RESTRICTIONS IMPOSED ON THE MAGNITUDE OF THE CROSS SECTION FOR THE

 REACTION $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \pi^{+}+\pi^{-}$BY ANAL YTICITY REQUIREMENTSB. V. GESHKENBEĬN and B. L. IOFFE

Submitted to JETP editor July 12, 1963
J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 902-904 (March, 1964)

Inequalities which set a lower limit on the $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \pi^{+}+\pi^{-}$reaction cross section averaged over energy of the pair are obtained on the basis of the analytic properties of the form factor $\mathrm{F}\left(\mathrm{k}^{2}\right)$ for the transition of a γ quantum into a $\pi^{+}+\pi^{-}$pair.

THE cross section for the transformation of an electron-positron pair into a $\pi^{+} \pi^{-}$pair is given by (see, e.g. ${ }^{[1]}$):

$$
\begin{equation*}
\sigma(x)=\frac{1}{16} \pi \alpha^{2} m^{-2} x^{-5 / 2}(x-1)^{3 / 2}|F(x)|^{2} . \tag{1}
\end{equation*}
$$

Here m is the mass of the pion, $\mathrm{x}=\epsilon^{2} / 4 \mathrm{~m}^{2}, \epsilon$ is the energy of the pair in their center-of-mass system, $\alpha=1 / 137(\hbar=c=1)$. We ignore terms of order $\mathrm{m}_{\mathrm{e}}^{2} / \mathrm{m}^{2}$ and confine ourselves to production of pions via a single γ quantum; hence the accuracy of our considerations is of order α.

Let $F(x)$ be the electromagnetic form factor of the $\pi^{ \pm}$meson due to strong interactions. As a function of $\mathrm{x} F(\mathrm{x})$ has the following analyticity properties:

1) $F(x)$ is an analytic function of x in the complex x plane cut along the real axis from $x=1$ to infinity.
2) On the real axis to the left of $x=1$ the function $F(x)$ is real and consequently assumes complex conjugate values on the upper and lower edges of the cut.
3) In the complex x plane as $|x| \rightarrow \infty$ the function $F(x)$ increases no faster than a finite power.
4) The function $F(x)$ is normalized according to $F(0)=1$.

The purpose of this note (assuming that the form factor satisfies the analyticity properties $1-4$) is to obtain certain inequalities which must be satisfied by integrals over the cross section σ for the transition $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \pi^{+}+\pi^{-}$. If experiment should show that these inequalities are not satisfied then one will have to conclude that the form factor fails to satisfy at least one of the analyticity properties 1-3.

Let us define the average cross section for the reaction $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \pi^{+}+\pi^{-}$as follows:

$$
\begin{equation*}
\bar{\sigma}_{f}=\int_{1}^{\infty} \sigma(x) q(x) d x \equiv \int_{1}^{\infty} f(x)|F(x)|^{2} d x, \tag{2}
\end{equation*}
$$

where $q(x)$ or $f(x)$ is an arbitrary positive weight function so chosen that the integrals

$$
\int_{i}^{\infty} f(x) \frac{d x}{x \sqrt{x-1}}, \quad \int_{i}^{\infty} \ln f(x) \frac{d x}{x \sqrt{x-1}} .
$$

exist. The minimum of $\bar{\sigma}_{f}$ over the class of functions $F(x)$, satisfying conditions $1-4$, exists, is different from zero and is equal to ($\operatorname{see}{ }^{[2-4]}$)

$$
\begin{align*}
& \bar{\sigma}_{f \text { min }}=\exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln \bar{f}(\theta) d \theta\right\}, \\
& \bar{f}(\theta)=\frac{1}{2} f\left(\cos ^{-2} \frac{\theta}{2}\right) \frac{\sin (\theta / 2)}{\cos ^{3}(\theta / 2)} . \tag{3}
\end{align*}
$$

It follows from formula (3) that regardless of the nature of the strong interactions the cross section for the process $\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \pi^{+}+\pi^{-}$must satisfy the inequality

$$
\begin{equation*}
\bar{\sigma}_{f} \geqslant \bar{\sigma}_{f \text { min }} \tag{4}
\end{equation*}
$$

Let us consider some examples.

