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The electromagnetic properties of superconductors are studied without assuming a weak 
interaction between the electrons. The surface impedance is found by taking collective ex­
citations into account. The result obtained can be used to explain the absorption of infrared 
radiation in lead and mercury. The coefficient of reflection of collective excitations from a 
surface is found and is used in investigations of superconducting films whose thickness is 
greater than the penetration depth. 

1. INTRODUCTION 

IN the study of the electrodynamics of supercon­
ductors, [t-3] only that part of the interaction be­
tween particles is usually taken into account which 
leads to pairing and to a gap in the spectrum of 
one-particle excitations. The quasiparticles are 
assumed to be noninteracting. The effect of the 
remaining interaction on the electrodynamics of 
superconductors in a constant field leads to a re­
normalization of the constants which determine 
the penetration depth. It will be shown below that 
the number of free electrons, which enters into 
the London constant depends on the remaining in­
teraction and on the form of the periodic potential, 
and is identical with the corresponding constant in 
the dielectric permittivity of metals in the infra­
red region. In the Pippard limiting case, the pene­
tration depth is determined by the momentum on 
the Fermi boundary and does not depend on the 
interaction. 

In the region of microwave radiation, new quali­
tati ve effects appear, because the remaining inter­
action leads to the generation of collective oscil­
lations in the superconductor. These excitations 
are similar to zero sound in a Fermi liquid; how­
ever, their spectrum has a gap whose width is less 
than 2b. (b. is the gap in the spectrum of one­
particle excitations). The absorption of the elec­
tromagnetic wave incident on the surface of the 
superconductor takes place without account of the 
collective excitations only at frequencies that are 
greater than 2b.; when the energy of the quantum 
suffices for the formation of two one -particle ex­
citations. If the collective excitations can propa­
gate in the superconductor' then electromagnetic 
radiation can be absorbed at frequencies less than 

2b.. Here the energy of the electromagnetic waves 
transforms into the energy of the collective exci­
tations. At a frequency greater than 2b., the usual 
one -particle mechanism of radiation absorption 
begins to take effect. 

Therefore, there will be two maxima on the 
curve which shows the difference in the absorp­
tion coefficients for metals in the normal and 
superconducting states as a function of frequency. 
The first is for the frequency of the collective ex­
citations, the second for w = 2b.. These maxima 
were observed in experiments [4] on the absorption 
of microwave radiation in lead and mercury. These 
metals have the highest ratio of transition temper­
ature to the Debye temperature, which means a 
strong interaction between the electrons. It is 
therefore natural that the collective excitations 
which arise from the interaction are most notice­
able in them. A comparison with experiment is 
given below. 

An interesting effect should be observed in the 
passage of radiation through a superconducting 
film whose thickness is much greater than the 
penetration depth. Because of the reflection of 
the collective excitations from the second surface, 
interference arises and a component that varies 
periodically with the frequency and with the film 
thickness appears in the reflection coefficient. 
The transmission coefficient of radiation through 
such films is also computed. 

The interaction between the electrons is not 
assumed to be weak. As in the theory of the Fermi 
liquid, it is effectively described by certain con­
stants. The Fermi surface is assumed to be iso­
tropic; one can hope that the qualitative results do 
not change upon consideration of the anisotropy. 
The temperature is assumed to be equal to zero 
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and the effect of impurities is not taken into ac­
count. 

The Wiener-Hop£ method is applied in the Ap­
pendix for the solution of the problem of the diffuse 
reflection of the collective excitations from the 
surface. 

2. THE POLARIZATION OPERATOR 

For the solution of the electrodynamic problem, 
it is necessary to solve Maxwell's equations, in 
which the current density is expressed in terms 
of the vector potential 

(1) 

The polarization operator K 0113 depends on the 
frequency and the wave vector k. The general ex­
pression for K01#. in systems with pairing has been 
obtained earlier; [li J however, a relation is used 
there which follows from the Galilean invariance, 
and which is not satisfied for electrons in the field 
of the crystalline lattice. In order to find K 01 f3 in 
the superconductor, we average the current oper­
a tor 

over the state of the system. In the approximation 
linear in the field, it is necessary, for averaging 
the second term, to use the Green's function with­
out account of the field, and, in the first term, to 
substitute the change in the Green's function G' in 
the absence of the external field 

e ~ ~2 ~ j =- drpG' (r, r')-- A drG (r, r), 
m me 

(3) 

where the momentum operator acts on the coordi­
nate 

p = ~ \' dr'f> (r-r') (_!_- _!_) (4) 
2z ~ or or' . 

