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The values of the external field, at which quantized magnetic flux filaments first appear in 
thin layers of superconductors of the second group, are found. It is shown that at this value 
the curve M ( H0 ) exhibits a break and possesses a vertical tangent. 

As is well known (see [l, 2]) thin superconduct
ing films which are condensed on a substrate kept 
at helium temperature and not subject to annealing, 
display a behavior which is characteristic of super
conductors of the second group. The author has 
calculated earlier [3] the dependence of the critical 
field of such films on the film thickness. Khukhar
reva [2] measured the critical field of films simul
taneously with measuring their electric conductiv
ity in the normal state. This makes it possible to 
determine the depth of penetration o(T) for such 
films by means of a formula derived by the author 
with Gor'kovC4J, and then compare the experimen
tal data with the results obtained in [3] without 
refitting any parameters whatever. The agree
ment between theory and experiment turns out to 
be fully satisfactory (see [2] ). 

It was shown earlier [5 J that the transition of 
a bulky superconductor of the second group from 
the superconducting state into the normal state 
occurs not abruptly but gradually, stretching over 
an entire interval of fields. In this interval there 
exists the so-called mixed state, in which the 
superconductor is gradually filled with quantized 
filaments of magnetic flux. The value of the lower 
critical field Hc1 and the form of the B ( H0 ) curve 
in the mixed -state region, determined in [5 J, have 
been experimentally confirmed many times 
(see [S, 7J). 

It is quite obvious that the same character of 
transition is retained also for layers of super
conductors of the second group which are not too 
thin. In the present paper we shall find the field 
Hc 1 (d) corresponding to the field Hc 1 for a bulky 
specimen. At this value of the external field there 
penetrate into a film of thickness d, at first, 
quantized filaments of flux. We shall consider 
also how the penetration of the filaments affects 

the dependence of the magnetic moment of the 
film on the field. 

As in [5], we confine ourselves to the case 
T c - T « T c, and employ the equations of Ginz
burg and LandauC8J. In the case when K » 1 and 
the distance between the vortices is large, as 
shown in [5], the equation for the magnetic field 
can be written in the form 1l 

2n 
tlH- H = - ?{ ~ (\ (r- r;), (1) 

where ri -coordinates of the centers of the fila
ments (we use the same units for H and r as in 
[ 5J). We assume that the film is perpendicular 
to the x axis and occupies a region of space x 
= - d/2 to d/2, and that the magnetic field is di
rected along the z axis. The plate thickness d 
is assumed large compared with 1/K. 

In the absence of filaments, the solution of 
equation (1) is of the form 

(o) ch x 
H = H 0 ch (d/2)' (2) * 

where H0 is the external field. We now assume 
that flux filaments have penetrated into the film. 
From symmetry considerations it follows that 
when the distance between filaments is large, 

1> Actually, an equation of this type in the case of K > > 1 
is valid for all temperatures. It is more conveniently written 
in the usual units 

where <1>0 = rreh/e is the magnetic-flux quantum and o is the 
temperature-dependent depth of penetration. The value of the 
critical field obtained in this manner is valid with logarithmic 
accuracy, that is, when lnK >> 1 (we recall that K changes 
little with temperature). 

*ch =cosh. 
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their centers will be located in the plane x = 0 
and will be periodic in y, that is, y =rna, where 
m is an integer and a is the period, which we 
shall assume to be large compared with d. In 
view of the linearity of (1), the solution has the 
form of the sum of the field H<0> and the fields of 
the individual filaments, obtained under the con
dition H = 0 on the boundaries. 

Let us find the field of an individual filament 
with center coordinates x = 0 and y = rna. To this 
end we expand the field H in a Fourier integral 
with respect to the coordinate y: 

00 

H':n_ = ~ H" (x) eik(y-ma> ~~ • (3) 
-00 

From (1) we obtain 

d2flk 21t (4) 
dx2 - (k2 + 1) Hk = - x {) (x). 

The solution of this equation, which vanishes at x 
= ±d/2, is of the form 

If (x) = ~ ch [ vk'TI (d -I X 1)]- ch(Vk2"+! x] (5)* 
" x V k2 + 1 sh [ V k2 + 1 d) 

The over -all magnetic field is 

H = H<o> + ~H':n_. (6) 
m 

We now calculate the energy. Inasmuch as the 
distances between the filaments themselves and 
the filaments and the boundaries are much larger 
than 1/ K, vicinities of order 1/ K about the cen
ters make the same contribution to the energy as 
in the case of isolated filaments. In view of this, 
it is convenient to separate that part of the energy 
which corresponds to the isolated filaments. In 
full agreement with [5J, we obtain for the energy 
per unit volume 

Y/2 d/2 

FB='*;l +j lim{}~ dy ldx [HJ+(VHd)2 l 
a Y-+oo ~ j 

-Y/2 -d/2 

Y/2 oo 

y ~ dy ~ dx [H!, + (VH00) 2l}, 
-¥12 -oo 

(7) 

where Hd and H00 are respectively the fields in 
a plate of thickness d and in infinite space as 
a- oo and E ( oo) is the energy per unit length of 
the isolated filament. Substituting (6) and inte
grating by parts, we get 

F B = e (oo) + H0 {[aH<0l + _.!_ f d aH':n_=o,d] 
ad d ax a J y ax X=d/2 

-00 

-oo 

*sh =sinh. 

