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The contribution of Regge poles with arbitrary quantum numbers to scattering of particles 
with spins is determined with aid of helicity amplitudes. The cross sections and polarization 
effects in rrN and NN scattering are found. Production of the p meson and the nucleon iso­
bar is considered. The isotopic spin is taken into account. 

1. CONTRIBUTION OF REGGE POLE TO THE 
SCATTERING AMPLITUDE IN THE HELICITY 
REPRESENTATION 

THE description of the interaction of particles 
with spins at high energies, using Regge poles, 
yields information not only on the behavior of the 
cross sections but also on the polarization effects. 
The contribution from the Regge pole with arbi­
trary quantum numbers can be obtained with the 
aid of the helicity amplitudes ( HA) [ t] . 

Usually the problem of the contribution of the 
Regge poles to the amplitude for nucleon-nucleon 
scattering is solved in the following manner[2- 5]. 

Assume that we are interested in scattering in the 
s channel; we then construct an expansion of the 
HA in the t-channel in states with definite angular 
momentum [1]. This expansion is represented in 
the form of a contribution from the poles in the 
complex angular momentum plane. Then one uses 
the connection between the HA and the invariant 
functions[s], and the coefficients of the Fermi in­
variants are determined, and the measured quanti­
ties are then determined in terms of these coeffi­
cients. A much simpler method of calculating the 
contributions of the Regge poles, particularly 
valuable in the case of high spins, is a direct 
examination of the HA. In this case there is no 
need for a cumbersome transition from the HA, 
for which the expansion in partial waves is made, 
to the invariant functions. In addition, the meas­
ured quantities have a simpler form in terms of 
the HA. For example, for particles with spin Y2 

the calculation includes the operation of taking 
the trace of a product of Pauli u matrices, and 
not of the 4 x 4 y matrices. 

The contribution from the Regge pole in the 
t-channel to the amplitude of the scattering of 
particles 1 + 2- 3 + 4 in the s-channel (Fig. 1) 
is calculated in the following manner. 

Let the particles have masses mi and spins Si 

FIG. 1 

( i = 1, ... , 4). We write the expansion of the 
HA for the scattering 1 + 3 ....... 2 + 4 in the 
t-channel in terms of states with definite angular 
momentum J. We denote the amplitude in the 
c.m.s. system, referred to the coordinate system 
in which the relative momentum of particles 1 and 
3 is directed along the z axi~, and the relative 
momentum of the particles 2 and 4 lies in the xz 
plane and makes an angle 8t with the z axis 
( K13 system), by M"-( 2)"-4 ( s, t) (the helici ty 
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t "-t"-3 
indices of the incoming particles are the lower 
ones, and those of the outgoing are the upper ones, 
in accordance with the transformation properties 
of the amplitude[ 7,B]). Expansion in J takes the 
form[t] 

.M~,l~', 1., = f ~ (21 + 1) .M~;~: (t, J) d~~'- (61); 
:rt J 

/, = /,1 - /,3, 11 = /,2 - "4· 

We now make the usual transition from a sum 
over J to a sum over the poles in the complex J 
plane: 

JV!A'A' = __!__ ~ Rl-,1., (t ') 2j + 1 [di (8 ) 
1.,1., 4 .LI 1.,1., ' l sm :rt/ 1·1'- 1 

{J} 

+ Pid~p. (n:- Bt)l + S~i ~ dj. 
Rei=-'/, 

(1) 

Here j = j ( t)-position of the pole of the amplitude 
M(J), Pj = ±1-signature of the pole, R(j)-resi­
due of the function M ( J) at the pole J = j ( t), and 
dj -analytical continuation in J of the generalized 
spherical function dJ. 

By virtue of the unitarity condition, the residue 
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at the pole factors: RA.2A.4 = J3A.2A.4A , where B 
A. 1A.3 A.1A.3 

and A depend respectively only on the final and 
initial states[ 9]. 

We assume, as usual, that the pole has definite 
parity 1r. Then, starting from the properties of 
helicity states with definite angular momentum 
under space inversion [ 1] 

J-sa-sb 
P If, Aa, Ab) = '11a'11b (-1) If,- Aa,- /~b), 

where 7Ja and 7Jb are the intrinsic parities of the 
particles a and b, we obtain for a boson trajectory 
( J -integer) 

A~ ( 1)s +s .-.. 
1-,1., = :rtYJt'l13.pi - ' 'A-1.,, -1-,; (2) 

For fermion trajectories ( J -half-integer) the 
multiplier Pj ( -1) s1+s3 must be replaced by 
Pj ( -1)St+S3-1/2. 

