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The statistical method of dispersion analysis (the F test) is used to test the hypothesis of 
independent secondary -particle emission angles in inelastic p-N interactions involving pri­
mary protons of equal energy E and equal numbers n of charged secondary particles. The 
experimental values of F for p-N interactions at E = 24 BeV and n = 4-9 conflict with 
this hypothesis and indicate nonuniformity of angular distributions in the lab. system, which 
cannot be accounted for by momentum conservation in knock-on collisions and is associated 
with the particle production mechanism in peripheral interactions. This nonuniformity is 
similar to the asymmetric c.m.s. particle emission observed previously [1] in N -N colli­
sions at "'1011 eV. At 24 BeV peripheral interactions continue to play a large part up to 
n = 9. 

DoBROTIN, Slavatinskil, et al. [1] have observed Substituting a new quantity given by 
the asymmetric emission of particles in the c.m.s. 
resulting from nucleon -nucleon collisions at ener­
gies of hundreds of BeV. The possible cause of 
this effect is the formation of a meson cloud mov­
ing in the c.m.s. In p-N collisions at a fixed en­
ergy the different velocities of a meson cloud in 
the laboratory system result in a nonuniform angu­
lar distribution of secondary particles. In the 
present work the statistical method of dispersion 
analysis [2] is used to determine this nonuniformity. 

Let us consider m showers generated by pri­
mary particles of identical energy and containing 
identical numbers n of charged secondary par­
ticles. Let x = f( fJ) be an arbitrary but well­
selected function of the lab. system angle between 
secondary particles and the primary particle; Xij 
= f ( fJij ) is the value of this function for the j -th 
particle of the i-th shower (i = 1, 2, ... , m; j = 1, 
2, ... , n). The dispersion analysis employs the 
quantity F: 

- 1 n 
Xi = n .2] Xij, 

i=l 

_ 1 m_ 1 m n 

X= m .2] X;= mn .2] .2] Xij• 

i=l i=l i=l (1) 

1 m n 

8 2 = mn .2] .2] (Xij - x)2, (2) 
i=I i=l 

we represent F in the form 

For a large number m of showers (trials ) we have 
the approximate equalities 

(4) 

Here u2(x) is the dispersion of the random quan­
tity x. (We can assume identical distributions of 
Xj.) For statistically independent angles fJj (j = 1, 
2, ... , n) the dispersion of the arithmetic mean is 

( 1 n ) 1 
0 2 - .2] Xj = - Cl2 (.T). (5) 

n n 
i=I 

Substituting (4) and (5) into (3), we obtain the ap­
proximate equality 

F = 1, (6) 

which shows that it is possible in principle to test 
the hypothesis of statistically independent 1> second­
ary -particle emission angles in showers of identi­
cal energies and multiplicities. For a finite num­
ber m of showers and statistically independent 
angles fJj the values of F follow (in complex 
trials ) some distribution with ( m - 1 ) and m ( n - 1 ) 

16 

l)The assumption of a normal distribution for Xj is not 
necessary when n > 4.[•] 
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degrees of freedom. It is therefore easy to find the 
confidence interval within which F should lie with 
probability close to unity. If the value obtained for 
F does not lie within this interval it can be af­
firmed that secondary-particle emission angles 
are not independent in showers of a given energy 
and multiplicity. 

In the general case, in addition to (6) the follow­
ing possibilities can be realized: 

F < 1 for S12 < a2 (x) In, 
F > 1 for S12 > a2 (x) In. 

(7) 

(8) 

The independence of ej can be violated and the test 
F ~ 1 can be affected by (a) momentum conserva­
tion in knock-on collisions, and (b) nonuniformity 
of lab. -system angular distributions, associated 
with the mechanism of particle production in pe­
ripheral interactions. 

The correlations of type (b), such as different 
velocities of meson clouds in the lab. system, re­
sulting from their motion in the c.m.s. of N -N 
collisions, enhance the difference between values 
of Xi for individual showers [see Eq. (1)], violate 
(5), and lead to (8). In the case of knock-on colli­
sions a single blob of nuclear matter is formed, 
which then decays into secondary particles. In this 
case momentum conservation evidently reduces the 
number of asymmetric showers in the c.m.s. re­
sulting from fluctuations of the angular distribution, 
enhances the uniformity of secondary -particle an­
gular distributions, and leads to (7). For confirma­
tion of this view we applied the statistical theory 
to a table of random stars C4J simulating p-p col­
lisions at 11 BeV. The calculated values of F 
were found to be smaller than unity (see the ac­
companying table). 

