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The effect of the field of a plane electromagnetic wave or of a constant electromagnetic field 
on various quantum phenomena is investigated. General formulas are derived for the proba­
bilities for radiation of a photon by an electron, for pair production by photons and for single 
photon annihilation of an electron and positron in the field of a plane electromagnetic wave. 
For ea/m « 1 ( a11 is the potential amplitude) these formulas transform into the corre­
sponding probabilities for processes in crossed field ( E · H = 0, E 2 - H2 = 0) with a field 
strength E sin zp averaged over the phase zp. The exact formulas for the probabilities of 
processes in a crossed field depend on the invariant X= e.J( F.f.1vPv)2/m3 where Pv is the 
particle momentum; they are applicable to an arbitrary constant field F11 v provided 
( F11 vPv) 2/m2 » F~v· iE;11 v>..aF11 vFA.a• and the latter are much smaller than (m2/e)2 

= ( 1.3 x 1013 abs. Heaviside units )2. 

1. INTRODUCTION 

THE availability of powerful light beams from 
lasers offers in principle new possibilities for 
investigation of various quantum process. The 
study of quantum effects in a very large electro­
magnetic wave field should make it possible to 
obtain new information on the nature of the inter­
actions of the particles participating in these 
processes. The dependences of these processes 
on the field strength of the wave and on its fre­
quency and polarization (i.e., on those parameters 
which are easily varied in an experiment) are 
such as to suggest that this method of investiga­
tion will be more detailed and sensitive than the 
investigation of quantum phenomenon in the 
coulomb field of the nucleus, etc. 

This paper considers the effects both of the 
strong field of a plane electromagnetic wave and 
of a constant electromagnetic field on the behavior 
of various quantum phenomena. In this connec­
tion all quantum processes may be divided into 
two groups: 1) processes which are induced by 
the electromagnetic field and which do not occur 
without it; 2) processes which occur in the ab­
sence of the field and are altered by its presence. 

The present paper treats several processes in 
the first group; viz. the emission of a photon by 
an electron, the formation of a pair by a photon, 
and single photon annihilation of an electron and 
a positron. We note that pair formation from a 

photon in a wave field was first studied by Reiss [1]. 
Quantum phenomenon in the second group, which 
includes in particular all decay processes, will 
be considered in a later paper. 

The probabilities for the various processes 
are calculated by the general method of quantum 
transitions, which accurately takes account of the 
interactions of charged particles with an electro­
magnetic wave field. The remaining electro­
magnetic interactions between particles (includ­
ing the weak interactions) are treated by pertur­
bation theory. 

We obtain general expressions for the proba­
bilities of various processes in the field of a 
plane electromagnetic wave. These expressions 
are studied in two limiting cases which depend on 
the magnitude of the parameter ea/m, which 
plays a very important role in this theory. For 
ea/m « 1, the expressions for the probabilities 
transform into the corresponding probabilities of 
perturbation theory, in which the plane wave ap­
pears as a single photon. For ea/m » 1 the 
probabilities for the processes are essentially the 
probabilities for processes in a constant field in 
which the electric and magnetic fields are ortho­
gonal and equal in magnitude ; E 1 H, E = H. A 
detailed study is made of the probabilities for 
processes in this field. Since it is a relativistic 
and gauge invariant quantity, the total probability 
for a process depends only on the parameter 
e2 ( F f.lV Pv )2/m6. 
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The expressions obtained for probabilities may 
oe generalized to the case of an arbitrary con­
stant field. In the general case the probabilities 
depend on two more parameters, e 2 F~v/m4 and 
ie 2£ 11 vr..aF11 vFr..alm 4• However since all fields 
known at present are considerably smaller than 
the critical field m 2/e, these additional para­
meters are very much smaller than unity. Sim­
ilarly if the energy of the incident particles is 
sufficiently large ( p0/m » 1 ), the additional 
parameters are much smaller even than the 
parameter e 2 ( F 11 vPv )2/m6 and may be neglected. 
Thus the expressions obtained for the probabili­
ties also describe phenomena in an arbitrary 
constant electromagnetic field if the incident 
particles have relativistic energies. In particular, 
if one takes the quantity F 11 v to be a magnetic 
field, one obtains expressions for the intensity of 
emission by an electron and for the probability of 
pair formation by a photon in a magnetic field 
which are the same as the results found by 
Klepikov [2] as well as the more detailed results 
obtained by Sokolov, Klepikov and Ternov [3] and 
by Schwinger [4]. 