From the diagrammatic representation of G' 
follows its connection with the vertex parts, and 
in the superconductor it is necessary to introduce 
not only the vertex T for the creation of a particle 
and hole, but also the vertex T for the creation of 
two particles or two holes: 

G' =- ee-1 A" {G (p+) T" (p) G (p_)- F (p+) To:(- p) F (p_) 

+ [G (p+) F (p_)- F (p+) G (p_)] T a. (p)}, 

P± = {p ± k/2, 8 ± wj2}. (5) 

The one -particle function G and the function F 
introduced by Gor'kov [G] have close to the Fermi 
surface the form 

G 8 + 8p 
=a2 2 "2+'-'' 8 - 8p - '-' lu 

~ 
F = a 2 2 ~2 '{) • 8-8p- -l 

(6) 

where p is the quasimomentum and a is the renor­
malization constant. 

The equation for the vertex part can be written 
out [li] if one introduces the irreducible 4 -poles U 
and V, which do not contain diagrams joined only 
by two lines in the channels particle-hole and 
particle-particle, respectively: 

1 \ d4p' 
T (p) = m P+ .l (2:rt)4i U (pp'){G (p/) T (p') G (p_') 

- F (p/) T(- p') F (p_') 

- [G (p/) F (p_')- F (p/) G (p_')]T (p')}, 

d4 , 
T (p) = ~ (2~4i v (pp'){[G (p/) G (- p_') 

+ F (p/) F (p_')l T (p') - G (p/) T (p') F (p_') 

+ F(p/) T (- p') G (- p_')}. (7) 

The 4 -poles U and V close to the Fermi surface 
do not depend on k, w, 6. 

In those terms of Eq. (7) where there are two 
functions G, the integration is not only over the 
regions near the Fermi surface, but also far ones. 
As in the theory of the Fermi liquid, C7J these re­
gions can be eliminated from the equations by re­
defining the irreducible 4 -poles and the bare ver­
tex: 

r" = U +U (GG)"f", r~ = V + V(GG + FF)0 f~, 

T" = ~ [ 1 + (GG)"f"]. (8) 
m 

The index k means w = 6 = 0, k- 0; the index 
0 corresponds to k = w = 0. 

Eliminating U and V from (7) and (8), we get a 
system in which the integration goes only over the 
regions close to the Fermi surface, where one must 
use the formula (6) for G and F, and one can inte­
grate over E and Ep (the integrals were computed 
previously [BJ). We have 

T = T" + f" {LT + MT}, f' = l{NT + OT}. (9) 

Here 

0) 1- p 
= w-kv(1 -g(~))+g(~)-2-, 
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N = \ \' de2de.p [GG(- p_) + FF- (GG- FF) 0 ] = ~2g (~), 
a ~ m 

0 = !__ \ dede!' (GF - FG (- p_) F) 
a2 J 2m 

_ _ (R) (w + kv + w- kv p) 
- g t-' 4.:1 4d ' 

The operator P means PT(p) = T(-p). 
The dimensionless amplitudes fk and f~ 

expressed in terms of rk and r~: 

(10) 

are 

(11) 

where p is the density of levels close to the Fermi 
surface. For an isotropic surface, p is expressed 
in terms of the limiting quasimomentum, and the 
velocity on the Fermi surface 

v = aep I ap 

is given by the relation 

~ dp Po2 
p = 2 -(2 )3 {j (ep) = -2-. :rt :rt v 

(12) 

(13) 

Making use of Eqs. (1), (3), (5), and (9) we get the 
following expression for the polarization operator 

Ka~= :;: {~IP~(GG)1'T~+6a~G(r,r)Jdr 

(14) 

where ( ... ) means averaging over the Fermi sur­
face. The momenta and the energy over which in­
tegration is performed in the last term of Eq. (14) 
are close to their values on the Fermi surface, 
but in the first terms, regions far from the Fermi 
surface, including other zones, are important. 
Therefore these terms are written in the coordi­
nate representation. 

