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The field expansion of the magnetic moment of antiferromagnetic substances may contain 
quadratic (and in general even) terms with respect to H, m = xH + bH2 + cH3 + ... , in con
trast with the expansion for paramagnetic substances which never has even powers. It is 
shown that, depending on the symmetry of the substance and on the type of antiferromagnetic 
transition, the forces responsible for the appearance of even powers may be of an exchange 
as well as of a relativistic nature. Some concrete examples are considered. The existence 
of ferromagnetic substances possessing a peculiar type of "latent" ferromagnetism is men
tioned. In such substances the mean ionic magnetic moments differ with respect to their 
magnitude as well as to their direction, although, in distinction to ferrites, all magnetic ions 
in them are the same and are located at crystallographically equivalent positions. This 
''latent" antiferromagnetism changes the temperature dependence of the spontaneous moment 
near the ferromagnetic transition point. 

1. INTRODUCTION 

IT is known that for paramagnetic substances the 
expansion of the magnetic moment in the field H 
contains only odd powers of H: m = xH + cH3 

+ . . . . This is because the magnetic symmetry 
group of the paramagnet always contains the time 
reversal operator R, which changes the signs of 
the magnetic moments and fields. The situation 
changes for antiferromagnets. The magnetic sym
metry group of an antiferromagnetic crystal may 
either not contain the element R at all or may 
have it only in combinations with other symmetry 
elements. Then, in general, the appearance of 
even powers of H is not forbidden, and we may 
write for m an expansion in the general form: 

m; = X;~cH,, + biklH~cHz + CiiamH~cHzHm +... . (1) 

Sirotin [tJ has established the general form of 
the terms quadratic in H for all 122 magnetic 
point groups. Unfortunately, the formal analysis 
has nothing to say about the order of magnitude of 
the coefficients b nor about what kind of forces
exchange or relativistic-cause the appearance of 
the quadratic terms. The latter determines 
whether it is possible to observe nonlinear effects 
experimentally. In fact, if the quantities b are due 
to exchange, then they are of order b ~ x!He, 
where x is the usual susceptibility and He is the 
so-called exchange field (according to existing 
experimental data He ~ 5 x 105-106 Oe). The 

quantities c are always of exchange nature and 
are of order c ~ x/H~. Thus, in fields of 104 to 
5 x 104 Oe the corrections associated with the 
quadratic terms amount to H/He ~ 1 to 10% and 
can be detected. Corrections from terms cubic 
in the field do not exceed 1% under these condi
tions and can be neglected. 

Another situation arises when the quantities b 
are of relativistic nature. Then b ~ ax/He, 
where a is the ratio of the relativistic energy to 
the exchange energy and usually does not exceed 
10-2• In this case, in fields of 5 x 104 to 105 Oe 
the corrections from the quadratic terms 
( ~ aH/He) are surely less than 1%, and it is 
scarcely possible to observe them at the present 
time. 

In Sec. 3 we shall show that among antiferro
magnetic substances there is at least one, namely 
U02, in which the coefficient b is due to exchange 
forces. In the two other antiferromagnets known 
to the authors in which the expansion of m con
tains quadratic terms-FeC03 and the low tem
perature modification of a-Fe 20 3-the coefficient 
b has a relativistic origin. 

In this paper (Sec. 2) we also consider a 
phenomenon, in principle highly significant in 
ferromagnetic substances, which can be called 
"latent" antiferromagnetism. In such a ferro
magnet the mean magnetic moments of the ions 
differ both in magnitude and in direction, although, 
in contrast to ferrites, the magnetic ions in it are 
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the same and are distributed among crystallograph
ically equivalent positions. The presence of 
"latent" antiferromagnetism alters the tempera
ture dependence of the spontaneous moment close 
to the ferromagnetic transition point. We shall 
consider "latent" antiferromagnetism in the ex
ample of a cubic face-centered crystal having the 
symmetry corresponding to close packing (space 
group 0~ [2] ) . 

