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The total cross sections for the production of n particles (or of n groups of particles with 
low energies in the c.m.s. of each group) and the energy distribution of the particles in high 
energy inelastic collisions are calculated by the technique of momentum integration devel­
oped previously. [1•2] The asymptotic amplitudes are described by the values obtained pre­
vwusly for the most important cases of "truly inelastic" collisions and corresponding to 
the contribution of an isolated vacuum Regge pole. In order to avoid unnecessary complica­
tions, it is assumed throughout that all particles are identical and have no spin or isospin. 
It is shown that for any inelastic process there exist very definite configurations of momenta 
of the produced particles which make the most important contribution to the ampl1tude. The 
distributions of the produced particles with respect to the logarithms of their momenta are 
found. The shapes of these distributions depend significantly on the behavior of the vertex 
functions (corresponding to the emission of a particle or a group of particles by a reggeon). 
It is shown that a contradiction arises in the unitarity condition in the s channel for the am­
plitude of elastic scattering at zero angle if these vertex functions do not decrease with the 
decrease of the squares of the reggeon momenta. The dependence of both sides of the unitar­
ity condition in the s channel for the amplitude of elastic scattering mto nonzero angles on 
the magnitude of the momentum transfer K2 is investigated. It is shown that the asymptotic 
Regge amplitude corresponding to the contribution of the vacuum pole is not reproduced by 
the right-hand side of the unitarity condition when all terms corresponding to the formation 
of an arbitrary number of particles are taken into account. The dependence on K2 can be 
reproduced only if all amplitudes-elastic as well as inelastic-are described by asymptotic 
expressions corresponding to the contribution not of an isolated pole but a whole set of sin­
gularities of the branch point type in the j plane located to the right of the vacuum pole and 
condensing at the point j = 1. 

IN previous papers, [1•2] the asymptotic expres­
sions for the amplitudes of truly inelastic proc­
esses [3- 5] were used in the analysis of the sim­
plest reactions: the formation of three, four, or 
five particles. It will be shown below that the 
method of momentum integration developed in 
these papers can be used to calculate the asym­
ptotic values o{ the total cross sections for the 
formation of an arbitrary number of particles. 

Summing these cross sections, one obtains the 
total cross section for the interaction of the pri­
mary particles a and b for s = Sab ~ oo • Accord­
ing to the optical theorem (or the unitarity coridi­
tion in the s channel for the forward elastic scat­
tering amplitude), the total cross section must be 
equal to the imaginary part of the elastic scatter­
ing amplitude divided by s. As is well known, the 

elastic scattering cross section has a constant 
value independent of s if only one vacuum pole in 
the j plane is taken into account. However, it will 
be shown below that one obtains for the sum of the 
cross sections for all processes a value which in­
creases asymptotically as s ~ oo. This contra­
diction with the unitarity condition in the s channel 
for the elastic forward scattering amplitude can 
possibly be removed by assuming that all vertex 
parts corresponding to the emission of particles 
by the "reggeon," y(ti, tk), vanish for ti = tk = 0. 

Possessing a system of amplitudes for all in­
elastic processes, we can ask a wider question: do 
these amplitudes satisfy the general unitarity con­
dition in the s channel (not only for the elastic 
scattering amplitude and not only for vanishing 
angle); does the right-hand side of the unitarity 
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condition reproduce the dependence of the imagi­
nary parts of the amplitudes on the energy and 
momentum transfers? The present paper contains 
only a preliminary study of this problem. It is 
shown, in particular, that this dependence can in 
principle only be reproduced if the singularity 
farthest to the right in the j plane is a condensa­
tion of branch points near j = 1. Here the posi­
tion of the q -th branch point ( q = 2, 3, 4, ... ) at 
small values of the momentum transfer K2 = - t 
must be given by the relation [s, 7J 

jq (t) = 1- j~x2jq, (I) 

where j 0 ( t) = 1 - j 0K2 is the position of the vacuum 
pole. 

Therefore, it evidently follows from the unitar­
ity condition in the s channel (in the region s - oo) 

that the vacuum pole must be "accompanied" by a 
system of branch points located between j = j 0(t) 
and j = 1 and condensing at j = 1. 

1. ASYMPTOTIC EXPRESSIONS FOR THE CROSS 
SECTIONS OF TRULY INELASTIC PROCESSES 

The asymptotic form [S] of the amplitude for the 
formation of n particles, 

a+b-+1+2+3+···+n 
in a truly inelastic collision represented by the 
graph of Fig. 1 is given by 

A ( 2) - ( ) ( s,, )i' (t,) (s'" )i' (t,) - n ~ ~- an 'Xl, 'X2, •.• ''Xn-1 tn2 m2 

( 
sn-1, n )j, Un-1) 

· · · tn2 ' 

(t; = (Pa- Pl- P2- · · ·- P;JZ, S;, i+l = (P.; + Pi+t) 2 , 

i=1,2,3, .. ,n-1) 

and is large if the energies Si,i + 1 of all pairs of 
produced particles are large and the momentum 
transfers ti of all reggeons are small for s 
= sab- oo. 