2. SOLUTION OF THE DIRAC EQUATION FOR 
AN ELECTRON IN THE FIELD OF A PLANE 
ELECTROMAGNETIC WAVE 1) 

The field of a plane electromagnetic wave 
propagating along the direction k can be de­
scribed by a four-potential A11 = A11 ( p) which 
depends on the coordinates only via a single in­
variant variable cp = ( kx), where k11 is a four­
vector of zero length formed from k: k 11 
= ( k, i I k ), k2 = 0. It is assumed that the poten­
tial A11 satisfies the Lorentz gauge condition, so 
that ( kA) = 0. Moreover one can always require 
the potential A11 to satisfy another condition; for 
example, one can require that its fourth com­
ponent be zero in some coordinate system. It is 
convenient to write this additional condition in 
the form ( fA ) = 0, where f is one of the four­
vectors which occur in the problem. 

The exact solution of the Dirac equations for 
an electron in the field of the plane electromag­
netic wave was found by Volkov [5] It may be 
written in the form 

1Jlpr {x) = [ 1 + e 2 ~k~) J u (p, r) 

(kx) 

[ . \ (e (pA) e2A2 ) . . J 
x exp ' J (kp) - Z(kp) d<p -t· l (px) , 

0 

(1) 

1lWe use the following notation: p11 = (p, ip0), (pq) = p · q 
- Poqo, P = (yp) = y • p + iy4 p0 , where y11 are hermitian ma­
trices. Finally, h = c = 1 and e 2 I 4rr = 1/137. 

where p11 is a constant four-vector whose com­
ponents are quantum numbers describing the 
motion of the particle in the field of the wave, 
p2 = -m2, and u ( p) is the usual bispinor satisfy­
ing the equation ( ip + m) u ( p) = 0. The signifi­
cance of the components of the vector p may be 
seen easily if one transforms to the coordinate 
system in which A0 = 0, and in which A is 
directed along the 1-axis and k along the 3-axis. 
We will call this coordinate system the "special" 
coordinate system. In this special system the 
electric field of the wave is directed along the 
1-axis, the magnetic field is along the 2-axis, and 
the wave is propagating along the 3-axis. It may 
be seen easily in this system that the operators 
-i0/8x1, -i8/8x2, and W/ot + i8/8x3 commute 
with the Hamiltonian of the Dirac equation and 
hence are conserved, and further that the solution 
( 1) is an eigenfunction of these operators with 
eigenvalues p 1, p2, p 3 - p0• Thus in the system 
we are using, p1 and p2 are the components of 
the generalized momentum along the axes 1 and 
2, and Po - p3 is the difference between the total 
energy and the component of the generalized 
momentum along the 3-axis. 

If we allow the operator of the four-kinetic 
momentum rr 11 = -i0/ox11 - eA11 to act on the 
state 1/Jp, we obtain IT 11 lj!p = 1r11 1/Jp• where 

(2) 

It follows that the density of kinetic momentum in 
the state 1/Jp equals the product of the particle 
number density 1/Jp 1/Jp and the four vector 1r 11 : 
lf![;IT 11 lf!p = 7rpi/Jpi/Jp· Hence the quantity 1r11 may be 
called the four-kinetic momentum of the particle 
at the point x (this is completely analogous to the 
classic situation, cf [s]). The particle current 
density in the field of the wave has the form 

(3) 

The constant c is a relativistic invariant and is 
determined by the normalization of spinor u ( p). 
Physically, it is the ratio of the number density 
of the particles to their kinetic energy c = j 0/1r 0, 

or it may be considered to be the number density 
of the particles in the eigensystem divided by the 
mass of the particles m. 

The functions 1/Jp satisfy the following condition 
of orthogonality and normalization 

~ 1Jl;•1jlpd3x = (2n)3 u +uo (p' - p). 

In what follows we will be dealing as a rule with 
a monochromatic plane wave, for which A11 
= a11 cos cp,. cp = (kx). In this case 

(4) 
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'" (x) = [ 1 + e k; cos_rp __ J u (p) exp [ i ~-~sin cp 
'I'll 2 (kp) (kp) 

- i 8e;:;,) sin 2cp + i (qx) J , (5) 

where 

(6) 

is the averaged kinetic momentum or "quasi­
momentum." We note that q2 = -m~, where 
m* = my' 1 + 1 ea/m )2/z is the "effective" mass 
of the particle. It is convenient to take the aver­
age number density of particles, excluding the 
incident particles, to be equal to unity (i.e. j 0 

= 1). Then the spinor u ( p) must be normalized 
by the relationship u +u = p 0/ q0, i.e., c ; 1/ qo, 
and the function 1/Jp is normalized by the relation 

~'P;·\j)pd3x = (2n)3 6 (q' -q). (4') 

The average density of incident particles will be 
called n, so that we have c = n/q0• 

3. THE MATRIX ELEMENTS AND PROBABIL­
ITIES. 

The matrix element for the transition of an 
electron from the state lf!p to the state l/Jp', with 
the emission of a photon having momentum k' 
and polarization e' is equal to 