For the elimination of the distant region, we 
substitute Tf3 from Eq. (9) and use Eq. (8) for Tk: 

(15) 

The first two terms in this equality cancel out if 
we use the expression for Tk which follows from 
the condition for gauge invariance. This expres­
sion was obtained by Pitaevskil. [9] His derivation 
must be changed, since it is not possible to use the 
momentum representation for electrons in the field 
of the lattice for regions far from the Fermi sur­
face. 

Let the fictitious arbitrary static field 

- eAa/C = Vaf(r), J~eikr, 

W=O, (16) 

act on the electron. Then it follows from Eq. (5) 
that the change in the Green's function is equal to 

(17) 

On the other hand, introduction of the fictitious 
field (16) in the system is equivalent to change in 
the If! operators: 1/J--1/Jexp(if), lf!•--lf!•exp(-if); 
with 

G(r, r') = G(r, r') exp {i[f(r) - f(r') ]}. (18) 

Expanding this expression in a series in f and in 
k(r -r') and comparing with (17) we get 

(GG)kT a k = iG (r, r') (ra - ru.'). (19) 

Close to the Fermi surface, G has the form (6) in 
the quasimomentum representation, and we get 
from (19) 

k _ f)G-1 1 _ Va 
Ta - --- -- ' 

Opa <l=O a 
(20) 

where the velocity on the Fermi surface is deter­
mined by Eq. (12). 

Substituting Eqs. (4) and (16) in the first term 
of Eq. (15), we can easily demonstrate that it can­
cels with the second term. In the remaining ex­
pression, integration is carried out over the region 
close to the Fermi surface and one can use Eq. (20) 
for Tk both in Eq. (15) and in Eq. (9). As a result, 
we obtain the basic equations for the polarization 
operator: 

Ka~ (k, w) = 4:rte2c-2p (va (LT(3 + fli1'(3)), 

T = v + !'' {LT + MT}, T = t~ {NT+ OT}. (21) 

Here and below, the renormalized vertices T and 
T are introduced; they differ by a factor a from 
the corresponding quantities in the previous for­
mulas. 

3. LONDON AND PIPPARD LIMITS 

Equation (21) becomes simplified in the limit­
ing cases of small and large k. In the London 
limit we have k = 0, L = 1, 0 = 0; consequently, 
T = 0 and we get 

Ka/3 (0, w) = 4:rte2c-2p (vaT 13), 

For a spheroidal Fermi surface 

T = v + JkT. (22) 

where A is the London parameter, A. L is the Lon­
don penetration depth, and N0 is the so-called num-
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ber of free electrons 

pv2m Po2vm 
No= 3(1- /Ik) = 3:n:2 (1- /Ik). (24) 

This number is identical with the corresponding 
quantity entering into the dielectric constant € 

= -47rN0e 2/mw2 in the infrared region, [1o] and de­
pends on the periodic field and on the interelectron 
interaction. Only in the absence of a periodic field, 
when the Galilean invariance leads to the following 
relation between the velocity and the momentum 

mv = Po(i- ftk) = Po/(1 + /!"'), 
does the number N0 coincide with the electron 
density p~ /37r2• 

In the Pippard limiting case kv » ~ we have 
L ~ M ~ N ~ 0 ~ ~/kv « 1, T = v in Eqs. (21), 
and we get 

For an isotropic Fermi surface and a trans­
verse vector potential, we get 

-CO 

(25) 

(26) 

This expression is identical with that obtained in 
the weak coupling model. [ 2•3] It does not depend 
either on the velocity on the Fermi surface or on 
the interaction, and is determined-only by the mo­
mentum on the Fermi surface, which is expressed 
in terms of the number of electrons in the conduc­
tion band. The integral in Eqo (26) can be reduced to 
an elliptic integral. We set down, for various frequen­
cies w, the limiting values needed for what follows: 

2 2 A 2 22A 
K(O) = e Po ~ K(21i)= e Po ~ 

c2 k ' c2 lc ' 

(27) 

The latter case corresponds to the normal state. 

