NEUTRON POLARIZATION IN $B^{11}(d, n) C^{12}$, $C^{12*}REACTIONS$

V. A. SMOTRYAEV and I. S. TROSTIN

Institute of Theoretical and Experimental Physics

Submitted to JETP editor November 5, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1494-1495 (April, 1964)

We measured the polarization $P_n(\theta_n)$ of the neutrons in the reaction $B^{11}(d, n)C^{12}$ for the ground and first-excited levels of C^{12} (Figs. 1 and 2).

The polarization measurements were made with the extracted beam of the cyclotron of the Institute of Theoretical and Experimental Physics, with deuteron energy $E_d = 12.3 \pm 0.3$ MeV; the beam divergence angle in the reaction plane was ~ 0.5°, and the target area subtended by the beam was 3×5 mm, with the average current ~ 2.5μ A.

The target was made of boron of natural isotopic composition; the target thickness was ~ 20 mg/cm² (~ 1.8 MeV). The boron was pressed in a thin homogeneous layer on a substrate of tantalum and covered with platinum foil (103 mg/cm²). The average deuteron energy in the reaction was 9.3 ± 1.2 MeV.

The polarization of the reaction neutrons was

FIG. 1. Polarization of neutrons in $B^{11}(d, n)C^{12}$, corresponding to the ground state of the C^{12} nucleus.

FIG. 2. Polarization of neutrons in the reaction $B^{11}(d, n)C^{12}$, corresponding to the first excited level of C^{12} .

determined from the azimuthal asymmetry of the scattering by He⁴. The polarimeter consisted of a group of directional helium-filled proportional counters^[1]. The polarimeter was set to the investigated neutron-spectrum interval by selecting the helium pressure in the counter [2]. The angle of rotation of the analyzer counters during the measurement of the azimuthal scattering asymmetry was $\varphi_{\alpha} = 20 - 28^{\circ} (2\varphi_{\alpha} = 180^{\circ} - \vartheta_{\alpha}, \text{ where}$ ϑ_{α} — angle of scattering of neutrons by He⁴ nuclei in the center of mass system). The polarimeter was calibrated by α particles from Pu²³⁹. The collimated α source was installed in the end window of a proportional counter. The amplitude resolution of the polarimeter counter was $\sim 6\%$. The measurements were monitored by integrating the current to the target.

The polarization produced upon scattering of the neutrons by $\text{He}^{4[3]}$ was averaged over the α -particle recoil angles φ_{α} ($\pm \Delta \varphi_{\alpha} = 4 - 6^{\circ}$).

In determining the polarization of the neutrons in the reactions $B^{12}(d, n)C^{12}$, C^{12*} account was taken of corrections for the anisotropy of the angular distribution of the neutrons^[4]; the values of the corrections did not exceed 6%. Only statistical errors are indicated everywhere.

The background in the working channels of the analyzer did not exceed 15%. The positive normal direction is $n = k_d \times k_n$.

¹ Levintov, Miller, and Shamshev, JETP 32, 274 (1957), Soviet Phys. JETP 5, 258 (1957).

² Levintov, Okorokov, Smotryaev, Tolchenkov, and Trostin, JETP 44, 1437 (1963), Soviet Phys. JETP 17, 965 (1963).

³R. B. Perkins and J. E. Simmons, Phys. Rev. 124, 1153 (1961).

⁴ B. Zeidman and J. M. Fowler, Phys. Rev. 112, 2020 (1958).

Translated by J. G. Adashko 219

1012