M = e ~ (1J'p•;'\j)p) _;_,_ e-i(k'x) d4x. 
V2k0 

(7) 

We introduce the parameters 

ex = e (~~) - ~~}; ) , ~ = e~• ( (:p) - (k~') ) (8) 

and put 
()() 

cosncp exp (ia sin cp- i~ sin 2cp) ~~ .2} An (s, a,~) eiscp, 

s=-oo 

n = 0, 1, 2, (9) 

where, clearly, 
1t 

An (s, a,~) = -21 \ cosncpef(cp) dcp, 
:rt • 

-1t 

f (cp) = ia sin cp- i~ sin 2<p- iscp. (10) 

Then the matrix element may be written in the 
form 

e 'V -( ') {A'A + ( ~k;. + ;-c; )A 
M = V 2k~ --; u p e o e 2 (kp') 2 (kp) 1 

(11) 

eZa• (ke') k A } ( ) (2 )4 " ( k + , k') 
- 2 (kp) (kp') 2 u p lt u s q- q - . 

Thus the matrix element is an infinite sum of 
terms. As can be seen from the arguments of the 
delta functions, each of these terms describes the 
absorption from the wave or the emission into the 

wave of a definite number s of photons with mo­
mentum k. This obvious interpretation will apply 
to all the expressions obtained. The properties 
of the functions An ( s, a, {3 ) , in terms of which 
the matrix elements are expressed, are described 
in appendix A. 

Since the structure of the matrix elements ( 11) 

is similar to that of the matrix elements for plane 
waves, many of the operations on the matrix 
elements, including summation over final states, 
and summation and averaging over polarizations, 
are carried out in the same way as in the usual 
theory of plane waves. 

The square of the matrix element ( 11), summed 
over the polarizations of the electrons, is equal 
to ( e" = e'- k(k'e' )/(kk' )) 

.2} 1 ~Y = ~2 e~ 1/- .2} { [2 (pe")2 - (pp') - m 2 ] A~ 
r,r' qoqo o s 

+ [ (kk ') 4 ( ") ( ")]A 11 + [ e2a2 (kk')" a - e ae pe 0"'-l - 2 (kp) (kp') 

+ 2e2 (ae")2]A~} (2n)4 6 (sk + q- q'- k'). 

Summing over the polarizations of the photon e', 
and using the relation (A3) from appendix A, we 
find 

~ I M 12 
_ e2

, , 2} { _ 2m2 A~+ e2a2 (2 + (k )(~:·).; -) 
..;:,J l7T- 2qoqoko s p p 

(12) 

X (Ai-AoA 2)} (2n)4 6 (sk + q- q'- k'). (13) 

Integrating this expression over final states and 
replacing the summation over the directions of 
the spin of initial electron by an average, we ob­
tain the probability for photon emission by an 
electron, calculated per unit volume and per unit 
time: 

2 ()() 2" us d 

W = 1;:rt~q0 2} ~ dcp ~ (1; u)" 
S=l 0 0 

Here u = ( kk' )/ (kq' ), us= -2s ( kq )/m~ and cp 
is the c.m.s. angle between the planes ( k, q') and 
( k, a). Bee a use of the conservation laws, the 
summation is over values of s ~ 1. In analogy 
with (13) one obtains the probability for pair for­
mation by a photon with momentum l. 

00 2-n srs. 
w e•n 'V r d r du 

= 32:rt21o LJ ~ cp ~ u ,r u (u-1) 
s>s, 0 1 t' 
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where u= (kZ) 2/4(kq)(kq'), s 0 = -2m~/(kZ), and 
cp is the same as in (14). 

Because of the complexity of the functions A~ 
and Ai - A0A2, we can not in general carry out 
the integrations in (14) and (15). Hence we will 
consider two special cases determined by the 
magnitude of the invariant parameter x = ea/m 
(we note that x = Bm/B0w, where B is the mag­
nitude of the field strength, w is the frequency, 
and B 0 = m 2/e is the critical field). It may be 
shown that for x « 1, for processes which do not 
occur in the absence of the field, 

a~xs, ~ ~xa. ( 16) 

In this case it is clear from the expression (A1) 
of appendix A that A0( 0, a, {3) = 1, A0 ( 1, a, {3) 

= a/2, accurate to terms of second order. Then 
for s = 1 we have A%= a2;'4, Ai - A0A2 = 1/4, 
and the terms with s > 1 may be neglected. If in 
addition we put a11 = e 11 ..) 2ny/k0 where ny is the 
photon number density in the wave and e 11 is the 
unit polarization vector, we obtain from ( 14) and 
(15) the probabilities for the Compton effect and 
for pair formation by two photons calculated by 
perturbation theory. 

