): 

an (q) = -iWnq- 'Vnq I 2. (2.11) 

As can easily be demonstrated, one can always 

choose the functions g~n) in such a way that they 

satisfy the condition g~W = g~n>*. Below we shall 
assume this condition to be satisfied. 

The random forces in (2.10) satisfy the correla­
tion relations 

(n)* ( ) (n') ( ') v-ly ( ) " " ( ' Yq t Yq' t = o n'n q Uq•qu t -t), (2.12) 

where Y = SY'S+, where s+ is the Hermitian con­
jugate of S. 

Our goal is to calculate the average of the quan­
tity 

which characterizes the fluctuations. In this sec­
tion we consider spatially homogeneous fluctua­
tions where A~~~= A~~noq'q· Let us 9erive the 
equation satisfied by the functions A~qn· For this 
purpose, we consider, along with Eq. (2.10) for the 
functions g~n) (t ), the equation 

:t Sq(m)• (t + 't') + (- iWmq + r;q) Sq(m)• (t + 't') 

(2.10a) 

and the time r > 0 is chosen such that it is every­
where less than the period of the fluctuations. 

We multiply (2.10) by g&m)*(t+ r) and (2.10a) 
by g~n) (t ), carry out the averaging, and add the 
two equations. On the left hand side of the result­
ing equation we can obviously set T = 0 everywhere, 
since this quantity is much less than the period of 
fluctuations. In the calculation of the right hand 
side, we shall take into account that 

Sq(nl(t)yq(mJ*(t + T) = 0, 

inasmuch as the value of the function g at a much 
earlier time cannot depend on the values of the ran­
dom force at the later time. Finally, for wn, T « 1 
and I Ynq /T I « 1 we get 

(2 .12a) 

As a result we obtain the following relation for 
An'n. 

q'q" 

o An'n + . ( ) A"'" + 1/ ( An'n. 8t q'q l Wn•q• - Wnq q'q 2 r n'q' + Ynq) q'q 

(2.13) 

This equation is suitable also for description of 
nonstationary fluctuations if the nonstationarity is 
brought about by the explicit dependence of Yn'n 
on t. If now this nonstationarity is connected with 
the time dependence of wnq or Ynq• then (2.13) no 
longer holds and the corresponding equation for the 
description of the functions will be obtained in 
Sec. 4. 

'(n)* '(n') 
The averages of the initial values of gq gq' 

form a matrix A' which is obtained from A by 
means of the inverse transformation: A' 
=S-1 A(S-1 )+. 

We shall now determine the matrix a, i.e., we 
shall find the eigenvalues an ( q) of the matrix a'. 
For this purpose, it is necessary to solve the equa­
tion Det (a' - a I) = 0 (where I is the unit matrix), 
or in explicit form [7] 

(a- iwq-) (a+ iwq +) [a+ iqxV + _!__ (1 + qx:)] = 4:rtP2qx 2
, 

1'31 X 8p1'1\f 

(2.14) 
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where 

- , iyl 
wq+=wq ± 2 , 

1)q,,2 
Yt=--, 

p 

wi = ('A+ 4n~2l qx2. 
8 ) p 

We shall solve (2.14) by the method of succes­
sive approximations, assuming the right hand side 
to be small. In the zeroth approximation, 

where 

±- ,_ iyt 
Wqo - Wqo +2, '2 2 Ytz 

Wqo = Wqo - 4 , 

(2.15) 

2 Aqi 
Wqo =--

p 

We find the contribution of a first approximation 
to af0>, oa~O, by substituting on the left hand side 
of (2.14) in place of the first factor oaft>, and by 
setting a= a~o) in the second and third .factors. 
In similar fashion, computing the contributions to 
a~0 > and a~0 >, we have 

" (!) = 2n~2qx2A+ 
uUt ,, 

BPTMWqo 

lla2(1) = - 2n~2qx2A= cSas<t) = - 4n~2q,,2A~- . (2.16) 
epT MWqo1 ' 8p't l'tf ' 

where 

A±= [qxV + Wq~' + iyz/ 2- iTM-1 (1 + qix-2]-1• 

We shall determine when one can use the method 
of successive approximations to calculate the cor­
rections (2.16). For calculation of oa~0 , it is nec­
essary that the following inequality be satisfied 

