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Optical phenomena connected with the transition of electrons from inner shells to a low­
mobility band are investigated. A graph technique for the calculation of the complex conduc­
tivity, which is applicable to strong electron-phonon interaction, is developed. Just as in the 
F -center problem, the main absorption curve peak has a maximum at a distance on the order 
of wp == ~Ep/11 (~Ep is the polaron shift) from the absorption band edge. The peak width ow 
is determined exclusively by the nature of the transition (ow~ (kT~Ep/112 ) 112 forT> T 0 and 
ow~ (w 0 ~Ep/ti) 112 forT< T 0) and is in no way related to the width of the polaron band or of 
the initial electron band (for which the polaron effect is not taken into account). When T < T 0 

two additional peaks are observed at the edge of the absorption band, the distance between 
them being w 0• The low frequency peak has a Lorentz shape and its width is determined by 
the relaxation time in the transport equation for small-radius polarons. The shape of the 
second peak is not a Lorentz one. At low temperatures the final height of the peak is deter­
mined by the possibility of decay of an optical phonon into two acoustic phonons, and hence 
is not related to the characteristics of the polaron or initial electron bands. The refractive 
index possesses singularities (of the discontinuity type) in the same frequency ranges. 

INTRODUCTION 

THE static electric conductivity of semiconductors 
with low mobility was recently considered in sev­
eral theoretical papers [ 1- 3], where it was estab­
lished that the observed activation growth of 
mobility with increasing temperature can be the 
consequence of the strong interaction between the 
carriers and polarization vibrations (in semicon­
ductors of this type, for example in NiO and in 
Fe 20 3, the bond has a pronounced ionic character). 
In the present paper we consider optical phenomena 
in semiconductors of this type, connected with 
transitions from a deep atomic level into a band in 
which the carriers have low mobility. 

We shall calculate here the contribution ~ E (w) 
made to the complex dielectric constant of the 
medium by the processes indicated above. The 
total dielectric constant E(w) can be represented 
in the formE (w) == E'(w) + t.E (w), E == E' + iE" 
where € includes all the other mechanisms. The 
absorption and reflection coefficients K(w) and 
n(w) are expressed in terms of the real and im­
aginary parts E' and E" of c 

K(w) =;X, x(w)={~ [-e'+(e'2+e"2)'1·Jr: 

1 ~ 
n(w)= { 2 re'+(e'2+e"2)'1,J}.' 

In the case of weak absorption (when E"/E' « 1) we 

have K ~ E"/2/E' and n == R. In the frequency 
region where absorption due to the mechanism in 
question is significant, ~E experiences abrupt 
changes. If the remaining mechanisms do not 
produce noticeable absorption in this frequency 
region, then E' varies smoothly, and since €" ~ 0 
the value of K is determined by t.E", viz., 
K =' ~E "/2/?. If furthermore ~E' /€' « 1, then the 
refractive index will be of the form n == n + ~n. 
where n == (E1 ) 1/ 2 and t.n = t.E' /2n, with n varying 
weakly in the region under consideration. 

Thus, calculation of ~E enables us to obtain the 
values of K and t.n, which can be measured ex­
perimentally. It is more convenient to calculate 
the corresponding addition ~u to the complex 
conductivity of the medium. ~E and ~u are con­
nected by the simple relation ~E == 47Ti ~u /w. 

1. FORMULATION OF THE PROBLEM 

Let us consider the optical transitions from a 
deep electron level, the band width of which can be 
neglected, into a narrow band (we shall henceforth 
refer simply to the level and to the band). It is 
assumed that the level and the band have been de­
termined in the single-electron approximation. If 
the semiconductor contains polarization phonons 
that interact strongly with the electrons, the 
single-electron states do not constitute a good 
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initial system of functions, for the polarization of 
the lattice by the electron becomes appreciable by 
virtue of the strong electron-phonon interaction 
(polaron effect). 

For simplicity we neglect the interaction be­
tween the phonons and the electrons at the level. 
The band is assumed to be narrow, so that we deal 
with a polaron of small radius, i.e., J/~Ep < 1, 
where J -exchange integral between the nearest 
neighbors (which determines the width of the 
single-electron band), and L\Ep-polaron level 
shift 11 . The distance between the bottom of the 
band and the level is denoted tm 0; we shall hence­
forth confine ourselves to the case 1H10/kT » 1. 