+ ~~ { H(o) (0) + ~ !H':n=o,d -- H':n=o,oolx=y=o 

+ ~ 2} !H':n=o,dlx=o,y=ma}. 
m""o 

Substituting (2), (3), and (5) in (8) we get 

lP F =~th _!}__ + ll (oo) 
B d 2 ad 

00 

- ~ \' (1- th ( Jfk2 + 1 !!._)) dk 
x 2ad J 2 V k2 + 1 

0 

(8) 

The first term of this expression corresponds 
to the energy in the absence of the filaments, the 
next two terms represent the energy of the non
interacting filaments in the plate, and the last term 
describes the interaction between the filaments. 
When a » d this term decreases exponentially. 

It will be convenient in what follows to change 
over to the energy in a specified field H0• Its value 
is FH = FB- 2BH0, where B is the induction. The 
average value of the field (6) is obtained in the form 

It follows therefore that 

F - - 2H~ th .:!_ - 41tHo (1- ·h-1!!._) + ll (oo) 
H - d 2 xad c 2 ad 

00 

- ~ \ [1- th (~Jfk2 + 1)] dk 
x 2ad J 2 V k2 -)- 1 

0 
00 

+ _n_ \ th (_!}__ ~~-.2 - ') ~ ikma dk • 
x 2ad J 2 r k + 1 k.J e V k2 + 1 

-oo m-#0 

(11)' 

To determine the first critical field we put 
a - oo • The interaction between the filaments 
[that is, the last term in (11)] can then be neg
lected. The addition to the energy due to the iso
lated filaments is proportional to 1/a. Equating 
to zero the sum of the terms proportional to 1/a, 
we obtain the value of the field Hct. starting with 
which the appearance of the filaments becomes 
energetically convenient. It is found to be 2> 

*th =tanh. 
2>As was already noted earlier (footnote 1) this formula, 

together with all the following ones, is valid in the case 
K >> 1 with logarithmic accuracy at all temperatures. In order 
to have an expression in ordinary units, it is necessary to 
replace in the formulas the common coefficient 1/2K by 
c1i/4e82(T), d by d/8(T), and leave K under the logarithm 
sign the same as before. In the case of thin films, the condi
tion for the applicability of the formula will be ln[Kd/8(T)] 
» 1. 
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Hn (d) = { Hn ( oo) 

co 

- -{x ~ [ 1 - th ( f y k2 + 1 ) J V k~k+ 1 } I ( 1 - ch- 1 f) . 
0 

(12) 

In this expression the integral cannot be calculated 
exactly. It can be represented, however, in the 
form of infinite series: 

n=l 

( d )-1 x 1 - ch-1 2 , (12') 

1 { rxd 0 Hn (d) = :-J In , + .081 + 
-X ~J:rt 

~ [[(!nf+ ( n- j n-1/2 
n=l 

(12") 

where y = eC = 1. 78; K0 is the Hankel function of 
imaginary argument; we have put in accordance 
with [S] H0doo) = (ln K + 0.081 )/2K. 

Formulas (12') and (12") enable us to write 
down immediately the limiting relations 

Hn (d) = Hn ( oo) (1 + 2e-d/2), d ';? 1; 

4 ( rxd ) Hct (d) = xd" In n + 0.081 , (13) 

An interesting result is that although the mag
netic field of each filament attenuates at a distance 
on the order of unity ( o in the ordinary units ) , 
in the case of K » 1 the filaments penetrate into a 
plate of thickness d « 1. According to (13), with 
increasing plate thickness the function H01 (d) in
creases essentially in proportion to 1/d2• At the 
same time, according to [JJ, when d » 1/K, 
Hc2 (d) is practically independent of the thickness 
and is equal to K. Both fields become comparable, 
as expected, at d'"" 1/K. This means that the fila
ments cannot penetrate in thinner plates, and the 
transition from the superconducting state into the 
normal state proceeds like a second -order phase 
transition without formation of a mixed phase. 