We obtain the other limiting case with ea/m 
» 1. The parameter x = ea/m may be large, 
for example, owing to a decrease of the frequency 
at fixed field strength. It is clear therefore that 
the case x » 1 leads essentially to consideration 
of processes in a constant field whose electric 
and magnetic field strengths are orthogonal and 
equal ( E 1 H, E = H; expressed in the language 
of invariant fields: F~v = 0, £ 11 vA.uFf.LvFA.u = 0). 
We call such a field a constant crossed field. 

We now show the connection between the proba­
bility _F (B) for an arbitrary process in a con­
stant crossed field of magnitude B and the proba­
bility W (B) for the same process in the alter­
nating field of a plane wave with strength B sin cp 
for x » 1. It is clear that in a slowly varying 
field the probability of a process, occurring at 
the instant when the phase of the wave is equal to 
lf!, is the same as the probability for the process 
in the constant crossed field of strength B sin lf!, 
that is, it is equal to f(B sin cp); hence the aver­
age probability in the alternating field, W( B), is 
the average of F ( B sin lf!) over the phases lf!, 
i.e., 

1t/2 
2 (" W (B) = n j F (B sin'¢) d'ljl. (17) 

If the function W (B) is known, then the above 
equation is an integral equation of the SchlOmilch 

type (see [7]) for the function F ( B) which has 
the single solution 

1t/2 

F (B) = W (0) + B ~ W'(B sin 'ljl) d'ljl. (18) 
0 

Thus if the probability of the process is known for 
an alternating field in the case x » 1, the proba­
bility of the same process in a constant crossed 
field is also known. 

We now consider the transition to a slowly 
varying field ( x - oo) for a more general process 
in which a charged particle with quasi-momentum 
q (and mass m), interacting with the field, is 
transformed into a different charged particle with 
quasi-momentum q' (and mass m') and several 
neutral particles with total momentum Z. The 
total probability for such a process can be put in 
the form W = ( n/q0 ) ~ J wd3q' /q'q0, where w 

s 
is a scalar function of the four-vectors a, k, q, q' 
and the invariant variable s. Because of the rela­
tivistic and gauge invariance, and because of the 
conservation law sk + q = q' + 1, the function w 
depends on six independent invariants, which may 
be chosen as follows 

s, a, ~. (kq), (kq'), l2 • (19) 

We are interested in the probability W for x - cc 

and for fixed amplitude of the field B = wa. In 
this case the integrand w depends on x primarily 
through a~ x, and k ~ x- 1. Moreover, w may 
depend implicitly on x through the variables of 
integration q' and summation s, since the effec­
tive values of these variables may vary with 
changing x. 

We now make the important assumption that as 
x- oo in the "special" system of coordinates the 
values of the variables will be effectively q1 ~ x, 
q2 ~ const and q0 - q3 ~ const. Moreover we 
assume that the values of the invariant variables 
are essentially s ~ x 3 and 12 ~ const. These as­
sumptions will turn out later to have been justi­
fied. Using these assumptions we express the six 
variables ( 19) in terms of x and five new invari­
ant variables which are independent of x when 
for x - oo. It is convenient to choose these new 
variables, except Z2, as follows 

cr = x2 [ ;~ - ~ - ( 8~ YJ, cos \jJ = :~ . 
(20) 

Only four of these five variables are independent, 
since K = x - x'. We now express these variables 
in the "special" coordinate system and also in-
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troduce their invariant expressions in terms of 
the field amplitude F f.JY : 

eBr eV~ 
X= Jn3 = m• 

,_eBr' _ eV~ 
X - -;;a- m• 

eBA, eV(~ 
'iG = rna == rn3 ' 

The limits of integration in the last integral are 
chosen to correspond with the conservation laws 
qt = qi + lt, q2 = q2 + Z2, Y = y' + A. 

Using (21), we now transform from the vari­
ables qi, q2, y' to the variables cos lf!, r, x: re­
spectively. Then if we take account of the fact 
that the function in the integrand is even in lj! and 
r we obtain 

tc/2 X co 
W = _n_ (' d•., (' d' (' dr; 4xzsin¢(x-·J()w. 

(2:rt)2 qo .l '~' .l X .l X2X' 
(24) 

0 0 0 

l2 , Finally putting r =sinh u, x/x' = cosh2v, we ob-
xm'z- x'm2 XX 

m•x - mzxz tain instead of (22) 

(21) 

Here 

( F~v is obtained from F11 v by replacing H by E 
and E by -H). Only four of these variables are 
independent, for example x. x', cos lf!, and r; the 
remaining variables K and u are functions of the 
others. The first equation of (21) show that the 
new variables actually are independent of x be­
cause of the assumptions made previously; the 
second equations will be very important in what 
follows when we turn to a description of processes 
occurring in an arbitrary constant field F11 v. 