The function d~f..L ( z) is connected with the hyper­
geometric function, and by virtue of this we deter­
mine its analytic continuation in the complex 
J-plane: 

d{p. (z) = i'·-P. [f (2a + 1) 2"+B]-1 

X [r (J + cr + 13 + 1) r (J + cr -13 + 1)]'/, 
l'(J -cr-13 + 1) r (J -cr+ 13 + 1) 

X (z- 1)" (z + 1)13 F ( + a + ~ + 1, - J 

+ a + ~; 2a + 1 11-;- z) ; 
2a = I A - fll, 2~ = I A + ft I· (3) 

For arbitrary masses, the argument of the 
hypergeometric function in (3) is connected with 
the invariants in the following fashion: 

±1+cos61 s-(E1-E2)2 +(P1±p2)2 ( 4) 
2 4PlP2 

where E 1, E2 and p 1, P2 -energy and momenta of 
particles 1 and 2 in the c.m.s. of the t-channel, 
with ( EI -PI = mp 

2 Vt p 1 (t) = V [t - (m1 + m3) 2 l [t _.... (m1 - m3) 2 ] , 

2 Vt p 2 (t) = V [t - (m2 + m4 ) 2 ] [t - (m2 - m4) 2 ] • 

The asymptotic value of the contribution to the 
s-channel amplitude from the pole j ( t) is deter­
mined by the asymptotic behavior of the function 
dj 

d~"" (z) z i).-p. (z 1 2)i r (2j + 1) [f (j +A.+ 1) r (j- A+ 1) 

x r u + 11- + 1) r u - 11- + 1W'1' 

as z -- oo, Re j > - !-, (5) 

The helicity amplitude in the s-channel, re­
ferred to some frame K, is obtained from the HA 
in the t-channel in the following manner[ 8J: 

M~) = D(s,) (R1)D(s,) (R2) CT(s,) M(t)C(s,) D+(s,) (R3) D+(s,) (R4), 

(6) 

where D~~i)A.i ( Ri) -matrices which represent the 
l 

rotation corresponding to the (unphysical) Lorentz 
transformati9n K{3- K and the momentum Pi• 
while c<s)AA. = ( -l)s-t\.6,.\, -A.' is a matrix which 
raises the helicity indices; "T" denotes the trans­
pose. Summation over the helicity indices is 
implied in (6). 

The contribution M(s) from the pole j ( t) to 
the HA is represented in the K13 system in the 
following form: 

M 'h,'h, 1 ic ( ') A 1., B1., 
(sj).11.2 = zn S ] 1.1 1.,; (7) 

(7a) 

A 1., (t) = ·1. (-1)s,-'h, [ r 2 (i + 1) ]';, A''h,. -A, 

1., t r u + t. + 1) ru-t.+ 1) 1 pl(t) 1i ' 

(7b) 

B).' (t) = i"" (-1) 8 '+<, [ . p (i + 1> ]'/, 11-'h,, 1.,_ 
1., r (/- 1:1 + 1) r (I + 1:1 + 1) 1 P2 (tl 11 ' 

A. = A1 + 1..3 , ft = A2 + 1..4 • (7c) 

Equation (7) allows us to calculate measurable 
quantities such as polarization cross sections, 
etc. 

2. ISOTOPIC SPIN AND CONNECTION BETWEEN 
CHANNELS 

Allowance for the isotopic properties of the 
scattering amplitude entails no difficulty. The 
isotopic indices which pertain to the incoming 
particles are conveniently written as subscripts, 
while those pertaining to the outgoing particles as 
superscripts, the connection between the upper and 
lower indices being given by the matrix 

(T) I 11 
c qq = ( -1)T-qoq,-q'• cqq cq"q' = o4'• anal-

ogous to the matrix c(s) for the helicity repre­
sentation. 

We denote by Ti and qi ( i = 1, ... , 4) the 
isospin and its third projection for the particle i. 

The amplitude in the s-channel M&~~i3q4 is ex-

pressed in terms of the amplitude for the scatter­
ing in a state with isospin T': 

M<sJq,q, = '\:1 (T1 T2 q ,) (T' q, qs) M¥), (S) 
q,q, f, q1 q2 T q T, Ta 

where (T 1 T2Tq') is the Wigner 3j -symbol with 
q1 q2 

superior index q and lower indices q 1 and q2. 
Formula (8) is the consequence of the Wigner­
Eckart theorem for isospace. Analogously we 
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have for the amplitude in the t-channel 

M<t)q,q, = 2J (Tt Ta q) (T q, q2) M<~. (9) 
q,q, T q1 qa T q T, T2 

The connection between these amplitudes is of the 
form 

(10) 