a 

FIG. 1 

(1) 

The kinematic analysis [ 1•2] has shown that 
there are n -1 different configurations of mo­
menta for which these conditions are fulfilled. In 
these configurations the produced particles must, 
in the c.m.s., be emitted into a narrow angle around 
the directions of the colliding particles, and hence 
all perpendicular components /Ct> IC 2, .•• ,ICn of their 
momenta must be small. Each of these configura­
tions can be obtained by dividing the graph of Fig. 1 
into two parts by a horizontal line (which inter­
sects the propagation line of one of the n - 1 reg­
geons, as indicated by the dotted line in Fig. 1) 
and assuming that the momenta of all n1 particles 
whose lines are above the divison line are almost 
parallel to Pa and all momenta of the n2 = n - n1 

particles whose lines are below are almost paral­
lel to Pb = - Pa· Here Pa and Pb are the momenta 
of the colliding primary particles. 

It is further necessary that the momenta of all 
particles be ultrarelativistic for s - oo and that 
in each of the two groups of particles the outermost 
particles in Fig. 1 (i.e., the first and the n-th par­
ticle) have the largest momentum, with each par­
ticle having a slightly smaller momentum than the 
preceding one as one goes toward the center of the 
graph. 

In other words, if the momenta of the produced 
particles Pi = ( ki, /Ci) are given in terms of their 
longitudinal ( ki) and transverse ( /Ci) projections 
with respect to the direction Pa = - Pb· then ki 
» Ki and 

p; = V kT + x7 = k; 

+ xr/2k;, 8; = -v pr + mf = k; + (m~ + xiJ/2k;. (2) 

Here 1> it is necessary that 

k1 ~ k 2 ~ ••• ~ kn, ~ m, 

(3) 

where m is a quantity of the order of the mass of 
the i-th particle. One of these n -1 configurations 
is shown in Fig. 2. In all other cases either the en­
ergies si i + 1 are not large or the I ti I are not .. ' 
small. If, for example, the momentum Pi of the 
i-th particle of the "lower" group of Fig. 1 or 
Fig. 2 is reversed, the magnitude of I ti I becomes 
at once of the order of Si,i+t· Thus the momenta 
of all produced particles in Fig. 1 are strictly or­
dered in those configurations where the asymptotic 
expression (1) is large. 

llwe assume that all ki are positive. This means that the 
quantities ki are the projections of the momenta of the parti­
cles of the upper group on the direction of Pa and of the 
lower group on the direction of Pb = -Pa· 
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It clearly follows from the conservation laws 
that 

k, + k2 + ... + kn, = kn,+l + kn,+2+ ... + kn = YS/2, 

X 1 + X 2 + ... + Xn = 0. (4) 

Moreover, as shown in [2], 

k, = kn = Pa = Pb = VS/2 ~ rn. 

Taking into account the inequalities (3) and (2) 

and (4), we obtain for the graph of Fig. 2 the fol­
lowing simple expressions for the energies Si,i + 1 
and momentum transfers: 

kn 2 2 
Sn-I,n = -k- (mn-1 + Xn-1), 

n-1 

'2 
t2 = -x2, ... , 

where 

'2 
tn-1 = - Xn-1 • 

x1 = x1 , x~ = x2 + x~, x; = x3 + x; 

etc. (with Kn-1 = - Kn ). 

(5) 

(6) 

It is clear that, if all Ki are small and the in­
equalities (3) are fulfilled, all Si,i +t are large 
(compared with the squares of the masses of the 
particles) and all ti are small. Multiplying all 
the values (5) of the quantities si,i+t• we note that 
they satisfy the condition 

= (rn~ + x~) (rn; + x~) ... (m~_1 + x~_1) s. (7) 

It is also easy to see that there still exist a whole 
series of relations between the values of Si,i + 1, 

Si,i+ 2, Si,i+a• etc., in configurations of the type of 
Fig. 2. For example, Si, i+lsi+l,i +2 = (mf+l + xr+l) si, i+2 

or 'S-i!, isi, i+1si+1, ;+2 = (rn~ + x~) (m~+l + x~+l) si-1, i+2• 
if all particles i -1, i, and i + 2 belong to the 
same group in Fig. 2. 

Substituting formulas (1) to (7) in expression (7) 
of the previous paper, we find for the differential 
cross section dcrn1,n for the formation of n par­
ticles in the configuration of Fig. 2 

d2x' d2x' X __ 1 __ 2 

:n: :n: 

where 

(8) 

~i = ln (k;lrn), 

.•• (m~-1 + X~H) (m2) 2-n j an (Xl, X2, ••• , Xn-1) !2, (9) 

where the "pole" graph of Fig. 1 corresponds to 
an expression of the coefficient an of the form of 
a product of vertex parts: 

an= g1 (x1) "{ 2 (x~, x~) "{3 (x~, x;) 

(10) 

where Ki = Ki +Ki-t are the transverse components 
of the momenta of the reggeons in Fig. 1. 