The Hamiltonian of the electron-phonon system 
under consideration is of the form 

::Je = ~ f8 '"aam +,aam + ~ J (g) alm + alm+g + ~ 1ifiJqbq + bq 
am mg q 

+ N-'f, ~ 1iffi (r eiqRm b + + r • e-iqRm b ) a +a · L.J q q q q q 1m 1m, 
qm 

2 2'/, :n:e2 -1 -1 
[rq[ = q2d3 1ifiJo (soo -so) for qd<1; (1) 

only the interaction with the polarization phonons 
is taken into account, (8 0 = 0, f£ 1 =tin 0, Eoo and Eo 
are respectively the electronic and static dielec­
tric constants, the summation over m is summation 
over all the lattice sites, Rm -corresponding lattice 
vector, summation over g denotes summation over 
the nearest neighbors of the given site, d3-volume 
of unit cell, w 0-limiting frequency of the polariza­
tion phonon, q-phonon wave vector, a takes on 
values 0 and 1 for the level and for the band res­
pectively, and J(g) -exchange integral between the 
neighboring lattice sites. Only terms diagonal in 
the site number are retained in the Hamiltonian of 
the interaction between the electrons and the 
phonons [2]. The interaction of electrons of species 
1 (a = 1) is assumed strong: 

. r = N-1 ~I r q 12 ~ 1. 
q 

Let us calculate the complex conductivity a (w), 

using the Kubo formula 
00 {3 

cr(ffi)=V-1 ~ e-i"' 1 dt~(j(-i1i"A)j(t))d"A (2) 
0 0 

(V = Nd 3-volume of crystal, j-current operator, 
{3 = 1/kT). Formula (2) is best rewritten in a form 
that does not contain the double integral: 

l)We assume tl Ep to be small compared with the width 
of the forbidden band; in this case the polaron effect does 
not lead to an entanglement of the initial single-electron 
states. 

00 

a=- (V1iffit 1 ~ e-i"'t <i (t) j (0)- j (0) j (t)) dt 
0 

{3 

+ i (V (J) t 1 ~ <i (- i1i"A) j (0)) d"A, 
0 

(3) 

which can be readily verified by writing the corre­
lators in terms of the matrix elements of the 
operators in the total-Hamiltonian eigenfunction 
representation. 

Inasmuch as we are considering transitions 
from the level to the band, we retain in the current 
operator only the terms responsible for these 
transitions. In addition, we assume the dipole 
transition 0 - 1 to be allowed. The corresponding 
contribution to the current operator is 

(4) 
m 

Then the correlator (j' (t) j' (0)), which is contained 
in ( 3), is of the form 

(j' (t) i' (0)) = [ iom; 1m [2 ~ [(arm (t) a~m) (a;m (t) aom) 
m 

+ (aom (t) aori,) (aim (t) a1m) ]. 

In (5) we take account of the fact that 

(aom(t)aom> = (aom+(t)aom+) = 0. 

Noting that 

(aom+(t)aom> = < ~o), (aom(t)aom+) = <1-rt0 ) 

(inasmuch as we are referring everything to the 
lower level, a 0m(t) = aom• since (S' 0 = 0), and 
recognizing that practically all the lower levels 
are filled, we can assume that <no) = 1 and 

(5) 

( 1 - n0 ) = 0. Then only the first term remains in 
(5), and we obtain 

v-r <i' (t) j' (0)) = v-1 [iOin; liD [2 ~ (alm (t) aim> 
m 

Account is taken in (6) of the fact that 
(a 1m (t) aim) does not depend on m, by virtue of 
the translation symmetry of the lattice 2>. 

(6) 

In order to include the principal part of the in­
teraction between the electrons and the phonons in 
the zero-order Hamiltonian, we make use of the 
canonical transformation [2] 

ffe = e8:Jfe-8 , S = l'r'1• ~ (b~Uqm- bqu~m) a~ma1m; 
qm 

Uqm = \'q exp (iqR m). 

2)If the dipole transition is forbidden, then <j(t)j> will 

have also the form (6), but in place of li Om; lm [2 we shall 

have liom; lm + g[ 2 • In this case indirect transitions with 
participation of an intermediate electron level, the transi­
tions to which are allowed [•], may become important. 