4. COLLECTIVE EXCITATIONS 

In the limiting cases considered above, the in­
teraction did not play an important role. The most 
noticeable effects arise from the fact that the in­
teraction leads to the possibilities of excitation of 
collective excitations in the superconductor. The 
spectrum of these excitations is determined by the 
poles of the polarization operator. These poles 
arise for those frequencies w ( k) for which there 
is a solution of the homogeneous set of equations 
corresponding to the system (21). 

Further, only the isotropic case will be con­
sidered. Here the amplitudes fk and f~ depend on 
the angle (n•n') between the vectors v = v 0n and 

v' =von' and can be represented in the form of a 
series in the spherical harmonics 

f(nn')~ 2Jtz 2l + 1 Pz(nn') = 2JfzYtm(n) Yzm*(n'). (28) 
z 4n lm 

The frequencies of the excitations are easily found 
for k = 0. In this case, the coefficients L, M, N, 
and 0 in Eq. (21) do not depend on the angles and 
the integral equations reduce to algebraic equa­
tions. The condition for the solvability of the homo­
geneous equation has the form 

(1 - fzk£)(1- NN)- NNMO ~ 0. (29) 

Using (10) we get, for even l, 

(30) 

where ft is the amplitude introduced by Landau C7 J, 
which is expressed in terms of ff by the formula 

!z'i' = N' I (1- !zl'). (31) 

In the weak interaction approximation, the am­
plitudes are expressed in terms of the harmonic 
potential 

00 

4po \" V 2 Vz = - v .) (r) Jl+'/, (p0r) r dr 

in the following way: 

ft'G = VoVzl (Vo- Vz), fz"' = Vz. (32) 

The zeroth harmonic v0 determines the ratio of 
the gap to the phonon frequency we: 

L1 = 2wc exp (-1 I Vo). (33) 

Equation (30) with account of (32) was obtained 
in many researches. [B,l1, 12 ] Tsuneto [13 ] used for 
the determination of the excitation spectrum a ran­
dom phase approximation in which f~ is determined 
by Eq. (32) while fW = 0. 

For small f~ and fW, Eq. (3) has a solution only 
for frequencies very close to 2~: 

(J)~ (0) = 4,12 [ 1 - ~ :n:2 Uf- m:l] . (34) 

Experimental data correspond to w R:! ~ for lead 
and w = 1.5~ for mercury; for their explanation in 
the weak ~oupling approximation, it is assumed that 
V2 is very close to V0, which is strange. However, 
the interaction between the electrons in the metal 
is not small. The smallness of ~ in comparison 
with the De bye temperature means that the 4 -pole 
which characterizes the interaction of a particle 
with a particle is comparatively small [in Eq. (33), 
V0 R:! 0.5-0.25]. Therefore, one can think that the 
fr determined by the other harmonics of this same 
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quadrupole are comparatively small. 
However, the amplitude of fw, which character­

izes the interaction of a particle with a hole, is de­
termined by completely different diagrams and 
hence is close to unity in order of magnitude. 

In the determination of the excitation spectrum 
from the poles of the polarization operator, it was 
not taken into account that an electromagnetic field 
is present in the system. The collective excitations 
represent the simultaneous oscillations of the par­
ticles and the field and their frequencies are deter­
mined from the equation 

[ ( w2 / c2 - k 2) Oa~ + kak~ - Ka~ ( k, w)] 

xA~(k, w) = 0. (35) 

The most important effect of the electromag­
netic field is on the spectrum of longitudinal oscil­
lations. Their frequencies at k = 0 are equal not 
to zero, as would follow from (30), but to the 
plasma frequency w5 = 47re 2N0 /m. This is easily 
seen if we substitute the limiting expression for 
K from Eq. (23) in Eq. (35). However, for such 
large frequencies, the approximations of the the­
ory of a Fermi liquid, which we used, are not ap­
plicable. For the low frequencies considered, the 

.longitudinal field penetrates into the metal only to 
a depth of the order of the Debye radius. 