From (8), (9), and (10) we can easily establish the 
connection between M~) and M~). To this end 

we use the formula [ 7] 

{T T T'} ( T T ' ) T' ) =(-f)2T'2J(2T'+i) I 2 I 2q' (' q4 q3 ' 
T' T, Ta T q1 q2 T q T 4 T 3 

(11) 

where { ... } is the Wigner 6j-symbol. As are­
sult we get 

where 

u-(s) 'V ~ ~f(t) 
1¥1 T' = L..J r>T'TJV T , 

T 

For the cases Ti = % and Ti = 1 these matrices 
were calculated by Goldberger et al [s] and by 
Chew and Mandelstam[to] respectively and are 
of the form 

3. CALCULATION OF MEASURED QUANTITIES 
WITH THE AID OF HE LICITY AMPLITUDES 

Before we proceed to concrete processes, let 
us consider briefly the technique for calculating 
the measured quantities with the aid of the HA. 
We note first the following. 

1. The unitarity of the D matrices is expressed 
by the equality 

(14) 

In summing and averaging the probabilities over 
the polarizations we encounter just such combina­
tions, and the ref ore the probability does not depend 
on the choice of the coordinate system to which the 
HA is referred, as should be the case. 

2. The polarization of a particle with spin a­
in its rest system is described by a polarization 
density matrix 

where H~a-) ( i = 1, 2, 3) -matrices of infinitesimal 
rotations of the representation with weight a- 1> , 

s{J are "statistical tensors," which are sym-

metrical in the indices, and 

'\."""1 S· .. .. 0 (0) (2~ + 1)-1 .L..J U13 •.• 'ln:::::::;:: , S = v , 

i 

as follows from the condition Sp p = 1. The spin 
state of a particle with velocity v in the helicity 
representation is described by a matrix p for :Z\ 0 I 

[i(.j,) = 0 1-112 I 3f2 
1 1/2 1f2 

:ZI o I 1 I 2 

(12a) that rest frame, which is obtained from the given 
frame by means of the pure Lorentz transforma­
tion with velocity - v. In calculating the proba­
bilities of the processes with polarized particles, 
expressions are encountered of the type 

[i(!)= 0 1/a 1 s;a (12b) 
1 1/a 1!2 _5/s 
2 1/a _1/2 1/• 

It follows from isotopic invariance that the de­
pendence of the contribution from the Regge pole 
in the state with isospin T on the isotopic indices 
is determined by the Wigner 3j -symbols 

A and B no longer depend on q. Thus, the contri­
bution from the pole with isospin T to the scatter­
ing amplitude in the s-channel is proportional to 
the quantity 

' ' 
(D).l (R) )* p'!.J. D '!.2(R) = p~ A,. 

'!., '2 'z ' 
(16) 

From the properties of the matrix D(a-), as a 
matrix representation of a rotation group, it fol­
lows that 

D+ (R) HiD (R) = 2J rik Hk, 
k 

where rik is a matrix by which the three vectors 
are transformed under the rotation R. Therefore 
the quantities s'(n), which define the matrix p' in 
(16), are obtained from the values of s(n) of the 
matrix p in accordance with the usual rule for the 
transformation of three-tensors under rotation, 

1>J:n the case a= 1/2 one has Hr = 1/2ai (where ai are 
Pauli matrices) and the density matrix has the familiar form 
p = 1/2(1 + s · a), where s is the polarization vector. 
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thus explaining their name. Recalling now that the 
D matrix which relates the helicity states in cer­
tain systems K1 and K2 corresponds precisely to 
the rotation which relates the rest systems ob­
tained from the systems K1 and K2, we verify 
that the foregoing description of the spin states is 
self-consistent. 

Let, for example, a particle with spin u be 
produced in the reaction and let the amplitude of 
this process be MA.. The creation probability is 
w ~ SpM+M, and the polarization of the particle is 
described by the matrix 

p~· = (iVP')* 1lP·jSp M+ M, (17) 

where tpe values of the statistical tensors corre­
spond to the coordinate system for the particle at 
rest, obtained by a pure Lorentz transformation 
from the reference frame in which the Ha MA. was 
found. 

Analogously, the probability of a process with a 
particle in initial state, the polarization of which 
is specified by matrix p, is expressed in terms of 
the Ha NA. in the following fashion: 

w-N+pN, (18) 

and the coordinate system in which p should be 
written is determined by the system in which the 
HA NA. is calculated. 