(7) 
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The electron operators are transformed in accord­
ance with the law 

- [ -•;, ~ + • ] a1m = a1m exp - N ~ (bqUqm- bqUqm) , 
q 

-+ + [ .,, ~ + • ] a1m = a1m exp lf ~ ( bqUqm - bqUqm) . (8) 
q 

In the transformed Hamiltonian we go over to the 
k-representation 

a1m = N-'f, 2} a1k exp (ikRm), 
k 

after which we obtain 

if = 2] [1iQ + IE (k)] ak +ak + 2] 1iwqbq +bq + 2} ak,+ak, 
k q ~~ 

X {-IE (k1) c'lk,k, + ~ ~ J (g) exp [ik2Rm- ik1 (Rm+ g) 

+ N-'/, ~ ( bq + L1uqm; m+g- bq L1u~m; m+g)] } 

==: ifoe + Jeoph + Jeint, 1iQ = 1iQ0 - L1Ep, (9) 

where 

L1EP = ~ 2] I Yq l21iWq 
q 

is the polaron shift and ~uqm; m +g = uqm +g- uqm; 
we shall henceforth leave out everywhere the index 
a = 1 in the operators a 1m, atk· The electronic 
part of the Hamiltonian :1Coe contains an additional 
quantity (which is simultaneously subtracted from 
the electron-formula interaction) [ 2] 

IE (k) = 2] e-ikg J (g) e-sT' 
g 

e-ST = ( exp [ N-'l• 2} ( bq + <1uqm; m+g - bq<1Uqm; m+g) ] ) • 
q 

After the transformation (7), <a0(t) a~(O)) as­
sumes the form 

(a0 (t) exp [- N-'l• 2] (bq+ (t) Uqo- bq (t) u~0)] 
q 

X a0 exp [N-'1• 2} (bq +uq0 - bqu~0)l>, 
q 

(1 0) 

where the averaging(. .. ) is over a Gibbs distri­
bution with transformed Hamiltonian ie. 

Following the canonical transformation (7), the 
"residual" electron-phonon interaction ifint be­
comes proportional to a small exchange integral J. 
When J = 0, the present problem is completely 
analogous to the problem of the optical properties 
of F-centers [s,s]. Thus the formula for ~cr is of 
the form 

00 ~ 

- ~ e-ioot <ao (t) ao+> dt + ili ~ (ao (-iliA.) ao+> a~v]. 
0 0 

A = e2nofo1 (11) 
2mwo 

(we have introduced here the dimensionless oscilla­
tor strength f01 =2m lj 01 l2/e2nQ). 

2. EXPANSION OF THE CORRELATOR IN POWERS 
OF .ilint 

We confine ourselves to zeroth order terms in 
the electron density in the band, i.e., we put 
n 1 = < a~m a 1m) « 1. We can then leave out the term 
with ie int in the Gibbs density matrix and in the 
left bracketing exponential of the Heisenberg oper­
ator in (11) 3l. It is sufficient to calculate one of the 
correlators (11), for example (a.0(t) a~). Expanding 
the right bracketing exponential in a series in Jeint 
and replacing everywheve exp (i IS iT /n) by unity [ 2], 

we obtain 

... ~·dT1 (Po (t) [P~,+ ... +gn(Tn) Pg,+ ... +gn (Tn)- e-ST] 
0 

X [Pg,+ ... +gn (Tn-1) Pg,+ ... +gn(t"n-1)-e-ST] 

... [P; (-r1)Po(T1)-e-sTJ P 0+ (0)). 
n 

(12) 

Here* 

P + N-'/2 ~ (b + ioo ' b • -iw ')] R = exp [ ~ q UqRe q - qUqRe q , 

PR (-r) = exp [- N-'l• 2} (bq+uqRei"'q'- bqu~Re-i"'q')], 

~ ~1iw Sr= N-1 ~I yqj2 cth T (1- cosqg). 

In the course of the derivation of (12) it is neces­
sary to go over to the k-representation for the 
operators am and ain, and then sum over k with 
allowance for 

2] eikR = Nc'lk;o· 
R 

The averaging of the phonon operators in (12) is 
carried out in the same manner as before [ 2]. The 
rules which enable us to write down in explicit 
form the n-th term of the expansion (12) are best 
formulated in graphic form: then points corre­
sponding to the intermediate times Ti are arranged 

3)1nasmuch as.n'int contains Fermi operators in the or­
der a+a, while (11) contains them in the reverse order (aa+), 
the account of §tint in these expressions would yield cor­
rections -n,, n~, etc. 

*cth = coth. 
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in accordance with their order in (12) on a horizon­
tal straight line, the left end of which corresponds 
to the instant t and the end of which corresponds to 
zero (we call the left and the right points the 
terminals). Each internal point Ti is set in corre­
spondence with the vector gi. We draw lines 4' in­
terconnecting pairwise all the points of the dia­
gram, including the terminals, with the exception 
of the lines joining a bracket with a bracket. Each 
line is assumed to be directed from the earlier 
instant of time to the later one. Each internal point 
corresponds to a factor ( -iJ /11) exp (ik • gi - ST). 
Each line going from Ts to Tr (s < r) is set in 
correspondence with a factor Trs (Tr - Ts): 

Trs (Tr- T.; gr ···g.) 