In order to determine the efficiency of the F 

No. Type of shower 

1 Random stars at { 2 E = 11 BeV 

3 
4 f 
5 I p-N interactions at ) 
6 E = 24 BeV I 
7 I 

8 t 
9 

10 p-N interactions at f 11 E = 24 BeV 

12 (stars with Nh = 0) i 
13 I 

14 ll 

4 
6 
4 
:> 
6 
7 
8 
g 

4 
5 
6 
7 
8 
g 

test we shall consider a specific example of type 
(b) correlation. We shall assume that in high 
energy N-N collisions, a meson cloud moving for­
ward in the c.m.s. with a Lorentz factor y con­
siderably smaller than the Lorentz factor Yc of 
the c.m.s. is formed with the probability 1/ 2 a. The 
cloud moves backward in the c.m.s. with the same 
probability and decays isotropic ally into relativis­
tic particles in its own rest system. With proba­
bility 1 -a there occurs a knock-on collision or 
any other mechanism of symmetric (but in gen­
eral anisotropic ) emission of relativistic particles 
in the c.m.s. The angular distribution over log tan 
e for these three shower types are shown in Fig. 1. 

Using (2), we can represent (1) by 

F = m(rn -1)-1[1- n(S2 I S22 - 1) ]. (9) 

The value of S2 for large m is approximately equal 
to the dispersion of the random quantity x for the 
total distribution [see (4)] and for S~ it is easy to 
obtain the following approximate equality, neglect­
ing momentum conservation and assuming inde­
pendent particle emission for each type of shower: 

1 1 
S22 ""' 2 acr12(x) + (1- a)a22(x) + 2 aai(x). (10) 

Here crk(x) is the dispersion of the random quan­
tity x for showers of the k-th type. 

We define x as follows: 

x ~~ + 1 for 9 < 9,1,, 

X = - 1 for 0 > 8,;,· (11) 

Here 81;2 is the theoretical lab. -system half-angle 
of particle emission (differing in the general case 
from the experimentally measured value ) . With 
this definition of x we have 

124 0.38 ~~· 731 
21 (C47 0.58 

171 1.03 J .19 
124 1 .. 14 1.37 
13:> I <f:iill 

-
0.85 

65 0.97 1.1.7 
48 1.12 1.21 
:iO 1.5'± l.60 

~-

1011 1.25 T~5:-l 
95 1.41 1.27 
913 0. 7fJ 0. 7D 
45 1.07 1.13 
:35 0, 78 0.96 
16 2.19 1.78 

- --

a2 (x} = 1, 

Confidence limits* 
ofF and F" 

o. 70; o. 
0.39; 0. 
0. 7:\; 0. 
0. 70, 0. 
0. 73. o. 
0.62; 0. 
0.57; o. 
0.48; o. 
0.60; o. 
0.67; 0, 
0.68; 0. 
0.56; 0. 
0.51; o. 
0.34; 0. 

79; 1.27: 1.1,0 
53; 1.68; 2:06 
80; 1,23; 1.34 
78; 1. 26; 1.::\9 
80; 1. 2.1; 1 . 313 
71; 1.34; 1,51 
G8; l. 39; 1 . 58 
60; 1.50; 1.80 
56: 1. 30; 1. 4.'i 
75; 1.29; 1.43 
76; 1. 28; 1.42 
67; 1.42; 1.63 
62; 1. 48; 1 . 73 
47; 1.74; 2.Hl 

(12) 

*Each line of the last column gives four sets of confidence limits such that the prob­
ability (with independent 8j) of obtaining F and the corresponding value ofF" below the 
first limit is 1%, below the second limit -5'700 above the third limit -5%, and above the 
fourth limit -1 ')',. The values of F and F" considerably different from unity are underlined. 
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independently of the specific form of the angular 
distribution in type-2 showers (Fig. 1). To calcu­
late the dispersions cr~ ( x) and cr~ ( x) in (1 0) it is 
sufficient to know the probability of obtaining x = 1 
for showers of types 1 and 3 (Fig. 1). This proba­
bility, which is equal to 

P(x = 1) = P(log tan 0 ~- logvc), (13) 

is easily expressed in terms of o for the given 
assumption of an isotropic angular distribution in 
the rest system of the meson cloud. The final re­
sult is 

F~ 1 + n[:l; 

.:x l(r + Vr2 -1)2 -112 

~ = l(r+ J/r2 -1)2 + 11 2 -.:xl(r + Vr2 -1)2 -1J2 ;;;;,o. 
(14) 

Here (3 is a monotonically increasing function of 
the variables a and y, and vanishes at a = 0 and 
y = 1. 