In final analysis, one measures not the compo­
nents of the statistical tensors but invariant quan­
tities (intensities). The spin dependences come 
into play in the case when two processes, each of 
which depends on the spin, occur in sequence. 
Let, for example, the polarization be measured 
with the aid of double scattering and let the HA 
of the first process MA. be known in a certain 
reference frame K1, as well as the HA of the 
second process NA. in the frame K2 . The proba­
bility of double scattering is 

w = N+ n+ (R) M+ MD (R)N, (19) 

and the rotation R is determined by the momen­
tum of the particle and by the Lorentz transforma­
tion K2 - K1; its parameters depend, in particular, 
on both scattering angles and on the angle between 
the planes of the reactions. 

The spin states of a system consisting of two 
particles with spins u1 and u2 are described by a 

A,' I 
density matrix p Jl , I A. I ~ u1, I Jl I ~ u2. This 

AJl 
matrix can be represented in a form analogous to 
(15): 

(15a) 

(The multiplication sign denotes the direct 
product). The properties of s{0{;} with respect 

to each of the two aggregates of indices coincide 

with the properties of s{~} and s{;J?, and in par­

ticular the condition Sp p = 1 means that s<O,O) 
= ( 2u1 + 1)-1( 2u2 + 1)-1. 

It is convenient to represent the matrix p in 
the form 

+ ~ lS{7·}{1} - s{~·}o>s{~'}>J ITH; x l1Hi 
n,m 

= p(l) X p(2) + I; c(n,m) r·IH· X ITH· (15b) 
- n,m=l {t }{J} t J• 

where p <1> and p <2> are the polarization density 
matrices for each of the particles with respective 
statistical tensors s(n) = s(n,o) and s(m) = s(o,m) 

{i} {i} {j} {j} 

The quantities c{~}{j} describe the spin corre­

lations and can be called the spin-correlation ten­
sors. It should be noted that C{i}{j} is not a ten-

sor in the sense of the statistical tensors S{j} , 

for on going from one reference frame to the other 
C{i}{j} transforms in the indices of the first and 

second group differently. This is the consequence 
of the fact that the rotations by which the helicity 
quantities are transformed under a Lorentz trans­
formation depend not only on this transformation 
but also on the momenta of the corresponding par­
ticles, and are therefore different for different 
particles. This circumstance, of course, in no 
way interferes with the covariant description of 
the measured quantities. 

Formulas (17) and (18) can be extended in 
trivial fashion to include states containing two or 
even an arbitrary number of particles possessing 
spin. In formula (19) it is necessary to substitute 
in place of one D matrix the direct product of D 
matrices of all particles. 

4. SCATTERING OF PIONS AND NUCLEONS 

Let us consider the structure of the "vertex 
functions'' for pions and nucleons assuming, as is 
customary, that the pole is characterized by a 
definite isospin T and a G-parity g. 

Two pions can go over into a state with g = ± 1 
and T = 0, 1, 2; this transition is characterized by 
a "vertex function" 

- (1 1 q + q')-
Aqq' = q q' T a (t), 
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where q, q' = 0, ±!-isotopic indices of the pions. 
The transition of a pair NN into a state with 
isospin T is determined by the expression 

~ ( 1;. 1;2 q + q' ) ~ 
Bqq',/-).' = q q' T BAA' (t). 

Let us find the structure Bt..A.' for different poles. 
From parity conservation [formula (2)] we obtain 
( 11N17N = - 1 ) 

B,~.. = nP)L~._,., (20) 

As is well known [tt], the G-parity of an NN pair in 
a state with isospin T is determined by the formu­
la 

(21) 

where C is the charge conjugation operator and 
P 12 is the space-spin exchange operator. It is 
shown in [ 1] that 

P12 IJ, Au A2 ) = PJ (- 1)2•1/, A2 , A1 ). (22) 

From conservation of G parity and from (21) and 
(22) it follows that 

(23) 

Formulas (20) and (23) enable us to find the 
connection between the quantum numbers of the 
pole and the spin structure of the amplitude. All 
the poles can be broken up into two classes[ 4J. 

Class A. JTPj = + 1. Here 

In the case when 

the contribution from the pole depends on two 
functions. This type includes trajectories with 
quantum numbers of vacuum, the w and the p 
mesons (if w and p are vector particles). 

In the case when 

g (- 1)T n =- 1, 

The transition of the NN pair into a state with 
such quantum numbers is forbidden. 

Class B. JTPj = -1. Here 

(24) 

B = iG/i3 + iG/J2. (25) 

Case a): 

g (- 1)T 1( = - g (- 1)T pi= - 1, h2 = 0, 

B = iG3b3• 

This type includes trajectories with the quantum 
numbers of JT and 17 mesons ( o-+). 