But in piezoelectrics, as a rule, 

4nW I e'A~ 1, 

(2.17) 

(2.18) 

and then (2.17) is a direct consequence of (2.18). 
To obtain oai1> and oa~0 , the procedure is 

more complicated. For ~V ~ wqo• the real parts 
of al0' and a~0 > are close to one another; for ex­
ample, in calculation of the correction oai0 , one 
can set a = ai0> in the third factor in the left hand 
side of (2.14), only if 

(2.19) 

The inequality (2.19) is satisfied for all values of 
V only if 

(2.20) 

Furthermore, it will be assumed that (2.19) does 
hold. Then the amplified oscillations are close in 
their character to mechanical (the case of "weak 
interaction"). For the reverse inequality, there 
exists a range of values of V in which the first and 
third formulas of (2.16) are unsuitable, and the cor­
rections oai1' and oa~1 > must be determined si­
multaneously from the quadratic equation. In this 
case (which we shall not consider here) the vibra­
tions of the amplified branch arise as the result of 
the strong interaction of the mechanical and elec­
tronic systems, brought about by the closeness of 
the corresponding frequencies. These equat~ons 
are not similar to any oscillations existing for 
{3 = 0. 

It is convenient to find the matrix 8 in two 
The matrix 

iFJf2coq- o 
- i(Jf2coq + 0 (2.21) 

0 1 

brings about a partial diagonalization of the matrix 
a by means of the transformation from the quanti­
ties uq and U.q to the quantity b~· 2 > 
= 2 -l/2 ( uq ± iuq I w~p. The latter represent (with 
accuracy up to the factor 12) the amplitudes of 
two traveling sound waves propagating in opposite 
directions. In the calculation of the matrix 82 and 
in what follows, we shall assume that the equality 
yz « ri\1 (1 + CJiK -2) holds, which is satisfied in 
practice in the majority of cases of interest, and 
limit ourselves everywhere to the lowest approxi­
mation in yz lwqo « 1. Then, with the accepted 
accuracy, 

in~2qx2A+ 4ne~A+ 

Bp'rMcoq~ V2spcoq0 

82= 
in~2qx2A_ 4ne~A- (2.22) 
Bp'rMwq~ VZepcoqo 

i~qx2A+ i~qx2A_ 
1 

V2eTM "Jf2e-rM 

821 is obtained in our approximation from 82 by 
means of a change of sign in all the nondiagonal 
matrLx elements. We note that in the case of ''weak 
interaction," [(2.19)] the quantities ~~1 >, ~~2 >, and 
~~3 > retain approximately the meaning of the ampli­
tudes of sound waves traveling in the direction q 
and in the opposite direction, and the amplitudes 
of the electron density oscillations, respectively. 

In the same approximation 

Wtq = Wqo, W2q =- Wqo, Wsq = qxV, 
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Finally, 

Tvt 
Y11 (V) = Y22(- V) = --2 pwqo 

4n~2 Te l"M 

+~p (1 + qix-2)2+(wqo- q.Y)2-rM2 

• Tvt 
Y12= Y21 = ---2 pwqo 

4n~2 T. TM 
+ -;~--pfwqoTM =J-£(-t-+q~2;-2)]2 - (qxVTM} 2 

=- Ya2"(-V) 

4n 1'2- f3<rqx2Te 1 

(2.23) 

- eepwqo qx V- W-qo--i,.-,(-:-1-+:--q-x2=-x---:c2)_-r_M ___ 1 • 

(2.24) 

We shall give without derivation the expressions 
for Ynq and Ynq in the case in which the wave vec­
tor q is directed not along the axis of symmetry of 
the piezoelectric but in arbitrary fashion (summa­
tion is carried out over repeated indices): 