4. THE EMISSION OF A PHOTON BY AN 
ELECTRON 

The emission of a photon by an electron is a 
special case of a process having the conservation 
law sk + q = q' + 1. The probabilities for proc­
esses with this type of kinematics have the form 

W = (2 )~ ~ ~ d~q' 6 (sk0 + q0 - q~- l0)w, (22) 
:rt qo • qie 

where l0 = .J -l2 + ( sk + q- q' )2, and where w is 
an invariant function. Keeping in mind the limiting 
case x -co, we transform to new variables of 
integration in (22). Since for x - co we have 
essentially s ~ x 3 in the sum over s, we may 
replace the sum over s by an integral. Integrating 
over s and then transforming from the variable 
q3 to the variable y' = q0 - q3, we obtain 

00 co y 
(' (' ' ~ dj' 
.l dq~ .l dq2 j r'(ki) · · · (23) 

-oo -oo 0 

7tf2 00 00 

W n (' d•h (' d (' d 8x2 sin ljJ th3 v ch u w. (2 5 )* 
= (2:rt)2 qo .\ 'I' .l v .\ u X 

0 0 0 

For the emission of a photon by an electron, 
the function w is determined by (13). We put this 
function in (25) using the asymptotic expressions 
for the functions Aij and Ai - A0A2, given by 
(B13) and (B21) in Appendix B. Since we have in 
the present case K/x' = sinh2v, u = 1 + T 2 

= cosh2 u, the probability per unit volume and per 
unit time for the emission of a photon by an elec­
tron will then be 

lt/2 co co 

W (x) = 2e~~:n ~ d')l ~ dv ~ du c~~: VY {- 2<1>2 (y) 
0 0 0 

+ ch2 u (ch2 v + ch-2 v) [ <P2 (y) +i ID'2(y)J}. (26) 

where y = ( sinh2 v /2xsin lj! )213 cosh2 u. Thus the 
probability for emission depends only on the 
parameter x and is of the type ( 17). Since ( 17) 
has a simple solution, the probability for the 
emission of a photon by an electron in a crossed 
field is equal to 

00 co 
e2m2c (' (' sh v ~ r::: { 

F (x) = --:12 j dv .) du ch" v v y - 2<1>2 (y) 
0 0 

+ ch2 u (ch2 v + ch-2 v) [ <1>2 (y) + ~ <1>' 2 (y)J}, (27) 

where y= (sinh2v/2x) 213 cosh2u. 
We now investigate the function F ( x) for botl: 

small and large X· To do this it is convenient to 
change from the variable v to the variable 
t = (%) y3/ 2, replacing the Airy function and its 
derivative by the Bessel functions K1; 3 ( t), and 
K2; 3 ( t). The function F ( x) then becomes a sum 
of three integrals, whose integrands depend on x 
only through the factor ( 1 + 3xt/cosh3 u )-n, 

*sh = sinh, ch = cosh, th = tanh. 
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where n = 1, 2, 3. For x « 1 these factors may 
be developed in a series 

(1 + atrn = ~ (- 1)kr (n + k) (at)k 
."'-1 r (n) r (k + 1) 
k=O 

in powers of X· Then for F ( x) we also obtain a 
series in powers of x. whose coefficients are 
integrals which have been tabulated [s]. Hence for 
x « 1 we obtain the asymptotic series 

2 2 00 
F (x) = em ex "'(- i)k (3k2 + 3k + 10) 

32 f3n2 ."'-1 
k=O 

5e2mzcx { 8 (3 ) 7 (3 )2 } = 8 yfut 1 - 15 X + IS X - • • . • (27') 

For x » 1, in place of the series expansion of 
the quantity ( 1 + at)-n, we use the representa­
tion LS] 

ioo 

(1 + at)-n = 2~i ~ dk r (- k~ ~~; + k) (at)\ 
-ioo 

Then clearly in place of the sum (27') we obtain 
the integral 

ioo 
F ( ) - e2m2cx _1_ 

X - 32 "V3nz 2ni 
~ dk (3k2 + 3k + 10) r (- k) 

-ico 

The path of the integration can be closed on the 
left, thereby transforming the integral into a sum 
of the residues at the poles of the integrand which 
lie in the left-hand plane. We then obtain 

F ( ) = e2m2cX ~ { 4 (18n2- 3n + 14) (3"')-2n-';, 
X 8 y3 ."'-1 9n1 f(n + 1/a) " 

n=O 

+ 4 (18n2 + 21 n + 20) (3 )-2n-•;, 
9nt r (n + 5/a) X 

(3n2 + 3n + 10) (3X)-n-l } 

(2 + (-1)n) r (n/2 + 2/a) r (n/2 + '!•) 