Case b): 

To determine the contribution from the pole be­
longing to class B, it is sufficient to specify one 
function. 

Let us find with the aid of (7) the contribution 
of an arbitrary Regge pole to the measured quan­
tities. 

1. 1TJT scattering. Only poles with g = + 1 and 
T = 0, 1, 2 make any contribution. 

The total cross section is of the form 

r5 = 16nsi.-I Im C (j) I a (0) ]2 YT, 

a (t) = a (t) ]4/ (t - 4m;)!'M, (26) 

where 

io = i (0), 

is a factor that depends on the isospin of the tra­
jectory and on the charge of the interacting 
mesons. The values of 'YT are: 

~ 0 1 2 

n 
I 

+n+and n-n-1 1/3 -1;6 1/ro 
n+no and n-nol 1/a 0 -1!5¥3 

n+n- 1/a 1/6 1/ro :n:ono 1/a 0 2fr· 

The differential scattering cross section in a 
state with isospin T' is of the form 

dG/dQ = 41 ~T'T 12 1 C (j) 12 I a (t) 12 s2i-l, (27) 

i3T'T is an element of the matrix written in (12b). 
2. 1rN scattering. Contributions are made by 

poles of class A, g = + 1, T = 0 and 1. 
If we take xz as the scattering plane, then the 

structure of the HA of JTN scattering is described 
by the formula [ 1] 

M = M 0 + iC> 2M 2 • 

The contribution from the Regge pole is of the 
form [equation (7)] 

111 = 2~ siC (j) a (t) (b0 (t) + iC> 2b2 (t)), (28) 

where 

and mN is the nucleon mass. 
The total cross section is written in the form 
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o = 16nsi.-l Im C (j) a (0) b0 (0) YT. (29) 

The values of 

( 1 q1 0) ( T q2 1;. J 
YT = q 1 1 T 0 11z q1 

( q 1 and q2 are the isotopic indices of the pion and 
nucleon) are 

~T 

. !~~~~~ 
n+p and n-n 1/a 1/a 
n-p and n+n 1/o - 11a 
nop and non 'i• 0 

We present now formulas for the differential 
cross section for the scattering of a pion by a 
polarized nucleon in a state with isospin T'. The 
nucleon polarization is described by a matrix 
pi= ( 1 + si · a)/2. We have 

do!dQ = (2n/p)2 Sp M+piM 

= 4~}·rs2H I C (j}\2 \ a (t) \2 [! b0 \ 2 + 1 b2 j 2 + 2s! lm b6b;]. 

(30) 

Here s~ is the degree of polarization of the nu­
cleon in a direction perpendicular to the scattering 
plane-a quantity which is invariant relative to ro­
tation in this plane; this is also true of the quanti­
ties I b0 12 + I~ 12 and Im b0br, so that the refer­
ence frame in which the amplitude is determined 
is immaterial. 

The matrix J3T'T [equation (12) 1 determines 
the isospin dependence of the cross section: 

X\ 

The term in the differential cross section due 
to the interference between the two poles a and b 
(for example vacuum and w meson) is of the form 

dofdQ = 4~T'T a.~T'Tbsia+it-l 

X Re {C Ua) c· (jb) aaa~ lboab~b + b2ab;bl}. (31) 

We now consider the polarization of nucleons in 
the final state. The polarization of the recoil nu­
cleon is described by a vector sf, which is deter­
mined from 

pi={- (1 + sla) = M+piM!Sp M+piM. 

We get from this for the polarization in a direc­
tion perpendicular to the scattering plane 

;fs~ = 2 Im b0b; + s! (\ b6l 2 - I b~ \2 ), (32a) 

where 

For longitudinal polarization in the l.s. we have 

;fs' = s~ (\ b0 \ 2 -I b2 \ 2 ) - 2s~ Re h0b;. (32b) 

The transverse polarization in the reaction plane 
is equal to 

:fs{ = si (I b0 \ 2 -I h2 12) + 2s~ Re b0b~. (32c) 

Here s~si are the components of the target 
polarization vector in the direction of the momen­
tum of the recoil nucleon and in a direction perpen­
ducular to it and lying in the scattering plane. 