= exp [N-1 ~ I'q cos [Wq (Tr- 1'8 + i1i~j2)] f (gr ... g.; q)], 
q (13)* 

fq= 1Yqi 2csch (~/iwq/2); 

/(gr ···g.; q) =COS (q(gr + gr-1 + ••• + gs+! + gs)] 

-cos [ q(gr-1 + ... + gs+! +g.)] 

-COS [ q(gr + gr-1 + . ·. + gs+1)] 
+COS (q(gr-1 + ... + gs+1) ]. (14) 

Each line going from the internal point Ts to the 
right terminal t is set in correspondence with a 
factor F (t - T s; gs .. · gn): 

F (t- 't'8 ; g. • . • gn) 

= exp [ ~ ~ r q cos [wq (t- T8 + in~/2)] X (gs ... gn; q)]. 

(15) 

x(g •.. gn; q) =cos [q(gs+1 + ... +gn)] 

-COS [q(gs+1 + ... + gn) ]. (16) 

Each line going from the terminal 0 to the internal 
point Tr is assigned a factor F (T6 gt ... gr). 

If the term with it (k) in the zeroth Hamiltonian 
were not separated in (9), then the construction of 
the term of the n-th order would be determined by 
the rules indicated above (we call this the initial 
diagram). The separation of this term leads to the 
need for adding to the initial diagram 2n - 1 more 
diagrams of the same order, obtained by modifica­
tion from the initial one 5'. The modified diagrams 

4)These lines correspond to phonon convolutions for the 
case of multiphonon interaction. 

S)The n-th order term in (12) is the result of averaging 
of n binomials; the first term of each binomial is the opera­
tor P+P, while the second is the c-number exp(- ST)· The 
initial diagram will correspond to a term with a product of 
all the first terms, while the modified diagrams are obtained 
when a certain number of second terms is encountered in the 
product; the total number of different terms will be 2n. 

*csch = cosech. 

are formed from the initial diagram in the following 
fashion. We first form the n diagrams which are 
obtained from the initial diagram by removing all 
the phonon lines from each internal point Ti (we 
call these diagrams with one empty point). The 
resultant n expressions are added and the sum 
multiplied by (-1). We then form the sum of all the 
diagrams which are obtained from the initial one 
by removing all the lines from any pair of internal 
points (diagrams with two empty points), and multi­
ply it by ( -1) 2• Continuing further, we form the 
sums of all the diagrams with 3, 4, ... , l, ... , n 
empty points, and multiply each sum respectively 
by (-1) 3, (-1) 4, ••• , (-1)Z, ... , (-1)n. All the ob­
tained sums are added to the expression corre­
sponding to the initial diagram. We integrate over 
the internal times in the sequence indicated in (12), 
sum over all the gi, sum over k, and divide by N. 
We thus obtain the n-th term of the series, which is 
of the form 

Finally, in order to obtain (12) we must multiply 
00 

M (t) = _2] iU<nJ (t) 
n=O 

by the expression Q(t), where 

Q (t) = exp [- Sr(o)- iQt + F 0 (t)], 

S <oJ = _!__......, I r 12 cth ~1iwq . 
T N .r:.J q 2 ' 

q 

1 ., [ ( in~ ) ] F 0(t) = N ~ fqcos Wq t+T . (17) 

By way of an example we shall write out the sum 
of the diagrams for M<2l (see Fig. 1). We note that 
in the zeroth approximation in 3£int the correlator 
is given by the expression ( 17). Inasmuch as 
F 0(t) - 0 as t-oo, the quantity (17) oscillates as 
t-oo and its Fourier component will in any case 
have a o -like singularity at u.: = Q [and in the case 
of polarization phonons also a singularity of the 

type (w -Q ± w0)-1126 'J. Allowance for ~int leads 
to a decrease in the correlator as t - oo, and this 
leads to a "smearing out" of the singularities. 

