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The ground state energy, the chemical potential and the magnitude of the gap in the energy 
spectrum of the even-even nuclei Kr 86 , Sr88 , Sr90 , Ba136 , and Ce 140 are calculated for large 
deformations on the basis of the anisotropic oscillator model. 

THE energy characteristics of the ground states 
and of single particle excited states of deformed 
nuclei have been obtained in a number of papers[1 • 2 ~ 
However, the discussion in these papers was re­
stricted to deformations not exceeding o = 0.3 and 
which in fact refer only to the equilibrium deforma­
tions of nuclei. It is of interest, for example in the 
study of the process of fission, to obtain the depen­
dence of the energy characteristics on the deforma­
tion for considerably larger values of the deforma­
tion under conditions when the deformation can 
certainly not be regarded as an equilibrium defor­
mation. 

The deformation process is accompanied by a 
change in the self-consistent field and by a rear­
rangement of the single particle levels in the nu­
cleus. However, the times characterizing the 
deformations of the nucleus as a whole are con­
siderably larger than the times of single particle 
relaxations, and, therefore, the deformation process 
can be regarded as being adiabatic. [ 3J In other 
words, in the process of deformation the nucleus 
passes only through those states which are ener­
getically the most favorable for each given value of 
the deformation, and in the single particle model 
this corresponds to the nucleons filling the lowest 
energy levels. 

Thus, in order to evaluate the dependence of the 
energy of the ground state of the nucleus on the 
deformation it is necessary to know the behavior 
of the single particle levels under a deformation of 
the self-consistent field. At the same time one 
should take into account the effects of pairing, and 
for this it is necessary to solve the system of 
equations for the gap and for the chemical potential 
utilizing a system of single particle levels. 

In order to evaluate the system of single parti­
cle levels for large deformations one can utilize 
the anisotropic oscillator model with terms of the 
type 12 and s ·1 [1J. But in such an approach the con­
dition of self-consistency of the problem is violated. 
Thus, for example, the quadrupole moment of the 

nucleus obtained as the sum of single particle 
quadrupole moments is considerably larger." than 
the value of the quadrupole moment given by the 
liquid drop model. At the same time it is clear 
that the value of the quadrupole moment is correctly 
given by the drop model since, on the one hand, the 
approximation of constant density of nuclear ma­
terial is sufficiently good, and, on the other hand, 
the quadrupole moment is determined only by the 
mass distribution. Therefore, in order for the 
problem to be self consistent a subsidiary condi­
tion must be imposed on the system of single par­
ticle levels. In the present article we have chosen 
for such a condition the agreement of the quadrupole 
moment of the nucleus computed in accordance with 
the single particle model, with the quadrupole mo­
ment obtained from the drop model. 

The following program of calculation follows 
from what we have just said: 1) selection of the 
single particle Hamiltonian; 2) making the prob­
lem self-consistent; 3) taking the effects of pairing 
into account. In practical calculations it turns out 
to be more convenient to combine items 2) and 3). 

We choose the single particle Hamiltonian in the 
form 

(1) 

where Hose is the Hamiltonian for the anisotropic 
oscillator, 1 is the operator for the orbital angular 
momentum, s is the spin operator, C and Dare 
constants. We restrict ourselves to a considera­
tion of axially-symmetric deformations. For the 
deformation parameter we take the square of the 
eccentricity E = 1 - (a/b) 2 where a is the semi­
minor and b is the semimajor axis of the ellipsoid 
(we consider ellipsoidally-deformed nuclei). The 
Nilsson parameter o is related to E by the follow-
ing equation: 

() = [1- (1- e)'l•]/(1- e)'l•. 