Neglecting the logarithms of quantities of order 
unity, we find from (5) the following values for 
gi,i+t in momentum configurations of the type of 
Fig. 2: 

~1,2 = ~1- ~2• ~2,3 = ~2- ~3• • · ' ' ~n1-l,n, = ~n,-1-~n,, 

~n-l,n = ~n - ~n-1• (11) 

where ~n = ~' = ~ = In (YSirn) ~ 1. Formula (8) is 
valid under the condition that all these quantities 
are large compared to unity. 

Introducing a certain number i\ > 1, it is con­
venient to define the region of validity of (8) by the 
condition gi,i+t ~ i\. According to (11), this implies 

~1 ):. A + £,, ~2 ):. A + ~3• • • ·' ~n 1 > ~., 
~n):. A+ ~n-1• ~n-1):. A+ ~n-2• · · ., ~n,+l >A. (12) 

As in the case of the formation of three, four, or 
five particles, [t, 2] this region makes the largest 
contribution to the total cross section for g - oo . 

Let us obtain from (8) the value of the total 
cross section. For gi i + 1 » 1 the integration over 

> I 

the transverse components Ki can be extended to 
infinity, and since the region of small values of Ki2 
(of order 1/2j~~i,i+I <;: m2/A),) makes the most impor­
tant contribution, the function i\ can be pulled out 
in front of the integral sign at the point x~ = x~ = x~ 
= ... = x~-1 = 0. Therefore 

~ An exp [- 2j~ (~' x;2~;. i+1)] d';~ a:; . . . d'x;_, 
2cr~> 

l',t,21',2,3 •• • l',n-I,n' (13) 

where, according to (9) and (10), 
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With g10 = g1 (0), gno = gn (0), lio 

= h; (x~-1• x~)l ' ' . 
xi-l=xi=O 

The result (13) is changed in an essential way 
if it is not assumed that the vertex parts 

remain finite for Ki-1 = Ki = 0, i.e., for ti-1 = ti 
= 0. The quantities Yi are (by definition) symmet­
ric functions of the variables ti_1 and ti, and the 
points ti = 0 or ti _1 evidently cannot be singular 
points of these functions. However, Yi can, in 
general, go to zero proportionally to an arbitrary 
power of the quantities ti_ 1ti or ti+ 1 + ti. If, for 
example, 

as t; ---> 0' ti-1 ---> 0' (15) 

then we obtain on the right-hand side of (13) 
2a<o> 

n, 

~t2~t3 · · · ~~-2, n-1~~1--l,n' 

' 1 ( l~om7 ) 2 

~,=-,- --
2] 0m 2 4:rt 

(16) 

This changes all further results considerably. Let 
us therefore establish at the outset what happens 
in the case when Yi does not vanish for Ki = Ki- 1 
= 0. Then we obtain from (8) and (11), (13) 

"t dto. ~f' dt3 .. • ~n,~.··1-Adtn. 
O'n, n (£) = (]~, ~ ;,_ ) \o .\ r; • 

(n,-1) ), (n,-2) A A 

X d£,1-1 ... 

X (£, £2, Ss• · · ., Sn-1), 

I (£, £2, £3, ... , sn-1) 

= 2 {(£ - £2) (£2 - ss) ... (sn,-1 - sn,) (sn, 

+ Sn,+J) (sn,+l - Sn,+2) ... (sn- Sn-I)}-1, 

(17) 

(18) 

where n2 = n - n1. The cross section for the for­
mation of all n - 1 configurations is obtained by 
summing this value crn1on over n1: 

n-1 

Un (£) = ~ O'n,, n(£). (19) 

Actually, the value (17), (14), (19) of the total 
cross section is correct only if all produced par-

ticles are identicalY In this case one must take 

Y1 = Y2 = · · · = Yn-1• ml = m2 = · · · = mn = m. 
For the coefficient (14) we obtain in this case 

~ = (yof4rt)2/2j~. (20) 

For n = 3, 4, and 5 the formulas (17) to (20) yield 
values of the total cross sections which agree with 
those found earlier. 

To calculate the asymptotic value of the total 
cross section (17) to (19) it is convenient to re­
write the expression (18) for the function f in the 
form 

I - _2 (-1 - 1 ) ( 1 1 ) - ~ + ~n ~- ~2 ~2 + ~n,+l ~2- ~3 + ~3 + ~n,+l .. ' 

.. • ( ~n,-1 1- ~n1 + ~n, + \n,+l ) 

x( 1. + 1 ) 
~n1+2- ~n1 +1 ~ + ~n1+1 , 

X ( ~n,+3 ~ ~n1+2 + ~1 + 1~n1+2 ). • ' ( £n _: £n-1 + ~ + \n-1 ) . 
(21) 

For ~ = ~n- oo the second terms in each paren­
thesis of (21) give small contributions compared to 
the first terms under substitution in (17). Indeed, 
the large values of all variables ~i are the most 
important in (17) as ~ - oo • But near the upper 
limit in (17) there exists a large region of values 
~i in which the first terms in the parentheses in 
(21) have the constant value 1/A., which does not 
decrease as ~ increases. The values of the sec­
ond terms decrease with growing ~ in this region. 
Neglecting the contribution of all second terms in 
(21), we obtain 

(22) 

~-A ~,-A 

In,(£)= ~ ~ ~·£· ~ 
(n1-1) A (n1-2) A 

(23) 

The quantity In2 ( ~ ) has exactly the same value as 
(23) (symmetric with respect to the dotted line in 
Fig. 1 ). The asymptotic form (22) of the integral 
(17) is correct with an accuracy up to terms of the 
order [ ln ( UA. - n1 ) ]-1, which are small compared 
to unity. 