When momentum conservation is taken into ac­
count, (10) is incorrect. As shown above, this con­
servation law reduces the difference between values 
of Xi for showers of a given type. Under the ex­
tremely strong influence of momentum conserva­
tion xi will be almost identical for all showers of 
a given type and will be approximately equal to the 
mathematical expectation of the random variable x. 
In this case and subject to the foregoing hypotheses 
regarding the N-N interaction mechanism, the 
value of S~ for large m is represented by 

S1 2 = _!_ ~ x;2 - x2 ~ ~ o:v/ (x) + (1 - .:x) V22 (;r) 
m L.J .... 

i=I 

1 + 2 IXV32 (x) - v2 (.r). (15) 

where vk ( x) is the mathematical expectation of x 
for showers of the k-th type, and v(x) is the same 
for the total distribution. Using (15) and (3), we 
obtain the approximate equality 

F ~ (n -1)~, (16) 

which is valid under the extreme influence of mo-

J 

FIG. 1. Angular distributions 
(lab. system) of secondary parti­
cles with respect to log tan e for 
three types of showers. 8 = 

log (y + ..J/-1). 

mentum conservation. Generalizing (14) and (16), 
it can be stated that for the described model of 
N -N interaction and for a large number m of 
showers, F lies in the interval 

(n- 1) f:l < F < 1 + np. (17) 

For example, when a = 0.3, y = 1.5, and n = 10, 
Eq. (17) becomes 

1.8 < F < 3. (17') 

We have also investigated the random stars ob­
tained from a somewhat different model of N -N 
interactions at 300 BeV, obtaining the spectrum 
of meson cloud velocities in the c.m.s. and the 
secondary-particle energy spectrum in the rest 
system of the meson cloud. The results of this 
calculation by the Monte Carlo method confirm 
the high efficiency of the F test for determining 
nonuniform angular distributions in the lab. sys­
tern. 

We performed accelerated on-track scanning 
of Ilford G-5 plates bombarded in the CERN ac­
celerator with 24-BeV protons. We found and 
measured 605 stars satisfying the following se­
lection criteria: 

1) n =:: 4 charged secondary particles. 
2) Nh = 0 or 1 heavily ionizing particle. 
3) A heavily ionizing particle (proton) must 

enter the forward hemisphere in the lab. system 
and have a range > 4 mm. 

4) No recoil nucleus is present. 
5) No (3 electron is present for even values of 

n. We shall assume that these stars are formed 
through the interaction of protons with free and 
quasi-free nucleons of the emulsion. 

For each value of n we determined from the 
experimental data the half-angle et/2 of particle 
emission in the lab. system and evaluated the en­
ergy E' of primary protons from the so-called 
half-angle formula 

E' + mc2 = 2mc2 cot26',1, (18) 

where m is the nucleon mass. The values of E' 
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FIG. 2. E' /E versus n. The open circles represent p-N in­
teractions at 24 BeV; the crosses represent random stars[•] 
at 11 BeV. 

exceed considerably the true value of E (Fig. 2); 
this can be accounted for by the presence of low­
energy particles in the c.m.s. We also thought 
that it would be useful to give the values of F cal­
culated from (1) and (11), and the values of F" cal­
culated from the same equations with the theoreti­
cal half-angle e1; 2 replaced by e'{;2• which satis­
fies 

E" + mc2 = 2mc2 cot2 e" ,,, E" = 2E. (19) 

The results are given in the table; lines 9-14 con­
tain the data separately for the so-called "white" 
stars (Nh = 0 ). 

The table shows that for the stars observed in 
the emulsion the majority of values of F and F" 
exceed unity. Values considerably exceeding unity 
are found often, while there are no values consider­
ably smaller than unity. It follows that the emission 
angles of secondary particles are not independent, 
at least for some values of n. It can be shown that 
the intranuclear motion of a target nucleon and the 
energy spread in the primary proton beam do not 
increase F by more than a few hundredths and 
cannot be responsible for the observed effect. 

We cannot exclude the possibility that with aug­
mented statistics and the corresponding narrowing 
of the confidence intervals all values of F and F" 
would become considerably larger than unity. Since 
knock-on collisions are associated with values of 

F and F" smaller than unity (for large m ), our 
results indicate an important role for peripheral 
interactions. The table shows that for the numbers 
of particles n = 4 and 6 the experimental values 
of F and F" considerably exceed the correspond­
ing values for random stars simulating knock-on 
p-p collisions. The important role of peripheral 
interactions is evidently maintained characteris­
tically up to n = 9, since for this multiplicity all 
values of F and F" considerably exceed unity. 

The large values of F and F" observed for 
p-N interactions in the emulsion can be accounted 
for by the nonuniformity of the angular distribu­
tions in the lab. system that is associated with the 
particle production mechanism in peripheral inter­
actions. This effect resembles the asymmetric 
c.m.s. emission of particles in N-N collisions that 
was previously observed [1] at ~ 1011 eV. 

The authors are indebted to W. 0. Lock for his 
kind cooperation in making available the photo­
graphic plates irradiated in the CERN accelerator. 
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