2. ''LATENT'' ANTIFERROMAGNETISM 

We shall consider a cubic face-centered 
crystal the magnetic ions of which form a cubic 
face-centered lattice; the specific positions of 
the nonmagnetic ions is of no consequence to us 
(they should, however, not destroy the symmetry 
of the lattice formed by the magnetic ions, i.e., 
0~). At some temperature Tc let there take 
place a transition from the paramagnetic state to 
a ferro- or antiferromagnetic state, during which 
the cubic face-centered Bravais lattice is con
verted to a simple cubic one with the same edge 
length (naturally, the volume of the unit cell is 
doubled). After such a transition, the crystal in 
the magnetic sense becomes a system of four 
interpenetrating simple cubic sublattices, each of 
which is formed by ions of the type ( 000), ( 0 % %) , 
( Y2 0 %) , and ( % V2 0), respectively. 

The magnetic structure of the crystal is com
pletely determined if the spins of the ions belong
ing to each sublattice are given. We shall sym
bolize the spins of the ions situated respectively 
on the sublattices of type ( 000), ( 0 Y2 %) , ( % 0 V2), 
and ( 1/2% 0) by 81, s2, 83, and 84. 

Close to the transition point the spins 8i are 
small, and the thermodynamic potential ~ can be 
expanded as a power series in their components. 
The form of the expansion is determined from the 
condition of its invariance with respect to the sym
metry group of the paramagnetic phase of the 
crystal, i.e., with respect to the crystallographic 
group 0~ plus the transformation of time re
versal (transformation R). 

The 12-dimen8ional representation based on 
the vectors 8i is reducible. To find the irreduci
ble representations we introduce the vector m, 
equal to the sum 81 + s 2 + 83 + s4, and three 
"vectors" Z1, Z2, Z3: 

m = s1 + s2 -+- s3 + s4 

11 = s1 + s2 - s3 - s4 , 

12 = s1 - s2 + s3 - s4 , 

13 = s1 - St- s3 + s4 , 

s1 = 1/ 4 (m + 11 + 12 + 13}, 

s2 = 1/ 4 (m + 11 - 12 - 13), 

s3 = 1/ 4 (m - 11 + 12 - 18), 

s4 =-= 1/ 4 (m- 11 - 12 + 13). 

(2) 

The vector m, which represents the total mag-

netic moment of a unit cell after the phase transi
tion, transforms according to an irreducible 
representation. The 9-dimensional representation 
given by the three "vectors" li is reducible. It 
decomposes into two irreducible ones, a three 
dimensional one: Z1x, Z2y. Z3z, and a six-dimen
sional one: Z1y, Z1z, Z2x, l2z, l3X, lzy. 

The expansion of the thermodynamic potential 
~ to terms of fourth order in m and li has the 
form 

<D = 1/2A (l~ + l~ + Zi) + 1/2Bm2 + 1/2a (Zix + t;y + z;z) 
+ 1/4C (l~ + l~ + Zi)2 + 1/4D m + l~ + z:)+ 1/2E ((l1l2)2 

+ (l1la)2 + (12la)2) + F ((ml1) (l2la) + (ml2) (lila) 

+ (mla) (111~)) + 1/2 Gm2 (li + l~ + Zi) 

-t-1/2 I ((ml1}2 + (ml2)2 + (mla)2) + 1/4 Km4 • ( 3) 

Here we omit relativistic terms of the fourth 
order, which are not significant for what follows, 
while keeping a single relativistic invariant of 
the second order: fix + l ~y + nz. 

In the paramagnetic phase the coefficients A 
and B are greater than zero, and Zi and m equal 
to zero correspond to a minimum in ~. The 
transition to the antiferromagnetic or ferromag
netic state happens either at the point where A 
goes to zero (or A + a, a < 0) or where B 
vanishes. In the latter case, however, the sub
stance will be an ordinary ferromagnet below the 
transition point with m "# 0 and zi = 0, and we 
shall not consider it further, assuming henceforth 
that B > 0. 

At temperature T = Tc, where A vanishes 
(or A + a, if a < 0), the components of l i first 
become non-zero. As always in the theory of 
second-order phase transitions at temperatures 
near Tc, the quantities li ~ ( Tc- T) 112 . Since 
the expansion (3) contains an invariant linear in 
m, a non-zero spontaneous moment m will arise, 
in general, simultaneously with the appearance of 
l i. Obvious estimates show that thereby m ~ l { 
~ ( Tc- T) 312 . Thus, we have to do here with an 
unusual ferromagnetic transition in which the de
pendence of m on temperature is different from 
the usual m ~ ( Tc - T) 112 . ( Actually, owing to 
the presence in (3) of the relativistic term 
a ( l ix + l ~Y + l ~z ) the situation is somewhat more 
complicated (see below).) 