Taking into account the constancy of the nuclear 
volume (cf. [tJ) we shall take for the dependence on 
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the deformation of the longitudinal w 11 and of the 
transverse w 1 frequencies of the oscillator the 
expressions 

w 11 = w0 (1-c,)'/a, WJ. = w0 (1- e)-'la, 

where w 0 coincides with Nilsson's quantity w ~. 
The constants appearing in the Hamiltonian must 
be chosen so as to obtain agreement with experi­
ment. Since within the range of deformations con­
sidered by us there are no experimental data, we 
shall take the values of the constants C and D from 
Nilsson's article [ 1]. 

When pairing occurs the system of nucleons 
(protons or neutrons) is described by the Hamil­
tonian [2,4] 

where E~ are single-particle energy levels. In 
order to take into account the conditions of the con­
servation of the number of particles N and of the 
consistency of the problem with respect to the value 
of the quadrupole moment Q we add to the Hamil­
tonian (2) the operators for the number of particles 
N = ~ a~u av~ and for the quadrupole moment Q vu v 

multiplied by appropriate Lagrangian multipliers 
A and J.1.: 

fi = ~ (e~- A.) a~aava- G ~ a~+a~_av'-av'+- fLQ. 
\10 vv' 

After this the pairing is taken into account in the 
usual manner. 

Following Belyaev [4], we obtain a system of 
equations from which we can find J.l.• A, and £:.-the 
energy gap in the nucleon spectrum: 

(3) 

where qv is the single-particle quadrupole mo­
ment, Q0 is the quadrupole moment of the system 
of nucleons calculated in accordance with the drop 
model. The energy of the ground state of the 
Hamiltonian (2) is given in this case by the formula 

The details of the subsequent steps in the calcula­
tions are as follows. We find the system of levels 
E~ of the single -particle Hamiltonian (1). The 

levels are characterized by the quantum numbers 
n11 (the number of longitudinal oscillations), n 1 
(the number of transverse oscillations), A (the 
component of the orbital angular momentum along 
the symmetry axis), ~ (the component of the spin 
along the symmetry axis). The terms Cl· s, D12 

are taken into account in the first order perturba­
tion theory approximation. 

The solution of the system (3) was carried out 
separately for neutrons and for protons. The sum­
mation in (3) is taken over the 32 single-particle 
levels near the Fermi surface. The pair interac­
tion constant G is selected by imposing the condi­
tion that £:. should coincide with the magnitude of 
the gap in the neutron and the proton spectra for 
zero deformations [sJ. 

The single-particle quadrupole moment is cal­
culated by means of the formula 

qv = 2 ~ (n II + 1/ 2 _ nl + 1 ) ; 
m w 11 2w..!. 

m is the nucleon mass. The quadrupole moment of 
the system of nucleons in the liquid drop model is 
given by the expression 

Qo = +NR~ej(i- c,)'i•, 

where Ro is the radius of the undeformed nucleus. 
In our calculations we have assumed R 0 = 1.2 
x lo-13 A 113 em. The quantity n w 0 is set equal to 
41A113 MeV. 

The model we have chosen correctly describes 

A[MeV] 
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FIG. 1. Dependence of !l on the deformation, for neutron 
systems of the nuclei Ba~!•, Ce~:o (G = 0.0181iw0 ). 
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FIG. 2. Dependence on the deformation of the chemical 
potential of the neutron system of the nucleus Kr~:. 
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FIG. 3. Dependence of K( E) on the deformation: • - Kr~:; 

+ - Ba~!•; o - Ce~:o; o- S~~. 

the general tendency in the variation of E, /::,., and 
A. with increasing deformation. Thus, for example, 
/::,. decreases with increasing deformation, although 
for certain values of E one observes an increase 
in /::,. with increasing deformation, and this is a 
manifestation of the fact that the single-particle 
levels are crowded together near the Fermi sur­
face for an appropriate value of the deformation. 

The results of the calculations are presented in 
the table. It can be seen that the neutron system 
does not affect the proton system very much, and 
vice versa. It is characteristic that the dependence 
of t:,.n on the deformation is smoother in the case 
of closed shells (N = 50, N = 80) than for unfilled 
shells. A typical dependence of t:,. on the deforma­
tion is shown in Fig. 1. The dependence on the 

deformation of the chemical potential A. for neu­
tron and for proton svstems is of the same nature. 