(v) _ ( V) _ lliklmqiqlekem r1 - r2- - P 

(~l.abqlqaeb)2 ( Wqo- qV) 
+ p~q[(1 +q2x-2)2+:(wqo-qV)2't'M2]q2wqo ' 

y _ 2T8aq 
aa-~, 

(2.25) 

(2.26) 

Here Wqo is the frequency of elastic vibrations for 
/3i,kl = 0, e is its polarization vector, aq 
= amn~~ /q2 (and similarly for the other 
tensors), 

TM = eq I 4ncrq, 

For q · V > wq0• we have Yi < 0 (which also in­
dicates instability), while y2 > 0 and y3 > 0. 

We want to calculate the mean square of the am-

plitude of the traveling SO\md wave b~>*bg>, which 
will be denoted by the symbol Uq. We have 

Uq = (S2-t)t~tA"I(S-t)ll*· 

In the case of "weak interaction," when the condi­
tion (2.19) holds, the matrix S2 is "nearly diago-

nal," and, with the accuracy that we have used, 
Uq = A 11 . When y1 becomes negative, the solution 
of Eq. (2.13) for A11 = Uq increases as a function 
of t. In other words, for y1 < 0, a real instability 
arises in the spatially homogeneous case: the sound 
fluctuations, in accord with linear theory, increase 
in time without limit. 

In practice, each real system is spatially 
bounded and the boundary effects play a special 
role in it. If all Yn > 0, then for sufficiently large 
dimensions of the system, the role of these effects 
is negligible. If some Yn < 0, then these effects 
can play a principal role, independent of the dimen­
sions of the system. Thanks to it, the fluctuations 
become spatially inhomogeneous. It is essential 
that here they become stationary in time at any 
fixed point and for Yn < 0 but on the other hand 
they exhibit spatial growth "along the current." 
This is the case of convective instability of the 
system. 

In order to consider convective instability, it is 
tempting simply to add a convective term on the 
left hand side of Eq. (2.13) for the diagonal ele­
ments of the matrix A [see (1.1)]. However, to do 
so would have been careless, inasmuch, as was 
pointed out above, there does not exist a mechani­
cal system which (in the absence of damping) 
would be described by the set of equations (2.1)­
(2.2). Therefore, an equation of the type (1.1) calls 
in this case for a somewhat more careful deriva­
tion, the basic ideas of which will be set forth in 
the next section. 

3. SPATIALLY INHOMOGENEOUS FLUCTUA­
TIONS 

Here we derive an equation which makes it pos­
sible to determine the diagonal (n = n') elements 
of the matrix A for the case of a spatial inhomo­
geneity, in which the characteristic length l over 
which the growth or decay of the fluctuations takes 
place is sufficiently large. We shall write down 
the initial equations and the correlation relations 
in the coordinate representation:4> 

4)Fundamental interest is attached to the behavior of the 
long-wave fluctuations with wave vectors q6;;K (maximum 
amplification corresponds to q = K; far larger q, the amplifica­
tion coefficient - y, falls off as q-2 ); therefore, if for example 
the integral f d'q a( q) diverges, it suffices to cut off the inte­
grand when q >> K. The cut-off method has no effect on the 
form of an equation of the type (1.1) in the significant interval 
of q. 
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y(n) (r; t) y(n) (r', t') = Y nn (r'- r) {J (t- t'), 

ctn (r) = (2Jtf3 ~ d8qct,. ( q) eiqr, 

(3.2) matrix A~V.q indicated above, it is not difficult to 
establish the fact that, with the accuracy assumed 
here, 

y nn (r) = (2Jtf3 ~ d 8q y nn (q) eiqr. (3.3) B"Q":R', QR = BQn) (R) {JQ'Q{JR'R'• 

In the case of spatially homogeneous fluctua­
tions, 

cnn (r, r') = ~(n)(r)S(n)(r') 

depends only on ~r = r - r', while the matrix A~V.q 
is proportional to Oq'q· In the presence of spatial 
damping or growth of the fluctuations, cnn(r, r') 
begins to depend on r 0 = (r + r' )/2 also, while the 
matrix A~9q differs from zero even for q "" q'. 
Here, cnn ( r, r' ) is a sufficiently steep function of 
~r and a smooth function of r 0; A~V.q, on the other 
hand, depends smoothly on q0 = (q + q' )/2 and 
quite sharply on ~q. To be precise, we can state 
that the matrix elements A~9q are essentially dif­
ferent from zero in the interval ~q ~ 1/l. 