For ~- oo the most important region in the in­
tegral In1 ( ~ ) is near the upper limit [where the 
denominators in (23) have the smallest values]. 

2)If the particles are distinguishable, this value [or rather, 
the coefficient (13)] must be summed over all n! permutations 
of the produced particles in the graph of Fig. 1. 
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Therefore the logarithm appearing in the integra­
tion over each of the variables can be taken outside 
the integral at the upper limit, and the contribution 
of the lower limit in each integration can be neg­
lected. As a result we obtain 

(24) 

As is easily verified, all approximations made in 
the calculation of In1 ( ~) could only lead to an in­
crease in its value. Therefore (24) is actually an 
upper estimate of the asymptotic form of the in­
tegral (23). 

By a slightly more complicated calculation 
(given in the Appendix at the end of the paper) one 
can obtain a lower estimate of the asymptotic form 
of the integral (23). It agrees with (24). Therefore 
(24) is the exact asymptotic form. It is noted that, 
just as (22), the asymptotic form (24) is correct 
with an accuracy up to doubly logarithmic terms 
of the order [ ln ( UA. - n1 + 1) ]-1, which are small 
compared to unity. As a result we obtain for the 
total cross section (19) for the formation of par­
ticles in truly inelastic collisions of the type of 
Fig. 1 

(25) 

All relations obtained above are valid if n < n0, 

where n0 = UA.. This follows from the values (11) 
of the quantities ~i i+t• each of which must be 
larger than A.. 3> A~suming that ~ is very large 
and n0 = UA. » 1, we consider the case of the for­
mation of a number of particles small compared 
to n0• Let 

n < n0/C = ~/CA., 

where C is some large number C > 1, but n0 is 
assumed so large that n0 I C » 1. We have for all 
values n restricted by this inequality 

:;~0) ~ 
an(~) = (n - 1) -c Jnn-2 --t 

3 )Therefore the sum of the quantities ei,i +! in the upper 
row of (11), equal to e- en,~ e- A, must evidently be larger 
than (n, - 1) A. Then n, ~ e;A. This also follows from (23), 
since for n, ~ e;A the region of integration over e2 in (23) 
vanishes. But the number n, for given n can be equal to 
n- 1. Therefore n- 1 ~ eJA. We note that one can obtain a 
less rigorous restriction, n .2: 2e;A, by summing all terms in 
(11) or taking the logarithm of (7). If n > e;A but n < 2e/A, 
then of all n- 1 configurations of the type of Fig. 2 only 
those give a contribution for which n 1 and n2 are less than 
e;A. 

or, if we take account of (20), 

:;0 ( ~ )n-2 an (~) = (n - 1) T P In T . 

Let us obtain the energy dependence of the total 
cross section for the formation of an arbitrary 
number of particles n :::::; n0 I C on the basis of the 
mechanism of Fig. 1. This cross section ufot ( ~ ) 
is only a small part of the total cross section 
utot ( ~ ) for the interaction of the colliding par­
ticles (see below). If ~ is so large that 

Pln~~1, 

then the terms of the sum over n increase rapidly 
with increasing n, i.e., 

n 0 jC 

a;ot (~) = ~ (Jn m = an,;c m = ~~ (p In ~)i;/CA-2 
11=-=2 

= cr0 (_!_)ln (~/1.) ~/2CI. 
Cf.[32 Jn21;, ' m" . (26) 

This quantity increases with s more rapidly than 
an arbitrary power of s. 

Since the contribution of the remaining inelastic 
processes to the total cross section is positive, 
utot ( ~ ) must evidently be larger than uf0 t ( ~ ) . 
Therefore 

A ( s ) B, ln ~-B1 
atotm>~ ----,:;;2 , 

where A, B0, and B1 are constants. This inequal­
ity is in clear contradiction with the unitarity con­
dition, for the imaginary part of the forward elas­
tic scattering amplitude for particles a and b, 
divided by s, is a constant. 