3. PARTIAL SUMMATION OF THE SERIES (12) 

In view of the fact that T rs and F tend to unity 
as t- 00 7l, the contribution of the initial diagram 

6)See Sec. 4 of the present paper. 
7)More accurately, fort>> (1'1wr', where 1'1w-phonon 

dispersion. 
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FIG. 1 
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to M(n) behaves as t - 00 like a polynomial of de­
gree n in t, and accordingly its Fourier transform 
behaves like a polynomial of degree n + 1 in w- 1• 

(The complete expression for M(n), including all 
the modified diagrams, will be a polynomial of 
order lower than n, since the added modified dia­
grams cancel some of the coefficients of some 
lower powers oft 8l, particularly tn). To determine 
the behavior of N(t) as t- 00 it is necessary to 
sum an infinite number of terms of the series. In 
view of the complexity of M(n), such a summation 
cannot be made directly. However, if we put 

00 

2J M(n) = 2J (M(n)- !l(n)) + 2J !l(n) = MR + !l, 
n=O 

where 1.1. (n) has a simpler structure than M(n) and 
is chosen such as to make M(n) - 1.1. (n) decrease as 
t-oo, then we can confine ourselves in MR to the 
lower terms of the expansions, and the summation 
of 1.1. (n) may be realizable. We present below a 
method of constructing 1.1. (n) for arbitrary n. 

We shall assume that the diagram contains a 
free section (s; s + 1) if a vertical line drawn be­
tween the points Ts and T s + 1 does not cross any 
phonon line (Fig. 2). 

Such diagrams break up into several phonon 
blocks joined by free sections 9'. By a block is 
means a part of the diagram which does not con­
tain free sections; blocks containing one of the 
terminals will be called vertices; blocks not con­
taining any terminals will be called compact parts. 
Analysis shows that in order to obtain 1.1. (n) it is 
necessary to make up from the initial diagram all 
possible M(n) diagrams /.l.~n) with free sections, 

l 

with the exception of those where two free sections 
are separated by an empty point (Fig. 2e, sections 
AA' and BB'). In each block of such a diagram, 
modification is carried out independently by form­
ing empty points, the sum of all the diagrams with 

B)For example, for M(2 J (t) we have M(2 ) (t)- t as t -> ""· 

9)Diagrams with free sections have the property that 
each free section in their Fourier transforms corresponds to 
a factor w-', i.e., the singularities are present in simple 
form, making it possible to sum the series. 

free sections, obtained from the given diagram, is 
then subtracted (within the block), each of the 
blocks of these diagrams is again subjected to a 
similar procedure, etc. Each diagram constructed 
in this fashion consists of blocks, the expressions 
for which tend to zero whenever any T in the inte­
grand of the given block tends to infinity. We can 
show that 10 ' 

M(n) (t)- 2J 11t) (t) ~ 0 as t~ oo. 
i 

The series ~n~i/.l.~n) can be readily summed over 
n (in Fig. 3a the series is written in graphic 
form 11l), and its convolution into an integral equa­
tion is 

t 

Ilk (t) = ~ d,;'<Dk (t- ,;') nk ('t''), (18) 
0 

nk ('t') = ~ d,;'<Dk ('t'') + ~ d't'2 ~· d't'1Lk ('t'2- 't'l) nk ('t'1)· (19) 
0 0 0 

Here <I>k(T) -total vertex part, Lk(T) -total compact 
part (see Figs. 3b, c). Performing the Fourier 
transformation 

we obtain 

00 

'IJ(w) = ~ ei"'1 '1J(t)dt, 
0 

n~c(w) = i<Dk(w) [w- iLk(w)r\ 

Ilk (w) = <Dk (w) nk (w). (20) 

Thus, the expression for the Fourier transform 
of the correlator is represented in the form of a 
sum of two expressions: MR(w) (which we call the 
Holstein term) and l.l.k(w), which is expressed in 

lO)To this end it is convenient to go over to the Fourier 
representation for M(n)(t) and make the substitution 

z, = t + 71 + ••• + Tn, Z2= 71 + ••• + Tn' "" ' Zn+l = T,; in­

tegration over each z i is between the limits (0; oo ). Then the 
integrand tends to zero for any z i -> ""· 

ll)We present for illustration the explicit form of the 
second diagram of Fig. 3a: 

t 't'' 'T2 't'l 

J d-r:' J d-r:2 J dn S <D (-r:) L (-r:2 - -r:1) <D (t- -r:') d-r:. 
0 0 0 ,-. 
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a 

FIG. 3 

terms of the values of <l>k and Lk· The expressions 
for MR, <l>k, and Lk are power series in some 
parameters containing J 12 '. We shall confine our­
selves henceforth to the lowest term for the ver­
tex <l>k = 1, and choose for Lk the largest term of 
the series 13 '. Then 

1 -too . . 
t-tk(t) =~2 \ e-'"'t [w- zLk<4lrldw. 