Close to the transition point, where l i 
~ ( Tc- T) 112 , m ~ ( Tc- T) 312 , the last three 
terms in (3) are small compared to Bm2, so that 
for m we obtain the expression 

m = - (FIB) {11 (1213) + l2 (1113) + 13 (l1l2)}· (4) 

On the other hand, since terms in ( 3) that contain 
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m are small in comparison with expressions that 
do not contain m, for the determination of the zi 
it suffices to minimize the expression 

a>'= 1/2A(ti + z; + l~) + 1/2a Uix + l~y + l~z) 
+ 114C (li _!_ Zi + 1~)2 -T· If4D (lt + ~~ + z:, 

(5) 

We shall begin with the case of temperatures 
not too close to the transition point, when we can 
neglect the second term in ( 5), which is due to 
relativistic interactions, in comparison with the 
first, an exchange term. Since a~ £~v2/Tcc2 , 
where v is a velocity of the order of atomic 
velocities, c is the speed of light, and £0 is a 
quantity of the order of atomic energies, the cor
responding temperature region is determined by 
the inequality Tc - T » £~ v2/Tcc2• On the other 
hand, we naturally assume that the condition Tc 
- T « Tc is fulfilled: this is necessary for the 
validity of the expansion ( 5) in powers of the l i. 
Since the magnitude of £~ v2/T~c2 does not as a 
rule exceed 0.01, there is a region where the 
inequality is fulfilled. 

Depending on the ratio between D and E, 
there are three possible states that fit the mini
mum condition for Eq. ( 5) without the relativistic 
term: 

I. D > 0, E > 0: II j_ I2 j_ 13 , Zi = l~ = l~; 
II. D < 0, E > D: I2 = I3 = 0, I1 =/= 0; 

III. E< 0, E <D: II = ± I2 = ± Ia. 

The orientation of the vectors l i relative to 
the crystallographic axes is determined by the 
relativistic terms in the expansion of <I>; in par
ticular, for a< 0, by the term V2 a( Zix + l~y 
+ l ~z), so that in this case in state I, l 1 is 
directed along the x axis, ~ along y, and l 3 
along z; in states II and III all non-zero Zi are 
directed along one of the four-fold axes. 

It can be seen at once from (4) that in states I 
and II the spqntaneous moment is absent. In state 
III the spontaneous moment lies along the saine 
four-fold axis, as does Zi, and has the modulus 

(6) 

Thus, for E < 0, E < D the crystal at these 
temperatures will be ferromagnetic with a spon
taneous moment m that depends on temperature 
according to the law ~ L3 ~ ( Tc- T) 312 , m « L 
~ ( Tc - T) t/2• Upon further cooling, when T be
comes of the order of Tc. Eq. (6) loses validity, 
and m is comparable to li in order of magnitude. 
The crystal is converted, consequently, to the 
usual ferromagnet (in the sense of the magnitude 

of its spontaneous moment); however, the average 
spins of the ions in the magnetic unit cell, even 
though directed along one axis, will differ in ab
solute magnitude and in sign. In particular, when 
Z1 = 12 = 13 it follows from (2) that 

It is important at this point to emphasize that 
in contrast to ferrites, all the magnetic ions are 
the same and, in the paramagnetic state, are to 
be found in crystallographically equivalent posi
tions.!) Hence, to distinguish the phenomenon de
scribed from ferrimagnetism, it is convenient to 
call it "latent" antiferromagnetism. The unique 
temperature dependence of the spontaneous 
moment established above (see Fig. 1) can serve 
as the macroscopic distinction of the latter from 
pure ferromagnetism and the ferromagnetism of 
ferrites. 

m 
m 

b 

m 

~ c J/! 