= 7r (2j3) e2m2c (3 )'/, { 1 _ -~ (3 )-'/a 
54n X 28f(2!a) X 

15 r (1/3) -•;, 216 y3 ( )-'/• } + 7r (2/a) (3X) - 35r (2/s) 3X + · · · · (27") 

We now calculate the emission intensity from 
an electron in the field of a wave and in a crossed 
field. To this end we consider the four-momentum 
of the radiation IJ.l = ~ J k~ dWs, emitted per 

unit volume and per unit time. Since I11 depends 
only on p, k, and a, and since it must be gauge­
invariant, it has the form 

I~'-= p~'-A + k~'-B +(a~'-- k~'- ~~;DC, 

where the invariant functions A, B, and C are 
easy to find by multiplying the right and left hand 
sides of this relation by p, k, and a. We then ob­
tain 

(28) 

For x- oo we have a/8{3- cos If!, s/4{3- Y2 

-- cos2 If!, since the expression in curly brackets 
has the value - k11 e 2a 2 cos 2 1j!/2 ( kp), we find for 
the emission intensity I0 per unit volume the 
following expression: 

n/2 

I 0 (x) = ~ ~ n ('ljl) I (xsin'ljl)d'ljl, (29) 
0 

where n (If!) = n · 2 cos2 1j! is the particle number 
density when the phase of the wave is If!, and 
I ( x) is the emission intensity due to a single 
particle in the crossed field: 

00 00 
e2mZ \ \ sh• v ~ ,-

I (X) = 7 .) dv .) du chs v y Y 
0 0 

x {- 2<1>2 + ch2 u (ch2 v + ch-2 v) ( <1>2 + ~ <1>' 2 )}. 

- (shZ v)''• h2 y- 2X c u. ( 30) 

I ( x) is an invariant quantity and differs from 
the probability F ( x) by an additional factor 
c- 1 tanh2 v under the integral sign. The behavior 
of I ( x ) for both small and large x may be found 
in the same way as was done for F ( x ) . Hence 
for x « 1 

32 2 2 00 
I (X) = em X ~ (- 1)k (k + 1) (k2 + 2k + 8) 

32 f3n2 k=o 

x r({ + J) r (} + f) (3x)k 

_ e2m2xz {i _ 55 y3 (3 ) + ~ (3 )2 _ } 
- tin 48 X 3 X • • • • 

The first term of this series does not contain 
Planck's constant and hence is the classical 
emission intensity for an electron in a crossed 
field 2) (cf. Sec. 73 in [SJ). For x » 1 

(30') 

2lThe classical formula e 2m2x2 /6rr is valid for the emis­
sion intensity from an electron in an arbitrary constant field, 
if F f.lV is taken in the invariant X = e ,j (F f.lVPv Y /m' to be 
the field strength and Pv is the electron momentum[•]. We 
show in Sec. 7 that our quantum formulae, including the 
formula for I(x), are also valid for an arbitrary constant field 
under certain restrictions. 
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I ( ) = 3e2m2x2 ~ {8 (6n + 1) (9n2 + 3n + 16) (3 r2n-•;, 
X 8Y3 L.J 81n!f(n+ 1/a) X 

n=O 

+ 8 (6n + 5) (9n2 + 15n + 22) (3 )-2n-•;, 
81n! r (n + Sfa) X 

n (n2 + 7) (3 )-n-1} 
- (2- (-1)n) r (n/2 + 1/ 6 ) r (n/2 + %) X 

= 8 r (2/a) e2m2 (3 )'/a {t - _8_1 - (3 )-'/, 
243n X 16 r (Zfa) X 

1{)5 r (I /a) -•;, 2673 lf3 -•;, } + 16 r ("/a) (3x) - 80 r (2/a) <3x) + · · · · ( 30") 

We note that for -s ( kq )/m~ « 1 we obtain 
from the quantum mechanical formula (28) the 
classical expression for the intensity of the emis­
sion of an electron in the field of a plane polarized 
wave which, in the coordinate system in which the 
electron is on the average at rest ( q = 0, q0 = m* 
= m v 1 + x2/2 ), has the form 

where 
X • ~ a = - S Sin 8 COS m R = S (f - COS 8) 

Y1+z2/2 .,., t' 8(1+z2/2) ' 

and where e is the angle between k' and k and 
cp the angle between the plane ( k, k') and a. The 
intensity of the first two harmonics ( s = 1, 2) 
for x « 1 was discussed in [i2], but the results 
do not agree with ours. 3 ) 

5. PAIR PRODUCTION BY A PHOTON 

Pair production by a photon is a process with 
a conservation law sk + l = q + q'. The probabil­
ity for processes of this type has the form 

(31) 

where q0 = v -q2 + ( sk + l - q' )2, and where w is 
an invariant function. Changing to new variables 
of integration as in Sec. 4, we obtain 

~ \ d"q' • 1 daq• '7 j q~qo 6 (sko + Zo - qo - qo) ... = - J q~ (kq) . .. ( 32) 

r . r . r dr' 
= - .l dql j dq2 .l y' (kq) •.. 