Jt • 
-oo 

It is difficult to determine the dependence of L <4l 

on w, but we can state that no abrupt changes occur 
in L~'(w) in the region of frequencies that are not 
too large compared with w 0.15l We then get 

J.h(t) ~ exp(--wot), t > 0, w0 = Lk<~l(O). (21) 

The quantity w 0 was calculated previously [2, 3], 

namely:* 

We ultimately obtain for the correlator 

( exp {- Sr(O)- iQt- Wot + N-l L] r q cos [wq(t+i1i~j2)1}. 
= ~ q (22) 

t 0, 

The Holstein terms have been left out, since they 
are proportional to J 2• 

4. CALCULATION OF THE COMPLEX CONDUC­
TIVITY 

It is convenient to calculate t:.a for w > 0. The 
values of t:.a for w < 0 are obtained from the sym­
metry conditions 

Acr' ( -w) = Acr' ( w), Acr" ( -w) = -Acr" ( w). 

When w > 0, the second and third terms of (11) do 
not contain singularities in the vicinity of w ~ Q, 

and the corresponding correlators can be taken in 
the zeroth approximation (17). The calculations 
lead to the following contribution to t:.a (under the 
condition t:.Ep/11 Q « 1): 

iAwo(2Q + w) / Q(Q + w). (23) 

Let us consider the first term in (11). When 
w 0 = 0 it becomes infinite at w = Q and w = Q 

± w 0 • 14 ' Therefore the heights and the widths of 

12)MR, <I>k, and L: are power series in ry,, ry2 , and 
exp(-ST)[2 ·'J. 

13)The largest term in the series for Lk is the one for 
n = 4[2 ]. 

14)These singularities are connected with the singulari­
ties jyqj 2 - q-2 and jaq/awj - q-'12 as q ~ 0 in the case of 
polarization phonons. When the phonon dispersion law is 
linear in the essential region, as in the case of degeneracy, 
there should be no such peaks at UJ = Q ± UJ0 • 

the peaks are determined by the value of w0• Noting 
that the singularities are connected with the first 
two terms of the expansion of the exponential 16 ' 

we can separate the diverging terms and represent 
the integral in the form of a sum J 1 + J 2, where 

(0) 00 
J 1 = e-ST ~ ei(O-w) t-w0t 

0 

00 
(0) 0 

J 2 = e-Sr ~ ei(O-w)t-w,t 

0 

x { exp [ ~ ~ r q cos ( wq ( t - i~ ) ) J 

_ 1 _ ~ ~ r q cos ( wq ( t - i~~ ) ) } . (24) 

J 2 contains no singularities and has a smooth varia­
tion in the vicinity of lw - Q I ~ w 0• For estimating 
purposes, we calculate J 2 for w = 0. Accurate to 
exp ( -S~\) we get 

15)An account of the dependence of L on w may influence 
the form of the absorption curve in a frequency region of width 
w0 at the maximum. 

16)In the remaining terms of the expansion, the singulari­
ties are contained in the derivatives, in view of the presence 
of at least double integration with respect to q. 

*sh =sinh. 
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T0 is determined from the equality ~1~rq = 1. 
For J 1 we have 

J = e- T 
s(o) { 1 

1 w0 +i(w-Q) 

1 'V (~1iwq ) 1 
+2N~rqexp -2- wo+i(w-Q-wq) 

(24')* 

_1_~ r ex (- ~1iwq) 1 
+ 2N q q p 2 w0 + i (w- Q + Wq) (25) 

The first term of (25) has a sharp peak at 
w = Q, and its real part is described by a Lorentz 
curve; it does not depend on the phonon dispersion. 
The frequency dependence of the second and third 
terms (peaks at w = Q + w 0 and w = Q - w 0) is de­
termined by the phonon dispersion. By way of 
illustration we have calculated (25) for the sim­
plest model of phonon spectrum w = w0 - ~w(qd) 2 • 
We consider the second term in (25). Bearing in 
mind that 

(2n) 3 ~ = Nd3 \ d3q, 
q • 

and assuming the dispersion to be small, 6w/w 0 

« 1, we take out the quantity 
exp ((:lnwq/2)cosech((:lnwq/2), which varies little 
with q, outside the integral sign, replacing it by 
exp((:lnw/2)cosech((:lnw/2), where w ~ w0• We 
also put 1Yql 2 = y(dqt2• Going over to integration 
with respect to w, we find that the contribution of 
this term to the admittance is 

6o (w) = '¥ (w) 6oo, 

6 V2Arwo exp (~1iwj2- ST(O)) (26) 
Oo= 8n(w0~w)';, sh(~1iwj2) ' 

Q ::0 x-'/, dx 
'¥ (w) = (Znt2 

( w) ~ 1 + ix + i (w- Q- w0 )/wo' 

(27) 

(q0-limiting value of q). For l(w- Q -w 0)/6wl « 1 
we have 

':P'(w)=- 1+ Q [ (w-Q-w0 )
2

]-'/. 

w Wo 

*th = tanh. 