Figure 2 shows this dependence for the neutron 
system of the nucleus Kr~:. 

For E ? 0.4 the energy of nuclear deformation 
can be written in the form 

E (e)= K (e) S (e) ~K(e) (1- e)-'I•A'/,, 

where S (E) is the surface of the deformed nucleus 
and K (E) is the surface tension coefficient. For 
E ? 0.4 the shell effects are unimportant, and the 
deformation energy is determined by the magnitude 
of the nuclear surface, with the surface tension 
K (E) being independent of N and Z, and increasing 
with increasing deformation. This dependence is 
shown in Fig. 3. 

The dependence of the effective energy levels 
( Eeff = E~ - J.Lqv) on the deformation agrees well 
with Nilsson's system [tJ of single-particle levels 
(for the range of deformations E = 0 - 0.4). For 
deformations corresponding to the fission barrier 
E = 0. 7 (6 = 0.64), the energy of nuclear deforma­
tion is of the order of hundreds of MeV, and there­
fore, in this range of deformations the model 
chosen cannot be regarded as satisfactory. More­
over, the anisotropic oscillator model in principle 
cannot yield a fission barrier. 

The application of the results of these calcula­
tions to the determination of the magnitude of the 
deformation of the fission fragments immediately 
after the rupture of the neck yields E ~ 0.25. 
Calculations on the basis of the liquid drop model[3J 
lead to 6 = 0.25 (E = 0.37). 

In conclusion the author expresses his gratitude 

Nucleus\ G/lioo0 ~~\ 0.00 I 0.10 I 0.20 I 0.30 I 0.~0 I 0.50 I 0,55 I 0.60 I 0.65 I 0.70 

{ 
0.020 ~n 1.24 1.23 1.21 1.19 

l(r~~ 0.024 ~p 1.26 1.26 1.24 1.21 
E 0,0 3,5 20.0 41 

f 
0.020 ~n 1,23 1.21 1,19 1.16 

ST~~ 0.024 ~p 0.98 0,95 0,90 0.82 
l E o,o 3,1 15,3 40 

{ 
0.020 ~n 1.37 1.36 1.35 1,32 

Sr~~ 0.024 ~p 0.98 0,94 0.88 0.80 
E 0,0 3.8 17,0 43 

0,018 ~n 0,96 1,15 1.12 1.07 
Bal36 { 0,017 ~p 1,00 0,99 0,98 0.95 56 

E 0,0 -3,3 13,7 39 
0.018 ~n 1,08 1 '12 1,08 1.02 CeHO{ 0,017 ~p 0,98 0,97 0,95 0.91 58 

E 0.0 -0.5 15:6 51 

1.16 1.12 1.08 
1,03 0.93 0,86 

82 152 200 
1.13 1.07 1.03 
0. 79 0.82 0.82 

81 150 209 
1.28 1.24 1,21 
0,81 0,84 0.84 

86 158 208 
1.00 0,87 0.79 
0,27 0.48 0,49 

101 185 253 
0,95 0.93 0,93 
0,63 0.63 0.61 

98 182 253 

1.07 1.04 
0.78 0,68 

270 340 
0,98 0.91 
0,82 0,81 

260 340 
1.18 0,98 
0.83 0,82 

270 350 
0,78 0,77 
0.48 0,45 

340 455 
0.89 0.83 
0.58 0.52 

345 470 

0.9 5 
0.5 6 

430 
O.K 3 

8 0, 7 
440 
0.81 
0.7 9 

460 
0,7" 
0.1 

570 
0. 7 
0.2 

590 

2 
5 

For each nucleus the first line gives the neutron constant of the pair interaction Gn 
and the gap ~n [MeV] in the neutron spectrum, the second line gives the same quantities 
for the proton system, and the third line gives the energy of deformation of the nucleus 
E (MeV]. 
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