-co -co 0 

The limits of integration in the last integral 
are chosen to correspond with the conservation 
laws Z1 = q1 + q!. Z2 = q2 + q2,A. = y + y'. We now 

3lThe corrected results recently published by Vachaspati 
(Phys. Rev. 130, 2598, 1963) agree with ours. 

change from the variables q!, q2, y' to the vari­
ables cos if!, T, x' by using Eq. (21), in which, to 
satisfy the conservation law, we must make the 
changes l-- -l, q-- -q and hence y-- -y, 
x _. - x. K _. -K. We then obtain 

Tt/2 " (X) 

_ n I I , \ 4x2 sin 'ljJ w - (2n)•io j d'IJ j dx, j d,; xx· w. (33) 
0 0 0 

In the important particular case where w is 
symmetric in x and x', the integral over x' be­
tween 0 and K is equal to twice the integral over 
x' from 0 to K /2. In this case we put x' = ( 1 
+ tanh v )/2, and also T = sinh u, and we obtain 

Tt/2 (X) (X) 

W = _n_ \ d•hl d I d 16z2sin'ljlchu 
(2n)2io.) '~'.l v j u x w. (34) 

0 0 0 

For the production of a pair from a photon with 
momentum l and polarization e', the function w 
is determined by (12) if we make in this formula, 
in accordance with a well known rule [s], the sub­
stitutions k' -- -l and q - -q, and change the 
sign. We consider two cases; first, the case in 
which the polarization of the incident photon is 
parallel to the polarization of the wave of the 
''special" system and, second, the case in which 
the polarization of the incident photon is perpen­
dicular to the polarization of the wave in the 
"special" system. In the first case we take 
e;1 = e, and in the second case we take e1 11 
= -i£11 vA.uevkA.lu!(kl), where e is the unit 
polarization vector of the wave. We put e;1 and 
eJ. in (16), using the fact that (ei1k) = (e(1Z) 
= eJ. k) = ( eJ.Z) = 0, and also using expression 
(A3) from ~ppendix A. We then obtain the two in­
variant functions w11 and w 1 which describe the 
production of a pair by photons polarized respec­
tively parallel and perpendicular to the polariza­
tion of the wave: 

wg = e2m2 {crA~J+ x2 (;~~.-1)(A~- A0A2)}, 

w.L =e2m2 {(1-u)A~+ x2 4~~· (Ai-A 0A2)}. (35) 

We have used here the variables (20). It should be 
noted that the functions w11 and w l contain only 
two combinations of the functions An, namely A5 
and AI - A0A2, rather than three combinations as 
was the case for the initial function w for arbi­
trary polarization e'. 

We now take the limit as x - oc and put the 
functions w11 and w 1 in (34), using for Aa and 
AI - A0A2 their asymptotic expressions (B13) 
and (B21) (cf. appendix B), and putting [as in (34)] 
(J = 1 + T 2 = cosh2u, x' = K ( 1 +tanh v)/2. Then 
we have 
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tt/2 00 00 

4e2m2 n (' \' \' ch2 u ~c 
W 11 (x) = ~•Zo j d'ljl j dv .\ du ch• v v y 

0 0 0 

tt/2 00 00 

4e2m2 n ~ ~ ~ ch2 u -wj_ (x) = -.1- d'ljl dv. du-h2 VY no • , c v 
0 0 /0 

X{- th2 u<l>2 (y) + ch2 v [ <1>2 (y) + + <1>'2 (y)]}. (36) 

where y=(2cosh2v/Ksinl/J)2/ 3 cosh2u. For 
small K in the integrals ( 36) an effective role is 
played by u, v, and Ir/2 - lf! « 1. Expanding the 
corresponding functions in series and using the 
asymptotic representation of the Airy functions 
for large values of the argument, we obtain: 

W = 3e2m2 n (~)'!. _813" 
11 321o 2~ e ' Wl_=2W 11 , x~i. (36') 

For large values of K we essentially have 
u » 1 in the integrals (36). Using this fact, we 
obtain 

W = 27f7 ('Is) e•m2n (~ ')'/, W 3 W 
II 56~szo 2 , l_ = 2 n , x~1. (36") 

The probabilities W11 and W 1 for small K were 
obtained recently by Reiss [1]. 