Only the transverse field will be considered be­
low; moreover, for frequencies w ~ L)., the wave­
length of light is much larger than the penetration 
depth and one can neglect the first term in Eq. (35). 
As a result, 

[k2 + K(k, w) ]Aa = 0. (36) 

We limit ourselves to the first three terms in 
the expansion of the amplitudes in terms of the 
harmonics, and take it into account that f~ has 
only even harmonics for the spinless excitations 
considered. The system (21) for this case reduces 
to a set of algebraic equations. After long calcu­
lation, we get for the transverse field 

K = /,!:2 { 1 + ; ( k: r ( 1 + h) 

L2- /~2 (L2N2- M202) } 
X 1-j~N2- If~+ 1/ 6 (kvjw)2 m [L2- /~ (L2N2- M202)] • 

(37) 

Here 

L2 = ~ dn I Y21 (n) 12 L (w, kvn) 

(and similarly for M2, N2, 0 2 ) and AL is the 
London penetration depth (23). 

If the second harmonics of the interaction f~ 
and ff are small, then the frequencies of the col-

lective excitations are close to 2L:)., while the mo­
menta are small ( kv « L).). In this case, Eq. (3 7) 
becomes simplified: 

K=t,L-2 {1+_!_(kv)· 2 1 +/I"' }• /2=/~-j~, (38) 
5 (J) /2-g21 

\ nt1/ Y 2I(n) 12 dn 
g2 = ~ [4t12- w2 + (vkn)2]'i• 

=~~:~ [(2+3a2)Jf1+a2 -(4+3a2)a2 arcsh ~]· 
(39)* 

The limiting expressions for the function g have 
the following form 

_i_ - Y M 2 - w2 ( 1 ~ lc2v2 \ 
g2 - nt1 + 14 4t12 - w2 } 

5. SURFACEIMPEDANCE 

(40) 

Absorption of microwave radiation incident on 
the surface of the superconductor will take place 
only when the frequency of the radiation is higher 
than the frequencies of excitation in the supercon­
ductor. The reflection coefficient is expressed in 
terms of the real part of the surface impedance 

c 
Dref = 1 - - Re Z, (41) 

Jt 

Z=4n(~) =4n:w(A/8A) . (42) 
C \ H sur C OX sur 

The surface impedance can be expressed in 
terms of the polarization operator. For specular 
reflection of electrons from the surface, 

(43) 

For diffuse reflection [!4] 

(44) 

This formula can be regarded as a special case of 
Eq. (A.19) derived in the Appendix. 

The polarization operator K has an imaginary 
part only for w > 2L).. However, the integrals that 
enter into Eqs. (43), and (44) have imaginary parts 

*arcsh =sinh-'. 
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also at lower frequencies, if k2 + K( k, w) vanishes 
for some k = kto that is, a collective excitation can 
be propagated in the superconductor with frequency 
w and momentum k1• In the most important case 
of diffuse scattering, the imaginary part of the in­
tegral in Eq. (44) is equal to 

I= ~ Im ~ln (1 + k-2K (k, ffi)) dk = k2 - k1. (45) 

here k1 is the zero of the argument of the loga­
rithm, and k2 is the pole of this expression. Mak­
ing use of Eqs. (38) and (39) for the determination 
of k1 and k2, we get 

(46) 

where w0 is the frequency of collective excitations 
for zero momentum, determined by Eq. (34). The 
function q:>(x) has in the limiting cases the form 

1(15)3( (8)2 1) cp(x) = S 8 1- 15 xln-;;, for x __, 0, 

( ) 2 (' 7 '/, ~~---
cpx =53 y1-x for X->- 1 (47) 

and it can be written in the form of the interpola­
tion formula 

-( 07) cp(x) = 1.3Y1-x 1-0.28ln7 · (48) 

In the calculation of the real part of the integral 
(44) for the Pippard metals, the principal contribu­
tion is made by the region kv » ~. where Eqs. 
(26), (27) can be used for K. For w = 2~ we have 

~ ~ln(1 + k-2K)dk =A-~ 

- -- --2,1 = - A _ 2 ( e2 p20 )'/, ( 2 )';, _1 

y3 ~ n ' 
(49) 

where ?. is the Pippard penetration depth. Taking 
it into account that the imaginary part of the inte­
gral is small in comparison with the real part, we 
get 

(50) 

Using the last equation of (27), we get the imped­
ance of the normal metal: 

(51) 

It follows from Eqs. (46)-(51) that the ratio of 
the absorption coefficients of metals in the super­
conducting state to those in the normal state at w 
close to 2~ is equal to 