3. Nucleon-nucleon scattering. It is easy to 
show that owing to P and T invariance and the 
principle of indistinguishability of identical parti­
cles, the HA for NN scattering takes the form 

3 

M _ ~ M· ~~1>~\2> + M ,.,<1>~<2> + 111• ,.,<1>~<2> 
- L.J ti"'t "' 02 "O "2 02"2 vo t 

i=O 

where af 1' and af' are Pauli matrices with 

indices A. 1, A. 3 and 11.2, A. 4, respectively. 
The three types of poles give the following con­

tributions to the NN scattering amplitude. 
Class A pole 

2~ C (j) si {b0 o~1 l + io~1>b2) (b~o~2> - io~2>b;). (33a) 

Class B pole, case a): 

2~ C (j) sib1b~oi1>oi2>, b1 (t) = - ba (t) \4! (t - 4mR,) J'M. 
(33b) 

Class B pole, case b): 

2~ C (j) sib3b;o~1>o~2>, b3 = Jfj!(j + 1) b2 \4! (t - 4mh} I'M. 

(33c) 

The total cross section is given by the formula 

o = (2n/p)22 Im {- Sp M (t = 0). 

The contribution to the total cross section is 
made only by poles of class A: 

o = 16:rtsi,-l Im C (i0) \ bo \2rr, 

YT = (lf2 q1 0) (T q2 1j2). 
q1 1/z T 0 1/2 q2 

(34) 

This value of YT is: 

T 

Inter-
action 

-----;p and nn l'/21-1/a 
np 1/2 11• 

The differential cross section is of the form 
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dojdQ = I ~T'T I s2H I C (j) 12 F2 (t),. (35) 

where {3 T'T is an element of the matrix ( 12a), and 

( I bo [2 + i b2 :2 

F (t) = { I br 12 

l1 ba[2 

For class A poles, 
For class B case a), 

For class B case b). 

For poles of class B, the differential cross 
section does not depend on the nucleon polarization 
in the initial state, while for class A the cross sec­
tion is obtained by making the following substitu­
tion in (35) 

F 2 (t)-+ [F (t) + si0 21m b0b;] [F (t)- s~2) 21m bob;}, 

where s~ 1 l and sJ2 l are the degrees of polarization 
of the first and second nucleons in a direction per­
pendicular to the scattering plane. 

The contribution to the cross section from the 
interference between the class A and class B 
poles is proportional to the product of the degree 
of polarizations of the colliding nucleons in the 
scattering plane. For example, for the scattering 
of nucleons with longitudinal polarizations s~1l 
and s~2 l and transverse polarizations in the scat­
tering plane s~1l and si2>, the interference between 
a class A pole and a pole of class B, case a) yields 

dcrjdQ = 2~T'Ta ~T'Tb sia + ib -l Re {C (ia) C* (M I b1 j2 

X (- bo si1> + b2 s~1l) (- b~ si1> + b; s~2>)}. (36) 

We now consider the polarization of the nucleons 
in the final state. 

If the polarizations of the initial nucleons are 
not correlated, that is, their spin states are de­
scribed by the direct product of the polarization 
matrices of each of the nucleons, then in the one­
pole approximation the polarization of the final 
nucleons is likewise uncorrelated. This is a con­
sequence of the factorization of the contribution 
from one pole. For the same reason, the polari­
zation of nucleon 3 does not depend on the polari­
zation of nucleon 2, and depends only on the polari­
zation of nucleon 1. An analogous statement holds 
for nucleon 4. Moreover, in the case of a pole of 
class A, the formulas relating the polarization of 
the final nucleons to the polarizations of the initial 
nucleons coincide with the formulas for 1rN scat­
tering (32). For poles of class B the polarization 
of the final nucleon is connected with the polariza­
tion of the initial nucleon by the following formulas: 

f i 
S2,a = - Sz,a, 

f i 
S1,2 = - S1.2• 

f i st = sl-
f i 

Sa= Sa-

class B, case a) • 
class B, case b) . 

The spin correlation of the final nucleons ap­
pears if we represent the amplitude in the form of 

a sum of contribution from two poles. This corre­
lation is described by the quantity Cik in accord­
ance with (15b), and can be readily obtained. For 
example, for a sum of two poles of class A ( h ( t) 
and jb(t); ja > jb) the amplitude has the form 

A + B cr~l) + D cri2> + C a~1 > cr~2 l. 

In this case the nonvanishing component c22 of the 
correlation tensor is equal to 

e = AC - BD, a = A 2 - B2 - D2 + C2 , 

~=IAI 2 +1Bi 2 +ICI 2 +\DI 2 • (37) 

It is easy to see that for large s the quantity 
I c22 I decreases like sjb-ja_ 

3. THE PROCESS 7T + N- p + N 

By way of an example of an inelastic process 
which can be described by Regge poles, let us con­
sider the production of a p meson by a 1r meson on 
a nucleon. The contribution to this process is made 
by poles with g = -1, T = 0 and 1. 