2. DIFFERENT FORMS OF INELASTIC PROC­
ESSES IN THE REGION s ---. oo 

This result indicates that a) either the assump­
tion that the singularity of the amplitude farthest to 
the right in the j plane is an isolated pole is incor­
rect, or b) our assumption that the vertex func­
tions Yi(ti-t• ti, x) are finite for ti =ti-t= 0 is 
not true. It will be shown below that the first as­
sumption is indeed incorrect: when the vacuum 
pole is substituted in the unitarity condition it in­
duces in the j plane an infinite number of singular­
ities of the type of moving branch points located 
between this pole and the point j = 1. As a result 
the point j = 1 is a point of condensation of the 
branch points. This picture of the right singulari­
ties in the j plane has recently also been obtained 
in a completely different fashion. [ 7] ' 

However, even with a more complicated right 
singularity in the j plane, the difficulty with the 
increase of expression (26) for utot ( ~ ) for ~ -- oo 
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may not yet be taken care of. The contribution 
from the branch points to the total cross sections 
for the elastic as well as inelastic processes con­
tains an extra factor of the form 1/ ~n as compared 
to the contribution from the vacuum pole, where 
the number n depends on the character of the 
branch point. Therefore, it is entirely possible 
that taking account of the contribution from the 
branch points does not essentially alter the func­
tion (26) in the region ~ - oo • In order to avoid 
contradictions 4> it is then necessary to assume 
that Yi- 0 for ti- 0 and ti-1 - 0. As shown 
above, already the simplest assumption (15) of a 
linear decrease of Yi for ti- 0, ti_1 - 0 leads 
to a considerable lowering of the value of the in­
tegral (13) over the transverse components of the 
momenta and hence to a decrease like ~ 7 - 4n of the 
total cross sections for the formation of n par­
ticles, <Tn ( ~). In this case the sum of the cross 
sections o-n ( ~ ) of all processes of the type of 
Fig. 1 also decreases with increasing ~. and the 
above -mentioned contradiction is removed. 

It must be noted that the values n ~ ~/A of the 
number of particles for which the relations ob­
tained .above are valid are vanishingly small as 
compared to the number N0 = ..fS!m of particles 
whose formation is allowed by energy conserva­
tion. Therefore, the contribution of the graphs of 
the type of Fig. 1 to the cross section for multiple 
production of particles is very small for s - oo 

(unless, of course, they lead to a catastrophic in­
crease of a-tot). 

What then is the main mechanism for the mul-

~ --=3""'Y~c, 

liz --=:===~r, 

FIG. 3 

a 

b 

4 lThe account of the contribution from the branch points 
located between the vacuum pole and the point j = 1 does not 
alter the asymptotic form of the total cross section atot 

= const (i.e., the asymptotic form of the imaginary part of the 
forward elastic scattering amplitude). 

tiple production in this case? A very important 
(and, possibly, the basic) mechanism could be 
the formation of a string of beams or groups of 
particles with small energies in the c.m.s. of each 
group on account of a mixed truly inelastic and 
"almost elastic" process of the type shown in 
Fig. 3. The graph of Fig. 3 differs from the graph 
of Fig. 1 only in that from each of its knots (for 
example, the i-th) issues not a line of a single 
particle, but of a group of vi particles. Let us 
denote the total momentum of all particles of this 
group by Pi= (ki, Ki) and their remaining quan­
tum numbers by ti (i = 1, 2, ... ). The latter in­
clude, in particular, the square of the total energy 
of the particles of the i -th group. 5> With these no­
tations, the asymptotic form of the amplitude cor­
responding to the graph of Fig. 3 is given by the 
same formula (1) as for the case of Fig. 1, with 
the only difference that the vertex parts in (10) 

will depend also on ti, i.e., the coefficient an in 
(1) must be replaced by 

a~,= Gv, (~~' x~) fv, (~~,X 1 ,X~) fv, (~~.X~, x~) 

(27) 

where Gvi and r Vi are the vertex parts of the 
graph of Fig. 3 corresponding to the formation of 
lli particles. 

For the differential cross section for the for­
mation of n groups according to Fig. 3 we obtain 
the same formulas (8) and (9) as in the case of 
Fig. 1, but the quantity I an 12 in (9) must now be 
replaced by I afll 2 dt1 dtz ... dtfl. In exactly the 
same way, the total cross sections for the forma­
tion of groups with an arbitrary number Vi of par­
ticles in each group not exceeding some given num­
ber v0 and with an energy sf not larger than s 0 
(where v0 and s 0 are fixed and do not increase 
for s - oo) are given by the same formulas as in 
the case of Fig. 1, but with the vertex parts gt0 

== gf ( 0) and Yi ( 0, 0) = Yio replaced respectively 
by 
~ ~ 

~ -~ , 1 c v; u;;, o) 1
2 d~;, fJ . ~ . 1 r v; <~;, o, o) 1

2 d~r <28> 
Vi=l sf<s0 \li=l sr<rstl 

or, in the case of a linear decrease (15) of the ver-
. r h r 12 12 r I ( I ) • h h tlces vi, w ere Vi ~ Ki_1 Ki Vi ti , Wit t e 

quantities Yio in (16) replaced by 

5lFor example, if the group consists of two particles, we 
can take for ( 1 the momentum ki of the relative motion of 
these particles in their c.m.s. (where Si will be related to 
the quantity k{ = lk~l ). 