X {sin (<p/2)- i cos (<p/2), 

cos (<p/2)- i sin (<p/2}, 

w-Q-w0 >0, 
w- Q- w0 <0 

<p =arc tg I w- ~o- Wo I· (28)* 

(The expression for (27) is quite cumbersome in 
the general case.) 

The third term in J 1 shows an analogous depen­
dence in the region w = Q - w0, but contains a 
small factor exp ( -(:ln w). The approximate varia­
hems of Re ou and Im ou near w ~ Q + w 0 is shown 
in Figs. 4a and b. Re ou increases on the low­
frequency side and lim ou I decreases on the high­
frequency side, both like Jw - Q - w 0l-1/ 2 , and the 
decrease of Re ou towards the higher frequencies 
and the increase of Jim ou Jon the side of the lower 
frequencies are like Jw - Q - w 0J-312 • The maxima 
are attained at w - Q = w 0, and have absolute values 
that are equal to ou 0Q/(Q + w0) for both Re ou and 
Im ou. The width of the peaks is ~ w0• When 
Jw - Q -w 0J » 6Q, the value of Re ou is small, 
like Wo/n, and Im oubehaves like (w -Q -wot1• 

Re ot1(wJ 

I Im 1Jt1(w) 
I 
I 

b 

A 
a 

.2 

.2 1.2 +W0 
w 

I 
I 

FIG. 4 

If the mechanisms that ensure a finite height of the 
peaks at w = Q and w = Q + w 0 are the same, then 
the ratio of the heights of the first and second 
peaks will be y-1(w 0/6w) 112 (see Sec. 5). These 
peaks are superimposed on the dependence ~u (w), 
which is smooth in the remaining frequency region. 
Re 6u is described by a bell-shaped curve of width 
(kT~E /ti 2 ) 112 at T >To and (w 06Ep/ti) 1/ 2 for 
T < T0 ts,sJ. Its values at the maximum points are 

A(1i2w02 / 4kT~Ep) '" for T >To, 
A(nw0 /4n~Ep)'h for T<T0; 

Im~u has a smooth variation and vanishes at 
w ~ Q + 6Ep/ti . 

5. DISCUSSION OF RESULTS 

We have calculated in this paper the contribution 
made by 6u to the complex conductivity and due to 

*arc tg = tan_,_ 
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H(fJJ) 

6n(fJJ) 

FIG. S. Absorption curves (not to scale). It must be 
borne in mind that in the region (0 - wo, n + wo) the struc­
ture part should be exponentially small (by a factor exp [ST]) 
compared with the region of the principal maximum. 

transitions from a discrete level to a band with low 
mobility; this, as pointed out in the introduction, 
makes it possible to obtain K(w) and ~n(w). The 
character of K(w) is shown in Fig. 5. The principal 
maximum of the curve is located at w ~ Q + ~Ep/ti; 
its height is 

4:n:A ( 1i2ffi02 )'/, 4:n:A ( 1iffio )'!. 
en 4kT !!Ep ' T >To; en 4:n:!!Ep ' 

The width of the curve is of the order of 

(n was defined in the introduction, A and ~Ep in 
Sec. 1, and E a and T 0 in Sec. 4). Additional peaks 
occur at w = n, w = Q + w 0, and w = Q -w 0• Their 
heights are respectively of the order of 

enw0 

4:rt~Oo ( ~o )'/,, 
en Wo 

4:n:6o0 (~)'/, (- 1iffio )· - ~ exp kT ' 
en Wo 

w0-escape probability, which enters in the trans­
port equation; w0 = w0 + Wanh• where Wanh-of the 
order of the polarization phonon decay probability 
connected with the anharmonicity (see below); at 
low temperatures Wanh » w0• The width of the first 
peak is ~ w0, and that of the second and third 
~ w0; the first peak has a Lorentz shape, while 
the second and third have essentially different 

shapes (see Sec. 4). When T < T0 the smoothly 
varying background in the vicinity of these peaks 
is small, while for T > T 0 it is of the order of 

[ 4:rtA1i I en(JcT!!Ep) '!•] exp ( -Ea0 I kT), 

and the peaks themselves broaden considerably in 
view of the increase in w 0• The easiest to observe 
are the first and second peaks. 