We now consider the question of the manifesta
tion of the field He 1 (d) in experiments. To this 
end we find the form of the magnetic moment 
curve M ( H0 ) in the vicinity of H0 = H01 (d). It is 
first necessary to calculate the dependence of the 
distance between the filaments a on the magnetic 
field H0• This can be done with the aid of the re
lation 

(14) 

Since an appreciable role is played in this case 
by the interaction between the filaments, we con-

sider the last term in (11). Going over to a con
tour integral with respect to k, we obtain in place 
of the integral the sum of the series 

8:rt2 co exp [-a V [:rt (2n -1)/dj2 + 1] 

x2ad2 ~ V!rr(2n-1)/dJ"+1 • (15) 
11.=1 

Inasmuch as the distance between the filaments is 
large in the vicinity of Hc1 (d), it is sufficient to 
take the limiting expression for large a. It is easy 
to see that in the cases a » d2 » 1 and a » d, 
d « 1, the most important is the first term in the 
sum (15). In the case when d2 »a » d » 1 the 
terms of the sum differ little, so that this sum 
can be replaced by an integral. As a result we 
get 

8:rt2 exp[-aV~l 
x,2ad" V :rt2jd2 + 1 

a';? max (d, d2 ); (16') 

(2:rt)';, 
--e-a 
x,2a 'i•d • 

d2 ';? a ';? d ';? 1. (16 ") 

We now replace the last term in (11) by (16') or 
(16"), and substitute FH and B (10) in (14). In the 
differentiation of FH we shall assume that a is a 
function of H0• As a result we obtain an equation 
for the determination of a: 

H _ H (d) = 2:rta exp [-a V :rt2jd2 + 1] 
o c1 xd[1-rhl(d/2)] ' 

a';? max (d, d2); (17') 

(17") 

Expressing a in terms of B with the aid of 
(10), we obtain in implicit form the dependence 
B ( H0 ) in the vicinity a » d, that is, 0 < H0 

-H01 (d) « H01 (d): 

4:rt2 ( 2H d) -1 H 0 - Hq (d) = (xd)2 B - T th 2 

xexp {- !~ (1-eh-1 f)V~+1(B- 2~10 thff1} 
for a';? max (d, d2); (18') 

. rr ( 2H0)-I [ 2:rt I ( 2H0)J llu- Hn (d)= x'f,d'f, B- d .exp - xd B-y. 

for d2 ';? a ';? d ';? 1. (18") 

It follows from (18') that as H0 - Hc1 (d) + 0 

B --+ 2F~ th _!!:. + 0 d 2 , 
dHo--+ + 0 
dB . 

All this indicates that when H0 = He 1 ( d ) the lin
earity of the magnetic moment M ( H0 ), described by 
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' ( 2 d ) 4n:M = H 0 Ci th 2 - 1 , 

is violated. The curve has a break at the point 
Ret (d), the magnetic moment begins to decrease 
in absolute magnitude, and, the curve M (H0) has aver
tical tangent on the side of the fields larger than 
Ret (d). Such a behavior of the M ( H0 ) curve at 
the point Ret (d) is perfectly analogous to the case 
of a bulky superconductor and makes it possible to 
identify the field Ret (d) on the experimental 
curves. 

It must be stated that the scheme described 
makes it possible in principle to determine the de
pendence M ( H0 ) not only for H0 close to Ret• but 
also for the entire region of fields where the dis
tance between filaments exceeds 1/ K. Actually, 
however, this problem is made very difficult by 
the fact that when a ...... d a great variety of ar
rangements of filaments is possible (bent sur
faces, lattices, etc.). Each of these structures 
leads to cumbersome formulas, making the selec
tion of a more convenient structure very difficult. 

In the comparison of the formula for Ret (d) 
with the experimental data, it is necessary to bear 
in mind that their applicability is limited by the 
condition K » 1. Inasmuch as experimentally, as 
a rule, there are observed not too large values of 
K, for a better comparison it is sensible to carry 
out interpolations similar to that which was made 
for Ret in the bulky superconductor by Goodman [7]. 

In view of the complexity of the formula, in the 
case of arbitrary thickness we shall carry out such 
an interpolation only for the limiting cases d » 1 
and d « 1. 

We must start from the fact that when K - 1/[2 
we should obtain a superconductor of the first 
group, in which the fields Hct(d) and Hc 2(d) co
incide. According to [S] we have for K = 1//2 

Hc 3 (d)= 11}/2 + J/2/nde-d'i•, d> 1; (19') 

Hc2 (d) = 2}/3/d, d ~ 1. (19") 

By way of interpolation between formulas (13) and 
(19) we can use the formulas 

1 
If c1 (d) = 2X [ln (x + 1.8) + 0.081] 

x[ 1 + 2 (t - -v~x ) e-d/2 + v~ de-d'js], 

d>1; (20') 

4 
Hcl (d) = xd2 Un (0.62xd + 1) + 0.18d], d ~ 1. (20") 

Unfortunately, no measurements of the moment 
have been made as yet for thin low-temperature 
films. This makes it impossible to compare the 
obtained formulas with experiment. 
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