~r 
Tt; 

FIG. 1 

At temperatures such that Tc - T ~ £5v2/Tcc2, 

the contribution of the relativistic interactions 
becomes important. If a < 0 (and for simplicity 
we limit ourselves to this case only), the transi
tion from the paramagnetic state occurs at the 
point where A + a vanishes. Below the transition 
point only Z1x, 12~, Z3z will differ from zero, 
where~y either l tx = l~ = l~z = L2 /3 (state n, if 
D > 0, or l2y = Z3z = 0, nx = L2 (state II), if 
D < 0. In both these states, the spontaneous mo
ment is equal to zero, as can also be seen from 
Eq. (4). The transition to the ferromagnetic state 
(state III) takes place upon further lowering of the 
temperature by means of still another transition 
of the second kind (if, of course, the conditions 
E < 0, E < D are fulfilled). Without giving the 
calculations, we shall present the final results. 

For D > 0 the transition to the ferromagnetic 
state occurs at the temperature T* at which the 

1> Actually, in the ferromagnetic region there occurs a 
magnetostrictive deformation of the cubic cell along its body 
diagonal and the ions (000) and (VlVlO) ••• become unequivalent. 
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quantity E L2 - a becomes zero. Since L2 

~ L~ ( Tc - T)/Tc, where L0 is the value of L at 
T = 0, then T* - Tc ~ £~v2/Tcc2 . The spontane
ous magnetic moment that emerges at T = T*, is 
equal in order of magnitude to 

v2 e~ (T*- T)'J, 
m~ mo C2 T2 --y;- ' 

c 

(7) 

where m 0 is the spontaneous moment at T = 0. 
Therefore, in this case the temperature depend
ence of the spontaneous moment in the immediate 
vicinity of T* ( T* - T « T* - Tc ~ £~v2/T~c2 ) 
is just the same as in the usual ferromagnetic 
transition (see Fig. 1a). Unlike the latter, how
ever, there is present the small coefficient 
£~v2/T~c2 in Eq. (7). Upon further lowering of 
the temperature the dependence on T will follow 
the law obtained above, m ~ ( Tc - T) 312 (for 
Tc - T » £~ v2/Tcc2). 

For D > 0 the transition from the antiferro
magnetic state on to the ferromagnetic takes 
place at the point T* where the quantity 
( E - D) L2 - a vanishes. The temperature de.:.. 
pendence of m for T* - T « £~ v2/T cc2 has the 
form (see Fig. 1b) 

v eo T* -T 
m~mocT_T_' 

c c 
(8) 

which is different from the law m ~ ( T* - T ) t/2 

in the case of ordinary ferromagnetic transitions. 
It is also characteristic that in Eq. ( 8) the small 
coefficient ( £0/Tc )v/c again shows up. 

We note that the unusual situation in which the 
transition to the ferromagnetic state proceeds by 
means of two second-order phase transitions 
close together in temperature, in such a way that 
the substance first undergoes a transition to a 
pure antiferromagnetic state, is completely bound 
up with the structure of the relativistic terms in 
the thermodynamic potential. Hence we do not 
exclude the simpler possibility, when the sub
stance makes a transition directly to the ferro
magnetic state with "latent" antiferromagnetism. 
Then the dependence of m on the temperature will 
follow the law m ~ ( Tc - T) 312 over the entire 
transition region (Fig. 1c). 

3. NONLINEAR EFFECTS IN ANTIFERROMAG
NETS 

We shall first consider the antiferromagnets 
FeC03 and a-Fe20 3. They are crystallograph
ically isomorphous and belong to the rhombohe
dral system. At low temperatures FeC03 and 
a-Fe20 3 are also isomorphous in the magnetic 
sense. Their class of magnetic symmetry con-

sists of all the transformations of the usual point 
group D3d and does not contain the transforma
tion R at all (see [3] ). To this magnetic symmetry 
belongs an expansion of the thermodynamic po
tential in powers of the field of the following form 
(the x axis is directed along one of the two-fold 
axes): 

(j) = - f 'XII H;- ~ 'X.L (H~ + H~) 

The structure of the cubic term in H in Eq. 
(9) obviously betrays its relativistic origin. Hence, 
in view of what was said in the introduction, we 
shall not dwell further on this case and proceed 
directly to a consideration of antiferromagnetic 
U02, for which the corresponding cubic term has 
exchange character. 