We note that in the case of a strong electron­
phonon interaction the width of the absorption band 
is not determined at all by the widths of the initial 
electron or polaron bands. The addition to there­
fractive index is determined by the quantity Im ~a. 
which displays a nonmonotonic dependence in the 
vicinity of the frequencies Q and Q + ~Ep/ti and, 
in particular, reverses sign at w ~ Q + ~Ep/ti 
(where Re ~a has a maximum). Near w = Q and 
w = Q ± w 0 there are superimposed on the smooth 
variation of the curve some sharp sign-reversing 
peaks (of the discontinuity type). The amplitudes 
and the widths of these peaks are of the same order 
as of the corresponding peaks in Re oa. Compared 
with the background, the peaks are small like 
exp ( -s~') (see Fig. 5b). 

We note that we have assumed in this paper that 
the smearing of the singularities of ~a is due only 
to the "residual" electron-phonon interaction. 
Another cause of the smearing may be the anhar­
monic interaction between the optical phonons and 
the acoustic phonons, which leads to a finite life­
time of the optical phonon. Such a mechanism can 
lead to an additional smearing of the peaks at 
w = Q ± w0• Indeed, in this case one phonon par­
ticipates in the transition, and it can decay into 
two acoustic phonons, giving a finite lifetime even 
when T = 0, whereas the mechanism considered in 
the present work gives a sharp decrease of w0 at 
low temperatures, w0 ~ exp(-nw 0/kT). Therefore 
the anharmonicity predominates, at least at low 
temperatures. 

As to the peak at w = Q, the presence of anhar­
monicity does not affect its width, because the peak 
is due to transitions between states that do not con­
tain real phonons (phononless transition); the 
smearing appears only as a result of residual in­
teraction, and in the low -temperature limit also as 
a result of the tunnel effect, when the condition 
J exp ( -ST) > tiw 0 begins to be satisfied. The width 
of the peak is then OE ~ J exp ( -ST), and the height 
is ~ (oEr1• The shape of the peak is not Lorentzian. 

Inclusion of the nonadiabatic terms in the 
Hamiltonian can also lead to a broadening of the 
phononless peak resulting, for example, from non­
radiative transitions (which are due to terms 
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b+a;a1 etc.), but their contribution will be propor­
tional to (yw 0/Q)Q/wo, which is small in the case 
under consideration, when AEp/n Q « 1. 

Let us point out the analogy between the phonon­
less peak and the Mossbauer line in nuclear tran­
sitions; the quantity exp ( -s~>) is analogous to the 
Debye-Waller factor and determines the intensity 
of the peak. 

The present results can be generalized to in­
clude the case when both initial electron states 
(0 and 1) strongly interact with the phonons 
(neglecting the terms b+a~a 1 , see above) under the 
condition that the band width of one of the levels is 
small compared with the width of the other. In this 
case it is sufficient to replace IYql 2 by 
IY~l- y<1ll 2 in Q(t), and substitute in w 0 the value 
of 7J 1 pertaining to the broader band 17l. 

Comparison of the present results with experi­
ments on the absorption of light in Ni0[7J shows 
qualitative agreement with the theoretically deduced 

17)Eagles [•] considered an analogus problem of absorp­
tion of light by a crystal containing polarons of small 
radius. The coefficient of absorption was calculated using 
the nonstationary perturbation theory for multiphonon trans­
itions, developed in the F -center theory[ 5 ' •]. The phonon 
dispersion was not taken into account, and the singularities 
of the refractive index were not investigated. The authors 
confined themselves to the general form of the absorption 
line and the additional peaks were not investigated, but it 
was pointed out that a peak may exist at w = n. 

shape of the absorption curve. At 300°K (see Fig. 2 
in the paper of Newman and Chrenko [ 7]) the quan­
tity K(w) shows traces of a peak at nw ~ 0.75 eV, 
which agrees in order of magnitude with the possi­
ble position of the peak at w = Q. For a sharp 
resolution of such a peak it would be necessary to 
carry out measurements at lower t.emperatures, 
but this frequency interval has been left out from 
the 77° K curve of the cited paper [7] 

In conclusion the authors thank A. I. Ansel 'm, 
V .. L. Gurevich, L. I. Korovin, and G. E. Pikus for 
useful discussions. 
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