1154 I. A. VERDIEV, et al. 
v, 

~ ~ 1 r:i <s;) 12 ds;. 
V=l 

(29) 

sr<so 

Therefore, all results of the preceding section re­
fer not only to the truly inelastic processes of the 
type of Fig. 1, but also to the case of Fig. 3-the 
formation of n groups with few particles and small 
energies sf ~ so. 

An essential difference appears in the case when 
the numbers vi of the particles in the groups and 
the energies (masses) si are large. In particular, 
in computing the total cross sections for the "jet" 
processes of Fig. 3 one must integrate over vi and 
si up to the highest values (for given s ). Near the 
upper limits of these integrations [of the type (28) 
or (29)], where si is large, we must here take ac­
count of the dependence of the transverse momenta 
(6) on K? as well as on the masses si of the jets. 
The corresponding terms are not included in (6). 

( I d I The integrals of the type (28) or 29) over vi an si 
[with an upper limit depending on s, not up to v0 
and s~, as indicated in (28) and (29)] may grow in 
some manner with increasing s, but this growth 
may be compensated by the logarithmic decrease 
(26) of the total cross sections of the "jet" proc­
esses. It is entirely possible that by an appropri­
ate choice of the s{ and vi dependence of the func­
tions Q,! and r v! in (28) ·and (29), one will be able vl l 
to "balance out" the s (or ~ ) dependence of both 
parts of the unitarity condition so as to conform 
with the elastic forward scattering amplitude. 

3. DEPENDENCE OF THE UNITARITY CONDI­
TION ON THE TRANSVERSE MOMENTUM 
AND CONDENSATION OF SINGULARITIES 
IN THE j PLANE 

The imaginary part of the amplitude A ( 2 - 2 ) 
= A(p1

, p) for elastic scattering into non-forward 
angles (Fig. 4) satisfies the unitarity condition in 
the s channel 

N, (s) + Im A 2 (p', p) = ~ an (p', p), (30) 
n=2 

where the right-hand side contains the terms 

(31) 

which agree for p 1 = p with the total cross sections 
un ( ~ ) for the formation of n groups of particles 
[ cf. formula (4) of the previous paper [2]]. Here 
An= A (n- 2) is the amplitude for the formation 
of n groups of particles, drn is the statistical 
weight of all their states, and p and P1 are the 

a-,__ a .:x. 
FIG. 4 

initial and final momenta of the particles for elas­
tic scattering in the c.m.s. (Fig. 4, p = Pa = - pb, 
p' = p~ = - p~, where 1 PI= I p' I= VS/2). 

Assuming that s is large, we use the asymptotic 
form (1) for An [with an replaced by afi defined 
by (27)]. Then (31) should be compared with the 
graph of Fig. 5. The momenta of all particles are 
conveniently defined in a coordinate system whose 
OZ axis is located symmetrically with respect to 
p and p1 , as shown in Fig. 6. We shall give the 
momenta in terms of their projections on the OZ 

axis and on the XOY plane. Then the longitudinal 
components of p and p 1 will be identical: k = k 1 , 

and the transverse components will be equal in 
magnitude but opposite in direction. Let us denote 
the latter by K./2 and -1<./2. Thus 

/JI 

p = (k, x/2), p' = (k, -x/2), fi = (k;, x;). 

!/ 
FIG. 5 

z 
.~ 

FIG. 6 

The momentum transfer t = ( p - p 1 ) 2 in elastic 
scattering will obviously be equal to -1<.'2, and the 
values tat> tai2, . . . and t~i = ( P' -Pi ) , t~i2 
= ( p 1 - Pi - p2 ) , . . . of the squares of the momenta 
of the left and right reggeons of Fig. 5 are defined 
in complete analogy to (6): 

ta1= -~(x~·- x'/2)2 , ta 12 = - (x~- x'/2), ... , 

ta1 ... n-1 = - {x~- x'/2)2 , t~1 = - (x~ + x'/2), 

ta12 =- (x~+x'/2)2 , ••. , ta1 ... n-1 = -(x~+ x'/2)2 • 

Substituting these values in the expression for 
the asymptotic amplitude (1) and in (31), we obtain 
in analogy to (8) and (19): 

n-1 

an(p', p) = ~an, n, (p', p); (32) 
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d2x' · · · 7 d£2 d£3 ... d£n-l> (33) 

where A.n is defined by (9) with I an 12 replaced by 

I an l 2d~~d~~ ... d~~. 
Since the square bracket in the exponent of (33) 

contains the quantity Ke + K' 2/2 and, according to 
(11), 

Il-l 

~ £;, i-1 = 2£, 
i-1 

the entire dependence of (32) on K' 2 is separated 
out in the form of a factor exp (- j 0 K' 2 ~ ). As a 
result we obtain from (32) and (33) 

an(p',p) = exp (-+j~x'2 (2£))an(£), 

where <Tn ( ~ ) is the total cross section. Therefore 
the right-hand side of the unitarity condition (31) is 
equal to 

CXl 

cl (£) = 2J (Jn (£), (34) 
n=2 

where C1 ( ~) is the total cross section of all proc­
esses whatsoever, calculated with the help of the 
"pole-type" asymptotic amplitudes (1) for the in­
elastic processes. 