1) We set $q(x)=1 / x$. With this weight function $\bar{\sigma}_{\text {min }}=\pi^{2} \alpha^{2} / 2^{9} \mathrm{~m}^{2}$. If $\mathrm{F}(\mathrm{x}) \equiv 1$ then with this weight function $\bar{\sigma}=\bar{\sigma}_{0}=\pi \alpha^{2} / 40 \mathrm{~m}^{2}$ and $\bar{\sigma} / \bar{\sigma}_{0} \geq 0.25$.
2) With the weight function $q(x)=x^{1 / 2} /(x-1)^{2}$ we get $\bar{\sigma} / \bar{\sigma}_{0} \geq 1 / 2$. With the weight function $\mathrm{q}(\mathrm{x})$ $=\mathrm{x}^{3 / 2} /(\mathrm{x}-1)^{2}$ we get $\bar{\sigma} / \bar{\sigma}_{0} \geq 1$.

It is seen from these examples that the restriction depends on the choice of the weight function $q(x)$. The question arises: can a weight function be found that will give rise to the strongest restriction. Such a weight function may be found if one minimizes the quantity $\bar{\sigma} / \bar{\sigma}_{\text {min }}$ over the weight functions, assuming that in $\bar{\sigma}$ the quantity $|F(x)|^{2}$ is given by experiment. In that case $\overline{\mathrm{f}}(\theta)$ $=\left|\mathrm{F}\left[\cos ^{-2}(\theta / 2)\right]\right|^{-2}$ and the restriction is of the form

$$
\begin{equation*}
\int_{i}^{\infty} \ln |F(x)|^{2} \frac{d x}{x \sqrt{x-1}} \geqslant 0 \tag{5}
\end{equation*}
$$

Formula (5) may also be obtained in a different way. Let $x_{1}, x_{2}, \ldots x_{n}$ be the zeros of the function $F(x)$. We define the function $F_{1}(x)$
$=\prod_{k=1}^{n} x_{k}\left(x_{k}-1\right)^{-1}$. The function $F_{1}(x)$ possesses
the same analyticity properties $1-4$ as the function $F(x)$ and, in addition, has no zeros in the cut plane. Therefore $\ln F_{1}(x)$ is also an analytic function of x and

$$
\begin{equation*}
a=\int_{1}^{\infty} \ln \left|F_{1}(x)\right|^{2} \frac{d x}{x \sqrt{x-1}}=\int_{C} \ln F_{1}(x) \frac{d x}{x \sqrt{x-1}} \tag{6}
\end{equation*}
$$

The contour C includes the lower and upper edges of the cut and the large circle; since according to assumption 3 the integral over the large circle vanishes we see from the residue theorem and the condition $\mathrm{F}_{1}(0)=1$ that (6) equals zero. From formula (6) one obtains easily

$$
\begin{gather*}
\int_{i}^{\infty} \ln |F(x)|^{2} \frac{d x}{x \sqrt{x-1}}=-\pi \sum_{k=1}^{n} \ln \left|z_{k}\right|^{2}, \\
z_{k}=\frac{i-\sqrt{x_{k}-1}}{i+\sqrt{x_{k}-1}} \tag{7}
\end{gather*}
$$

from which (5) follows when one takes into account that $\left|z_{k}\right|^{2} \leq 1$.

It is seen from formula (7) that if the form factor $F(x)$ has no zeros in the complex x
plane then the inequality (5) becomes an equality. ${ }^{1)}$
If it is supposed that for attraction between the pions $F(x)>1$, and for repulsion $F(x)<1$, then the pions cannot repel each other at all energies. If the pions attract each other at all energies, i.e. $\mathrm{F}(\mathrm{x})>1$ for all x then the form factor must have complex zeros.

In conclusion we thank L. B. Okun' for useful remarks.

[^0][^1]
[^0]: ${ }^{1}$ A. I. Akhiezer and V. B. Berestetskiĭ, Kvantovaya elektrodinamika (Quantum Electrodynamics), 2d ed., Fizmatgiz, 1959.
 ${ }^{2}$ B. V. Geshkenbeĭn and B. L. Ioffe, JETP 44, 1211 (1963), Soviet Phys. JETP 17, 820 (1963).
 ${ }^{3}$ V. I. Smirnov, Izv. AN SSSR ser. matem. 7, 337 (1932).
 ${ }^{4}$ G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York, 1939 (Russ. Transl., Fizmatgiz, 1962).

 Translated by A. M. Bincer 130

[^1]: ${ }^{1}$ We note that specifying $\left|F_{1}(x)\right|^{2}$ on the real axis for $x>1$ uniquely (under the assumption 3) defines the function $F_{1}(x)$ in the entire complex plane (see [4]), and its value $F_{1}(0)$ is given by the equation $F_{1}(0)=e^{a}$ while equation (7) [or the inequality (5)] follows from the condition $F_{1}(0)=1$. At that all possible information about $F_{1}(x)$ has been used and in that sense the inequality (5) is the strongest possible.