Antiferromagnetic U02 is a face-centered 
cubic crystal with the symmetry of close packing 
( group ot). The uranium ions occupy the points 
of the Bravais face-centered cubic lattice. Neu
tron diffraction experiments [4] have shown that 
the magnetic unit cell is a simple cube with the 
same edge length as the original cube of the 
crystallographic cell (i.e., the very same case we 
considered in the preceding section), and the 
spins of the ions of type ( 000), ( 1/ 2 1/ 2 0), ( 1/ 2 0 1/ 2 ), 

and ( 0 1/ 2 t;2 ) are directed along the four different 
body diagonals of the cube. It is not difficult to 
show, using (2), that this structure coincides with 
the structure of state I for a < 0. 

With the object in mind of obtaining formulas 
useful at all temperatures and not only near the 
temperature of the antiferromagnetic transition, 
we shall consider the absolute magnitudes and the 
mutual orientation of the vectors l 1, l 2, l 3 of the 
preceding section as given. We therefore intro-
duce three unit vectors y1, y2, y3 in the directions 
respectively of l 1, l 2, l 3 and stipulate the condi
tion ('Yt"'Y2) = ('Yt"'Y3) = ('Y2 "'Y3) = 0. Of course, this 
limitation will be valid only under the condition 
that the magnetic energy is small in comparison 
with the exchange energy: H « He, where He is 
the exchange field mentioned in the Introduction. 

We now write down the expansion of the thermo
dynamic potential in powers of the angles that the 
vectors 'Yi make with the crystallographic axes 
and in powers of the magnetic field. It is easily 
shown, using the results of the preceding section, 
that taking into account the mutual perpendicular
ity of the vectors y this expansion has the form 

(D = - ~ xH2 - b (·\'!H) (y2H) (yaH) 

(10) 
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Here we retain the largest relativistic term 
y Ix + y ~Y + Y ~z and the single cubic exchange 
term. As has been mentioned in the introduction, 
the coefficient b is of the order of magnitude 
x/He, where x is the susceptibility. 

We first consider the case of weak fields in 
which the cubic term is much smaller than the 
anisotropy energy, i.e., when H3 « aHe/x or' 
H « He ( £~ v2/T~c2 ) 113• In such fields only the 
components Ytx• y2y. y3z are non-zero (a < 0). 
Their sign for equilibrium magnetization will be 
determined from the minimum condition on ~, 
i.e., from the condition b(y1H)(y2 H)(y3H) > 0. 
Hence, the field dependent part of ~ can be 
written in the form 

whence 

mx = xHx +I b II Hy Hz I sign Hx, 

mv=xH +lbiiHxHzlsignHy, 

mz = xHz +lbiiHxHvlsignHz. 

We shall not here discuss hysteresis phenom
ena, which are very complicated. 

In considering the equilibrium magnetization 
of a polycrystal it is necessary to take into ac
count that in each crystallite the signs of Ytx• 
y2y. and y 3z are always given by the equilibrium 
condition. Hence in averaging over the orienta
tions of the crystallites, or what is the same 
thing, over the directions of the vectors 'Yi• it is 
necessary to integrate only over the region where 
the products Ytx y 2y y 3z have a specific sign (it 
makes no difference which). Since y 1 1 y 2 1 y 3 

this averaging. is equivalent to an average of Eq. 
( 11) over the directions of H in the region where 
HxHyHz is positive. As a result we obtain 

<Dav = - + xH2 - H 3 1 b I I 4n, 

m = H (X+ 31biH/4n). 
( 12) 

We consider, finally, the case of strong fields, 

m/H 

FIG. 2 

when bH3 » a or 

H. > H >He (e~v2!T;c2)'f, 

and it is possible in general to neglect the aniso
tropy energy. Since 'Yt 1 y2 1 y3, the problem of 
finding a minimum in ~ for given H is equivalent 
to determining the minimum of the expression 
-bHxHyHz for a given H2• From this we find at 
once 

if> = - + xH2 - 3-';, 1 b 1 H 3 , 

m = H (x + 3'1'1 b 1 H). 
(13) 

Equations (13) are, to be sure, useful for both 
poly- and monocrystals. Comparing (12) and (13), 
we see that the curve of the dependence of m/H 
on field for a polycrystalline sample consists of 
two straight-line portions whose slopes are in the 
ratio 4n/3 312 ~ 2.4 (Fig. 2). 
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