We introduce a representation with the aid of 
wave packets, in which one can write down the 
equation for the increasing fluctuations. Here we 
construct the system of functions 5> 

(3.4) 

In order to derive the equation for B~) (R), we de­
rive in the coordinate representation of (3.1) an 
equation similar to (2 .13): 

! ~(n) (r) ~(n) (r')- ~ d8rt ctn (r- rl) ~(n) (rt) £(n) (r') 

- ~ d3r1 CXn (r'- rt) £(n) (r) £(n) (r1) 

= y(n) (r, t) ~(n) (r', t + 't'), (3.8) 

multiply it by V02¢QR(r) ¢QR(r' ), and integrate 
over r and r'. Then the first component on the 
left hand side gives 8B~) I at. Using Eq. (3.4) we 
represent the sum of the second and third compo­
nents in the form 

a8 V0- 1 2J 2J [i (ron, Qi-k'- ron, Q+k) 
k k' 

+ 1/2 (Yn. Q+k' + Yn. Q+k)] A"Q~k', Q+k e-i(k-k')R. (3. 9) 

We expand Yn,Q+ k and wn,Q+ k in powers of k, 
limiting ourselves in the first case to the zeroth 
and in the second to zeroth and first terms of the 

where the summation over k is carried out in the expansion. Then (3.9) can be rewritten in the form 

limits -1r/a < kx, ky, kz < 1r/a. These functions sat-
isfy the orthogonality and normalization relation WnQ aB t;;_> I oR + Yn Q B ((1 (wn Q = Oron Q/ oQ). 

(3.5) 

Here R is a discrete set of points, the distance 
between which ~X= ~Y = ~Z =a, and ~Qx = ~Qy 

= ~Qz = 21ra-1, so that ~X~Qx = 271", etc. We 
choose the length a such that 

(3.6) 

and in all other respects we assume it to be arbi­
trary. 

We proceed to the derivation of the equation for 
the diagonal (n = n') elements of the matrix 

s;r~,'QR = Vo- 2 ~ d3r ~ d3r' £(n) (r) ~(n') (r') '¢QR (r) '¢~'R' (r') 

- j:(n)• (t) j:(n') (t)- a3 ""'An'n. -ikR+ik'R' (3.7) - 'oQR 'oQ'R' - - L.J Q'+k', Q+k e , 
Vo kk' 

where ~~AJs a coefficient in the expansion of the 
function ~ (n) ( r, t) in a series in the functions 
lJ!QR ( r ) . Taking into account the properties of the 

S)Such a representation was first introduced by Mclrvine 
and Overhauser. ["]I am thankful to A. N. Ansel'm who pointed 
out this work to me. 

Finally, in analogy with (2.12a), the right hand side 
of (3. 9) can be represented as 

a3Vo- 2 2J Y nn (Q + k) ~ Vo-1Y nn(Q). 

k 

We then obtain the following equation: 

(3.10) 

oBQ(n) + oronQ oBQ(n) + B (n) = __!_ y (Q) (3_11) 
ot oQ oR YnQ Q V0 nn • 

The reverse transition to the q representation 
is carried out in accord with the formula 

Ann sy -1 "'1;1 Bnn i:(kR-k'R') Q'+k', Q+k = a o L.J Q'R'. QR e · . (3.12) 
RR' 

Boundary and initial conditions for BQ ( R) are 
specified separately in each case, starting from 
the concrete physical situation. 