He Z = 2 (~)·;,AI= nL1 A (1 + fn ( 1- (()~ ) 
He Zn 2 v , 4,12 

X 3.2 Jf1- x [ 1-0.28xln °;7 J, 
(52) 

In the derivation of this formula, use was made 
of the condition that w0 is close to 2~. This is 
comparatively well satisfied for mercury. For 
lead, w 0 ~ ~; therefore, Eq. (52) is changed; how­
ever, in the general case, the vanishing will take 
place at a rate proportional to ( w - w 0 ) 112 and a 
logarithmic singularity occurs in the derivative 
for w close to 2~. Calculation of the specular 
reflection by Eq. (43) leads to the additional factor 
2 ( 21r) 213 A-t /A-2 in Eq. (52). Similar calculations of 
Tsuneto [13] are valid only for w close to w0, since 
he assumed that (kv )2 « 4~2 - w2 • For frequen­
cies close to 2~. the absorption is determined by 
one-particle approximations [2•3] and, close to w 
= 2~. 

Re Z I He Zn = (ffi- 2L1) I 3L1. (53) 

However, the region very close to 2~ is deter­
mined by small k in the integral (44) even for 
Pippard metals. Computing the contribution of 
the region (w 2 -4~2 ) 112 « kv « ~ in Eq. (44) with 
logarithmic accuracy, we get 

He[Z(ffi)-Z(2L1)] =( 1 +/~) nL1A~(~)'1'( ((): _ 1) 
ReZn v 8 \2 4,1 , 

(54) 

The logarithmic factor can be shown to be of the 
order vI 7T !:l.A-, and the contribution from (54) will 
be equal to the contribution from (53). A plot of 
the function represented by Eqs. (52)- (54) is 
shown in the drawing. The values corresponding 

RezjRez11 

=~ 
art 

to mercury C4J are taken as parameters: w0 = 1.5~. 
v/1r~?. = ~ 0 /?. = 7. The corrected experimental val­
ues are denoted by crosses. Equation (52) gives an 
excessive value for lead. This can be explained by 
the fact that Eq. (52) is applicable only for w0 close 
to 2~. and it is necessary to use the general formu­
las (37) and (44). However, too detailed agreement 
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should not be expected for the isotropic model under ficient of the collective excitations (A.20) 
consideration. 

6. PASSAGE THROUGH THICK FILMS 

Films whose thickness is greater than the pene­
tration depth can be regarded as semi -infinite bod­
ies if there are no collective excitations. In the 
frequency range from w0 to 2~, the electromag­
netic field is carried by the collective excitations 
even through thick films. The transmission coef­
ficient through such films is not equal to zero, and 
interference phenomena should be observed in the 
reflection coefficient. 

In the case of practical interest of diffuse re­
flection from the surface, the equation for the vee­
tor potential has the form 1 > 

a 
82 A (x) ~ 
--2 - = K (x- y) A (y) dy, 

8x 
(55) 

0 

a is the thickness of the film; the Fourier compo­
nent of the kernel of the equation is determined by 
Eqs. (37) and (38). 

In contrast with the semi-infinite case, Eq. (55) 
cannot be solved in the general case. However, for 
a thick plate, the solution close to each boundary 
can be sought independently and thus the problem 
can be reduced to the semi-infinite case. Usually, 
a solution which falls off at infinity is sought in 
the semi-infinite case; if there is a weakly damped 
excitation, then an outgoing wave also exists at 
large distances in this solution. The waves inside 
the plate go in both directions and one must find 
the solution of the semi-infinite problem for the 
case in which it has the form 

A (x) = Ceikx + De-ikx (56) 

far from the edge. 
This problem is solved in the Appendix, and 

Eqs. (A.13) and (A.19) give an expression for the 
logarithmic derivative of the vector potential on 
the surface in terms of the ratio C/D. 

No electromagnetic wave incident from the 
vacuum is present at the rear surface of the plate; 
therefore, E = H, i.e., A - 1 8A/8x = iw/c. Taking 
it into account that the penetration depth is small 
in comparison with the electromagnetic wavelength 
in the vacuum and with the wavelength of the col­
lective excitations, we get for the reflection coef-

l)The problem of the applicability of this ~quation to the 
description of diffuse reflection requires clarification. It has 
little effect on the results (A.S), but can increase the coeffi­
cient of transmission through the film. 