The polarization of the unstable particle mani­
fests itself in the angular correlation of its decay 
products. In this connection, let us find the cross 
section of the process 7Ti + Ni - p + Nf- ( 7rf + 1rf) 
+ Nf under the assumption that the first process 
is determined by a Regge pole. 

The helicity amplitude of the p meson decay 
PA. (A. = 0, ± 1) has the simplest form in the 
p -meson rest system and in the coordinate frame 
in which the relative momentum of the pions is 
directed along the z axis (the Kp system ) : 

(38) 

The constant f is connected with the p -meson width 
rp in"the following fashion: 

rp = _f__ _1_ [.1- (2m1t)2 ]'/'. 
4n 6mP m~ 

The cross section of the process under consid­
eration, averaged over the Initial and summed 
over the final polarizations of the nucleons, is 
represented in the form (19): 

do= (2rr./p)2 Sp {MD(ll (Ra) PP+fl+(ll (R3) M+} 

(39) 

Here R3 is the rotation corresponding to the 
Lorentz transformation from a system in which 
the amplitude M is determined to the system in 
which the amplitude P is written; drlN and drl 
correspond to the angles of emission of the recoil 
nucleon and of one of the pions. 
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The contribution from the pole has the simplest 
form in the center of mass system of the t-channel 
( K.rrp). We shall therefore determine the param­
eters of the rotation matrix corresponding to the 
transformation K1Tp - Kp. Bearing in mind the 
experimental conditions, we express the param­
eters of this rotation in terms of the following 
invariants: the angle cp between the plane of decay 
of the p meson in the laboratory system ( l.s.) and 
the plane of the reaction 7TN- pN and the energy 
of one of the produced pions. 

The angle Kz is determined by means of the con­
struction shown in Fig. 3, which shows the plane 

I 

in which the momenta Trf and 11'f are located in the 
l.s. Using the cosine theorem of the Lobachevsky 
geometry, we obtain 

m" ch ~chi;- E 

m" sh I;; sh I; 

(41)* 

E -energy of the produced pion in the l.s. The 
function n°> ( R3 ), which is contained in (39), is 
of the form 

D~1~ (R3) = ~ dL (x1) eiv<p d~l'- (X2). (42) 
v 

We now find the HA of the process JTN- pN. 

The amplitude of the transition of the system 1Tp 
into a state with parity 1T and signature Pj obeys 
condition (2): A.\= -1TPjA-.\, where .\ is the 
helicity of the p mesons. For an w-meson trajec­
tory A.\= -A-.\. The contribution from the pole 
is represented in the form (7): 

(43) 

where 

A+l =' A- 1 = anp (t) =- i v,~ 1.4+1\PP (t)ri, A 0 = 0 

B~; = b0b~; + b2 (ia 2)~; 

[compare (24) with (28) ]. Substituting (38), (42), 
and (43) in (39) we get 

da = 4s2H I C (j) \2 1 a"P (I) 12 (\ b0 12 + I b2 \ 2) 

(44) 

*ch = cosh, sh = sinh. 

We make the transition K1Tp - Kp via K1Tp 
- Klab- Kp, where Klab is the system in which 
Ni is at rest. The first transformation corre­
sponds to rotation in the xz plane through a cer­
tain angle K 1, the second to rotation about the z 
axis through an angle cp and in the xz plane 
through an angle Kz. To determine the angles Kt 

and Kz it is convenient to use diagrams in velocity 
space[ 12 •13]. The angle Kt (Fig. 2) is equal to the 
angle in the Lobachevsky plane between the p­

meson velocities in the systems Krrp and Klab: 

(40) 

FIG. 2 FIG. 3 

The isospin is taken into account in trivial 
fashion. Let q 1, q 5, and q6 be the isotopic indices 
of the initial and final pions, respectively, and let 
q2 and q 4 be those of the initial and final nucleons. 
Then to the amplitude (44) we should add the factor 

where T is the isospin of the pole. If T = 0 
( w meson) this factor is of the form 

1 b b ( 1 qs qs) 
3 v ::f q,,q,+q, q,,q, ql 1 1 . 

6. THE PROCESS N + N- N + N* 

In conclusion let us consider the production of 
a third nucleon resonance (mass M = 1688 MeV, 
s = %, P = + 1, T = %) in a nucleon-nucleon colli­
sion. We find the contribution made to this process 
by a class A pole. 