The quantity A2(p, p' ), which is analogous to 
(1) and corresponds to the contribution of only one 
(vacuum) Regge pole, (I), can for small K2 be 
written in the form (Fig. 7) 

~ A 2 (p, p') = ig~ exp {- j~x' 2 (2£)}, (35) 
s 

where K2 = -t, 2~ = ln (s/m2 ). According to (30), 
the imaginary part of this expression must be iden­
tically equal to (34) for all K2 and ~. 

11 

" 
FIG. 7 

It is clear that, even if the dependence of the 
vertex parts in (27) can be chosen such that C1 ( ~) 
= g~ = const., the K2 dependence of (34) is quite 

different from that of (35) (because of the coeffi­
cient t;2 in the exponent). 

In the general case, where a?> ( ~) "" const, (34) 
may be regarded as the contribution to the ampli­
tude A2 ( p', p) from the singularities of the type 
of the branch pointed located at [6 J 

(36) 

If we now substitute in the right-hand side of the 
unitarity condition the asymptotic form of all am­
plitudes corresponding not to the vacuum pole (I), 
but to the singularity (36) further to the right, we 
obtain a value which differs from (32), (33) only 
by the factor t;2 in the exponent of (33). As are­
sult, we have on the right-hand side of the unitar­
ity condition (30) C2 (~) exp { -%j 0K2 (2~ )}, which 
corresponds to the contribution to the asymptotic 
amplitude A2 (p, p') from the following branch 
point 

(37) 

which lies more to the right than (36). 
The singularity (36) corresponds to the graph 

of Fig. 5 with two "reggeons" in the t channel. 
The singularity (37) corresponding to the combina­
tion of two graphs similar to those of Figs. 5 and 7 
corresponds to a four-reggeon exchange in the t 
channel. The general case of q reggeons (q = 1, 
2, 3, ... ) in the t channel gives rise to a singu­
larity at the point 

jq (x2) = 1- j~x2jq. (38) 

The positions of the vacuum pole (I) and all 
branch points (36) to (38) have been written down 
above under the assumption that K2 = - t is small 
(since only small values of K2 were important in 
the discussion above ) . It follows from what has 
been said above that if all asymptotic amplitudes 
are defined on the basis of the assumption that the 
vacuum pole (I) in the j plane is accompanied by 
an infinite system of singularities (38) which con­
dense towards j = 1, the right- as well as the left­
hand sides of the unitarity condition (30) will have 
the form of a sum of terms of the type 

00 

2J Cq (;) exp {- + j~x2 (2£)}. 
q=! 

(39) 

The amplitudes of the inelastic processes will have 
a complicated form. 6> For example, instead of (1) 
we obtain 

6 >The right-hand side of the unitarity condition of Fig. 5 
contains only terms with q = 2,3, ... The terms with q = 1, 
corresponding to the contribution of the Regge pole, can only 
be obtained if the contribution of graphs of the type of Fig. 1 
is taken into account, but not with reggeons, but ordinary 
particles[•] in the intermediate state. 
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A (n _, 2) = 

(40) 

where cq,, q,, ... ,qn~1 is a certain function of all Ki 
and ~i,i·l-1; the dependence on ~i,i+ 1 is determined 
by the character of the qi -th singularity. 

In order to satisfy the unitarity condition (30) 
and (31) for the scattering amplitude (40), it suf­
fices to incluae in (40) only the terms with q1 = q2 

= ... = qu_t> i.e., to substitute in the right-hand 
side of (31) the asymptotic form of the inelastic 
amplitudes 

.' n-1 

X exp {--..!..!!_ 2J xr Si, i+l}. 
q i=l 

(41) 

This quantity also defines the asymptotic amplitude 
for the formation of showers. The coefficients Cq 
depend not only on the total energies of the showers 
~i,i+t> but also on their other quantum numbers. 
This dependence is not shown explicitly in (41). 

Let us verify that by substitution of the asym­
ptotic form (41) in the right-hand side of the uni­
tarity condition (31) we reproduce precisely the 
imaginary part of the asymptotic elastic scatter­
ing amplitude in the form (39). For this purpose 
we consider a single term of the form of Fig. 5 
on the right-hand side of (31) which comes from 
the term in the asymptotic form (41) correspond­
ing to some value q = qa and from the analogous 
term in the asymptotic form of the complex con­
jugate amplitude s - 1 A* (n ...- 2 ), corresponding 
to q = C!f3· After integration over all va,riables 
defining the properties of the jets (in the c.m.s. 
of the particles of each jet ) we obtain for this 
term, in analogy to (32) and (33), 

n-1 
a~"· ~l (p', p) = ~ a~::,) (p', p), (42) 