(57) 

The roles of the incoming and outgoing waves 
change in relation to the edge irradiated. Making 
the substitution in Eq. (56), we get 

(58) 

Again making use of Eqs. (A.13) and (A.19), we 
get an expression for the surface impedance of the 
film: 

2 _1 ic2 8ln A _ ck1 2y2 + z-100 , (59) 
= 4:rtw -----rfX - - w e2ik1a _ y2 

where Z 00 is the surface impedance of the semi­
infinite specimen. 

The reflection coefficient is determined by the 
real part of A; taking it into account that it is 
small in comparison with the imaginary part, and 
assuming y « 1, we get 

Re Z = Re Zoo (1- y cos 2k!a). (60) 

The momentum k1 of the collective excitations 
and the pole k2 of the polarization operator are 
determined from Eqs. (38) and (39). As a result, 
we get for the limiting value of the coefficient 

7:rt 1 "' • / (J)~ 
r(wo) = 30 ( + /1) V 1-M2 · (61) 

These expressions are obtained under the as sump­
tion y « 1. For lead and mercury, y ~ 0.5; there­
fore, the oscillations of the reflection coefficient 
determined by Eqs. (41) and (60) will be clearly 
noticeable. In Eq. (60), the dependence of kt on 
the frequency close to w0 is determined by the 
equation 

(62) 

Similarly, one can find the connection between the 
value of the field on one or the other surface: 

(63) 

As a result, we get for the transmission coeffi­
cient 

Dnp = (wA. / c)2(Re Z / Re Zn)2. (64) 

This quantity is very small because of the small­
ness of the penetration depth i\. 

For experimental proof of the fact that the ad­
ditional absorption in lead and mercury is brought 
about by the collective oscillations, it would be 
useful to observe interference in the reflection 
coefficient. 

The author expresses his gratitude to V. M. 
Galitski1 for valuable advice. 
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APPENDIX 

We apply the Wiener-Hopf method to find the 
solution of the equation 

2A oo 

~x2 = ~ K (x- x') A (x') dx', (A.l) 
0 

which has the following form for large x: 

A (x) = Ceik,x + De-ik,x, (A.2) 

where k1 has a small positive imaginary part. 
Usually, the case considered corresponds to 

D == 0, i.e., only the outgoing wave is present. As­
suming that Eq. (A.l) defines the function A(x) 
also for negative x, while A (- oo) == 0, we intro­
duce the functions 

A+(x) = {A (x), 
0, 

{ 
0, 

A_ (x) = A (x), (A.3) 

The Fourier components of these functions 
00 

A± (k) = ~ A± (x) e-ikx dx (A.4) 
-oo 

do not have any singularities: A+ is in the half­
plane Im k ~ - c, and A_ in the half plane Im k 
::::: -c, where c >1m k1• 

The inverse transformation has the form 

-ic+co 

A± (x) = ~ eikxA± (k) ~~ • (A.5) 
-ic-oo 

Integration is carried out below the real axis, since 
A ( x) can increase for large x. 

Equation (A.l) in the k representation has the 
form 

-k2 (A+(k) + A_(k)) =_K(k)A+(k) +a+ ibk. (A.6) 

The constants a and b are equal to the jumps 
in the function A(x) and its derivative at x == 0. 
To find the functions A+ and A_, we rewrite Eq. 
(A.6) in such a form that the left side of the equa­
tion contains a function which is analytic in the 
upper half plane and the right side contains one 
analytic in the lower half plane. For this purpose, 
we write 

1 + K(k) I k2 - L+(k) I L_(k), (A.7) 

-ic+oo 

L±(k)=exp[2~i ~ ln(1+K~I[)) _dq. ]• 
-ic-oo q q k ± dJ (A. 8) 

where L+ ( k) is analytic for Im k ~ - c, while 
L_{k) is analytic for Im k::::: -c. Taking (A.7) 

into account, Eq. (A. 6) can be represented in the 
form 

A L _ a + ibk L _ ~ ~ _ a ~ 
- - k2 - k2 - k- A+L+- k2 - k. (A.9) 