By analogy with the spatially homogeneous case, 
it can be assumed that B~>(R) is identical with 

(1) * (1) • U Q ( R) = bQR bQR -the mean square of the am ph-
tude of the sound wave packet. For WqoTM « 1 
and qVTM « 1, the expression (2.23) and (2.24) for 
the quantities y1 and Y 11 (q), which enter in (3.11), 
go over into the formula (5.20) of I, as they should. 
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4. LIMITS OF APPLICABILITY OF THE THEORY 
AND ITS POSSIBLE GENERALIZATIONS 

In order to be able to select the length a in cor­
respondence with the inequalities (2.2), it is neces­
sary that q » z-1• Inasmuch as, on the other hand, 
z-1 ~ I Yn w~1 I. this inequality can also be rewritten 
in the form 

Wnqq ~ I "fnq 1. (4.1) 

The second inequality is the condition for the 
possibility of expanding wn,Q+k• Yn,Q+k and 
Y n'n ( Q + k) in a series in powers of k. Inasmuch 
as k ~ a - 1, then in order for this to be the case, 
I wi}1 Bwn/aQ I« a. But a« l; therefore, in any 
case, 

(4.2) 

Similar inequalities must be satisfied for YnQ 
and Ynn(Q)· However, we emphasize that if we can 
discard the term with the space derivative in the 
solution of (3.11), then these conditions may also 
not be satisfied. An essential condition is also the 
absence of temporal dispersion in the kinetic coef­
ficients which enter into the problem, for example 
in the conductivity tensor Uik· 

Finally, we note that the given linear theory is 
applicable so long as the nonlinear effects of scat­
tering of the growing vibrations by one another do 
not play a role, and as long as the growing oscilla­
tions do not change the correlation relations (2.3) 
and (2.4). 

We now consider the generalization of the the­
ory to the case of nonstationary external condi­
tions. If the function a~'n in (2.5) depends weakly 
on the time, Eq. (2.13) must be modified somewhat. 
A dependence will be called weak if 

I (a' )-2 aa' I at I « 1. nn' nn' 

Then the matrix S which reduces a~'n(q) to di­
agonal form is also a weak function of time. As 
before we shall denote the diagonal matrix which 
enters into Eqs. (2.10) by a. However, it will now 
no longer be equal to the matrix a<O) = Sa'S-1• The 
point is that the substitution ~q = s-1 ~ in Eq. (2.5) 
does not allow us to reduce a' to diagonal form, 
since in the calculation of the time derivative, one 
must also differentiate S. Therefore we set ~q 
= ( 1 + ~ )S~', where ~ is a small matrix which is 
also obtained from the requirement of diagonality 
of a. Limiting ourselves to the first approxima­
tion, we shall neglect both higher orders of ~ and 
their time derivatives. Substituting the expression 
~q = s-1 (1-~)~q in (2.5), we get 

8 as-l ~q + a~q _ a<o> ~q _ [L\, a<o>J ~q = (1 + L\) sy~. (4.3) at at 

We choose the nondiagonal elements of the matrix 
~ in correspondence with the condition 

(SaS-1 I at) nn' = {L\, a<0>] (n =I= n')' (4.4) 

and set the diagonal elements equal to zero. Then 
Eq. (4.3) takes the form 

as\;> I at+ Liwnq (t) + 1I2Ynq (t)]s~"1 = y~ (t), (4.5) 

where 

iWnq- 112"fnq =am;(q} =CX~~ (q} +6ann(q), 

6a,, = -i6w nq- ~l26y",q = - (SaS-l I at)nn 

= [S-1aSiat)nn· (4.6) 

The functions Wnq(t), Ynq(t), and Yn'n(q,t) com­
puted in this fashion, which also depend on time, 
must be substituted in (2.13). 

Temporal nonstationarity in a piezoelectric is 
generally brought about by a change in the external 
electric field and is associated with a change in the 
drift velocity V. For this case it is easy to get, 
for example, the following expression for the cor­
rection to the damping coefficient of the growing 
oscillations: 

(4. 7) 

As was emphasized above, it never has the form 
oy = - wq:1 Bwq/Bt, which is obtained for purely 
mechanical systems from the theory of adiabatic 
invariants. 
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