{ ,n~1[ 1 •, qa:·~· ')2 
x exp - fo ~ q (X;+. -'-

i=J a: q(X ' q[J 

a and a' in Fig. 5) have the values 

-qa. ' 
X ---X 
a= qa:+q/3 

where K' is the transverse component of the dif­
ference p'- p. For qa = q{3 this coordinate sys­
tern coincides with the one in which formulas (32) 
and (33) are written 

According to (41), the right-hand side of the 
unitarity condition (30) is equal to the sum of the 
quantities a~f. a) over all singularities of the reg­
geons in both parts of Fig. 5. As is seen immedi­
ately, the entire K' 2 dependence of the right-hand 
side of (42) is separated out in the form of a factor 
exp. {- j~ (qa: + q13t 1x' 2 (26)} exactly as in (32). In 
other words, the right-hand side of the unitarity 
condition (30) has precisely the form (39) with q 
= qa + q13. The coefficient Cq( ~) in (39) is re­
produced in the form of a sum of terms of the type 

~ Cqa:, qil (£) Oq, qa:+qil· 

qa;, q[J 

It is entirely possible that all these coefficients 
can be matched on both sides of (30) by an appro­
priate choice of the vertex functions in (27). If this 
can be done, then, in particular, the dependence of 
the vertex functions in (27) on the total energies 
(or masses, i.e., numbers of particles) of the 
various jets is determined. Thus such an experi­
mentally important characteristic of the inelastic 
processes as the average multiplicity of showers 
is determined. In any case, it is clear now that the 
K2 dependence of the two sides of the unitarity con­
dition (30) can be "matched" only if the j plane 
contains, besides the vacuum pole, a system of 
singularities (38) condensing towards the point 
j = 1. 

The further investigation of the unitarity con­
dition in the s channel, in particular, not only 
for the elastic scattering amplitude as in (30), 
but also for the inelastic amplitudes, is of con­
siderable interest. 

APPENDIX 

Let us obtain a lower estimate for the multiple 
integral (23): 

I (r:) a-~" d~2 ~'f" d~s <n,-t-" d~n, 
n, "' = .. ~- ~2. \. t2_ <3' . . \ < < 

'- " " Sn1-1- Sn 1 (n1-I) I. (n1-2) I. I. 

(A.1) 

(43) Integrating (1) over ~n1' we obtain the following in­
tegral over ~n1 - 1 : 

In writing down this expression, we have chosen 
the coordinate system such that the transverse 
components of the momenta p and p' (particles 

(A.2) 
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At the lower limit the integrand vanishes. Let 
us multiply and divide the integrand by ~n1 -1 - 211.. 
Since the factor (sn,-1 -:- 2A.t1 In [ (sn,-1 - A.)/A.] de­
creases monotonically as one goes from the lower 
to the upper limit, it can be taken outside the in­
tegral at the upper limit. This only decreases the 
value of the integral (1). The remaining integral 
over ~n1 - 1 is easily evaluated, so that the integral 
over ~n1 _ 2 has the form 

x [ (sn,-2 - 2A.) In sn,-2;: 21.- (sn,-2 - 3A.)] d~n,-2· (A. 3) 

This expression also vanishes at the lower limit. 
Therefore, before the integration over ~n1 - 2 we 
multiply and divide the integrand by ( ~n1 _ 2 - 311. )2 

and take the quantity 

"n1-2 (t _ 2A.) ) "n,-2 _ (t _ 3/,) In(< - 2/.) [ < -2/. ] 
~ - 3/. \,n,-2 n ). \,n,-2 

n 1-2 (A.4) 

outside the integral evaluated at the upper limit 
(at the minimum). Then we compute the integral 
over ~n1 _2 . 

We proceed analogously in the calculation of all 
further integrals in (1). As a result, we obtain for 
Int ( ~ ) 

I (t)> 2 I ~-(n.,-1)/. 
n, \, [£-n,/.](n,-1)(nt-2) n ). 

X [(~-(n,-1)A.)In £-(n~- 1 )/. +Ir] 

X [(s-(n1 -1)A.)2 ln ;-(n\:- 1)/. +Ir] 

... [(£- (n1- 1) A.t'-2 + In,-2], (A.5) 

where Ir is a polynomial of r -th degree in ~. 

It is easy to show that the coefficient of the 
largest term in ~ in Ir is 

r-1 
"\:1 em (-1)' LJ (-1 -)m __ _ 

r-rn 
m~O 

a number which increases slowly in absolute value 
as r increases. For ~ » 1 and ln ~ » 1, the 
polynomials Ir in the square brackets in (A.5) can 
be neglected. We then obtain for In1 the following 
lower estimate: 

I > [~- (n1 -1)). J(n1-1) (n 1-2)/~ 
n, e- n,J. 

X Jnn,-I ~-(n~-1)/. >Inn,-1£-(~-1)/.. 

Analogously, we obtain a lower estimate for the 
integral In -n1: 

I -I >I n-n,-r E-(n-n,-1)1. 
n,-n-n, n I. • 
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