Let us ascertain first the structure of the am­
plitude for the transition of the reggeon into the 
NN* system. From parity conservation (2) we 
have 

(45) 

The formula for the production amplitude contains 
B~i (formulas (7) and (7c)). Such a matrix is con-
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veniently written in the form of an expansion in 
Clebsch-Gordan coefficients (see the appendix). 
This expansion is a generalization of the expansion 
in Pauli matrices 

B~; = ~ (2l + 1)b(h ( 112 1 "'•). 
1=2,3 A2 n 5/2 

(46) 

From (45) and from the connection between B 
and B it follows that 

(47) 

The amplitude of the decay N* - N + 1r in the 
rest system of N* with z axis along the relative 
momentum of N and 1r (the K* system) is of the 
form 

or in the form of (A.l) and (46) 

Q~=2i3<2Z+1)g{z)G2~ 1~)· (48) 

where only the coefficient g~3 > differs from zero. 
We note that 

(49) 

The cross section of the process N 1 + N2 - N3 

+ N* - N3 + ( N4 + 1r) is proportional to 

<D = Sp B+D+ (R) Q+QD (R) B a-Sp Q+Qf\ (50) 

where D = n< 512> ( R) is the matrix of the rota-
tion corresponding to the Lorentz transformation 
from the system K13 into the system K* and mo­
mentum N*. As in Sec. 5, the rotation R is repre­
sented in the form of the result of a rotation in the 
xz plane through an angle K 1, in the xy plane 
through an angle cp, and in the xz plane through 
an angle K 2 (see Fig. 4), with cp the angle between 
the N* production and decay planes. 

Let us consider a simpler and more interesting 
case when N2 is a target, that is, when N* ac­
quires a small momentum in the l.s. compared 
with N3• In this case K 1 = 1r and K2 is given by a 
formula analogous to (41): 

cos x2 = (m ch ~ ch ~ - E)!m sh ~ sh ~; 

ch ~ = (M2 + m2 - t)!2Mm, 

ch ~ = (M2 + m2 - ~t2 )/2Mm, 

(51) 

M, m, and 11 are the masses of N*, N, and the 
pion, respectively and E is the energy of the nu­
cleon N4 (produced as a result of the decay of N*) 
in the l.s. The matrix D contained in (50) is of 
the form 

D~ (R) = ~ dt.v (x1) e iv~ dvp. (x2). (52) 
v 

FIG. 4 

The function <I> (50) is calculated with the aid of 
(A .2) and (A.4): 

<D = ~ . ~ , (2j + 1) ~(j)m'D~m' (R) a7]), 
J,m,m 

(53) 

(54) 

The number am differs from zero only when 

m = 0 and j = 0, 2, 4, otherwise one of the factors 
in (54) vanishes. The second quantity contained in 
(53) has a more complicated form: 

~(j)m = ~ (2l + 1) (2l' + 1) { l' l j }b{z~b7;.) (n 
l,l' •;? •;, lf2 l 
n,n' 

We note that by virtue of (47) we have 

~(jf-m = (- 1)j-m~(i)m• 

m ~, ). 

(55) 

Using this equation and the properties of the D 
matrices, and recognizing that K 1 = 1r, we obtain 
with the aid of (52) 

<D = ~ 2j ± (2j + 1) ~(i)m U~j) d~0 (:rt - x2) cos mrp. 
i=0,2,4 m=O (56) 

Finally the cross section for the process N 1 + N2 
- N3 + ( N4 + 1r) averaged over the initial polariza­
tions of the nucleons and summed over the final 
ones, is of the form 

where dQ 3 and dQ 4 pertain to the angles of emer­
gence of the nucleons N3 and N4. 

I am grateful to I. Yu. Kobzarev, L. B. Okun', 
V. I. Roginski]', A. P. Rudik, and K. A. Ter­
Martirosyan for a discussion and for critical 
remarks. 

APPENDIX 

Any matrix that depends on helicity indices can 
be expanded in Wigner matrices: 

A~= 2j (2j + 1) ajm) ( 81 i 11 ). (A.l) 
; A. m s2 

The product of two matrices is represented in 
the form 

(A.2) 
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where 

n ~ (2 · . 1) (2 ., + ) {j' i l } m bm' ( j n i' ) c(l) = .-4 1 1 1 a(j) (J') , • 
J, J sa sb sl m l m 
m, m' 2 2 

We use the fundamental property of Wigner 
matrices[T] 

~ (/! i• ~)D;!;t'(R)D<J:t'(R)(~~m~i',) 
m,. m, ml m2 I /1 /2 m 

m,', rn2' 

(A.3) 

and obtain a convenient expression for the quantity 
SpBD+( R) AD ( R): 

~ B~; (D~s,)t.' (R)).AW~,)p.' (R) 
p., f. 

p.', f.' 

= 2J (2j + 1) b;t{ D;/;.m(R) (A.4) 
j,m',m 
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