The constants a and {3 are so chosen that there 
are no poles at the point k == 0 in the left side of 
the equation. On the left side of the equation there 
is a function which is analytic in the upper half 
plane, and on the right side there is a function 
which coincides with the previous function on the 
line Im k == - c, and which is analytic in the lower 
half-plane. Therefore, this function is analytic in 
the entire plane, and, consequently, is equal to 
zero. Thus, 

(A.lO) 

The constants a and {3 can be expressed in 
terms of the amplitudes C and D of the incoming 
and outgoing waves. For this purpose, we separate 
the zeros and poles in L+ close to the real axis: 

1 K(k) k2-k12( k22 ) + ~ = k2- k22 1 + kr2')..,L2k2 Q (k), 

L _ (k2 - kr2) (k- ik2fk 11vL} Q (k) (A.ll) 
+ - JC2 (k - k2) + . 

The function Q(k) and the function Q+(k) obtained 
from it by Eq. (A. 8) have singularities only in the 
complex plane at distance of the order of 6./v from 
the real axis; Q(O) == Q(oo) == 1. For London met­
als, Q(k) = 1. Substituting (A.ll) in (A.lO), we get 

A+ (k) = (a+ ~k) (k- k 2 ) 

2kr (k- ik2/krt•L) Q + (k) 

X ( -k 1 k1 - k ~ k1 ) . 
(A.12) 

The distribution of the field in the superconduc­
tor can be found from Eq. (A.5); it is determined 
close to the line Im k = - c for large x by the sin­
gularities of the function A+(k), i.e., by the poles 
at the points k == ± k1• The residues at these poles 
are equal to the amplitudes C and D of the out­
going and incoming waves. Taking k1 to be small 
in comparison with 6./v, so that Q+( k1 ) = Q+(- k1 ), 

we get 

c !"}., + ~kl kl - k2 
75 = !"}., - ~kl kl + k2 

(A.13) 

The condition a == ,Bk1 corresponds to the absence 
of an incoming wave. 

The behavior of the field close to the boundary 
x == 0 is determined by the form of A+(k). From 
Eq. (A. 8) we get 

1 -ic+oo 

L+-+ 1 + 2nik \ ln ( 1 + K (;)) dq. (A.14) 
-ic-oo q 
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We move the contour in this integral to the real 
axis, bypassing the singularity at the point q = - ki, 
and we denote the resultant integral by 

~. .. = zn{ ~ ln (1+ k:;>)dqr1
• 

-oo 
(A.15) 

Substituting (A.14) and (A.15) in (A.10), we get 

~ 1 ( . ) 
A+ (k)- k + k2 a- ~k1 +~A.~ . (A.16) 

From Eq. (A.5) we get, with the aid of (A.3), 
-ic+oo 

~ A+ (k) ~: = A+ ( +O) t A+ ( -0) = ~ A+ ( +0)· 
-ic-oo 

(A.17) 

Taking it into account that A+(k) does not have 
singularities in the lower half plane and displacing 
the contour of integration to the large lower half 
circle, we get 

A (0) =A+( +0) = -i~. (A.18) 

The derivative BA/Bx is expressed in similar 
fashion in terms of the second term of the expan­
sion (A.16). As a result, 

f) ln A I = i (~ - kl) - _!_. 
OX x=O ~ A., 

(A.19) 

Eliminating the ratio a/{3 from (A.19) and (A.13), 
we get the desired connection between the loga­
rithmic derivative on the surface and the ampli­
tudes of the incoming and outgoing waves of the 
collective excitations. 

When there is no incoming wave, D = 0, a= {3k1, 

we get for a penetration depth equal to the inverse 
logarithmic derivative the well known result of 
Reuter and Sondheimer. [ 14] In the other limiting 
case, where no electromagnetic radiation is inci­
dent on the surface and the logarithmic derivative 
is equal to the reciprocal of the wavelength of 
light w/c f'::j 0, we get for the reflection coefficient 

of the collective excitations 

c kl-k2 . 
D = kl + k2 (1 + 2zA..,kl), (A.20) 

where k1 and k2 are the zero and pole of the ex­
pression k2 + K( k). 
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