The expressions (36) for the probabilities W11 
and W 1 have the form (17), and hence the proba­
bilities for pair production by a photon in a 
crossed field are 

00 00 

2e2 m2 n (' (' ch2 u ~ ;- { 
F II (x) = ~•Zo .\ dv .\ du ch' v v y $2 (y) 

·o o 

X {- th2 u <1>2 (y) + ch2 v [ <1>2 (y) + + <1>' 2 (y) ]} , ( 37) 

where y = ( 2 cosh2 v /K )2/ 3 cosh2 u. The limiting 
values of F11 and F 1 for small and for large K 

are 

F _ 1 /3 e2m2n _813" 
11 - Y 2 32~1o xe ' 

F = 3r• (%) e•m•n (3 )'/, 
II 28ll31o X ' 

F1_=2F 11 , x~1. (37') 

F 3 F ~ 1 (37") l_=z II• X~ • 

The probability of pair production by a photon in 
a crossed field was obtained for K « 1 by Toll 
and Wheeler (cf. [t]). In conclusion we note that 
the probability of pair production by an unpolar-

ized photon is equal to F = ( F 11 + F 1 )/2, and the 
probability of pair formation by a photon with 
arbitrary polarization e' is equal to F ( e') = F 1 
+ e 2( F/1YZJ1e~) 2 ( F11- F1)/m6 K2. 

6. SINGLE PHOTON ANNIHILATION OF AN 
ELECTRON AND A POSITRON 

Single photon annihilation of a pair is a 
process with a conservation law q + q' = sk + l. 
Probabilities for such processes have the form 

where Z0 = v _z2 + ( q + q' - sk )2 and w is an 
invariant function. For x- co the sum over s 
may be replaced by an integral. We then obtain 

(38) 

(39) 

For single photon annihilation of a pair, the func­
tion w is equal to the function w for the produc­
tion of a pair by a photon but multiplied by one 
fourth, owing to averaging rather than a summing 
over the polarizations of the electron and posi­
tron. If one is not interested in the polarization 
of the emitted photon, one must take w = ( Wll 

+ w1 )/4 where w11 and w1 are given by (35). 
Putting this function in ( 39) and using the asymp­
totic expressions (B13) and (B21) from appendix 
B for A~ and Ai - A1A2, we obtain 

W= :;~q: ~{<1>2 (y) + ( 2~~~ -1)a [<~>2 (y) + +<1>'2 (y)J}· 

Here, as follows from (21), 
( 40) 

y = (x/2'X.'X.')'I• a, 

where cos lf!- 0 and sin lf!- 1 as x- co, for 
in contrast to the previous cases the quantities 
q 1, q2, y, and q!, q2, y' are now fixed for both 
charged particles. 

Expression (40) shows that the annihilation 
probability per unit volume per unit time goes to 
zero as x -co. Physically this is connected with 
the fact that the interaction between the electron 
and the positron depends critically on the phase of 

the field, and for x - OG vanishes if lf! "' 1r /2. 
However, if one introduces the annihilation prob­
ability per unit volume over the half-period T 1; 2 
of the field vibration, the probability will be 
finite for x - co and equal to 

WT•;, = ~Bemn~· : {<D2 (y) + a x•: ~·• [<D2 (y) + .!_ <D'• (y)J} . 
qoqo Y XX Y 

( 41) 

The reason why it is natural to consider the 
annihilation probability over a half-period of the 
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vibration of the wave rather than a full period is 
that classically the total trajectory of the particle 
in the crossed field is equivalent to half of a 
figure-eight trajectory of the particle in an oscil­
lating field as w- 0. Then expression (41) 
represents the probability for annihilation in a 
crossed field of 1 cm 3 over all time. In other 
words, in a constant crossed field the annihilation 
probability depends on the time, and the integral 
over the time is given by (41). Since the time de­
pendence enters in the theory only in the combina­
tion x 3 - t, the integration over t is equivalent 
to an integration over x 3. Hence expression ( 41) 
(multiplied by the velocity of light) is also the 
probability for annihilation per second in an in­
finite cylindrical volume whose axis lies along the 
vector E x H and whose base has area 1 em 2• 

7. PROCESSES OCCURRING IN A CONSTANT 
ELECTROMAGNETIC FIELD 

In the previous sections we obtained results 
for the probabilities of various processes in the 
field of the plane electromagnetic wave, and it was 
shown that for x « 1 these probabilities go over 
into the corresponding formulas of perturbation 
theory, and that for x » 1 they go into the proba­
bilities for a crossed field of strength B sin z/!, 
averaged over the phase 1/J. We then obtained 
exact formulas for the probabilities in a crossed 
field, written in relativistic and gauge invariant 
form in terms of parameters containing the 
electromagnetic field tensor F fJY and the vectors 
Pw p~ , characterizing the state of the particle in 
this field, 

The question arises whether one may use the 
formulas obtained for probabilities in a crossed 
field to describe processes in an arbitrary con­
stant electromagnetic field, using in the above 
formulas for the quantity Fpy an arbitrary con­
stant field rather than the crossed field, and using 
instead of the vectors p/-1 and p~ , the quantum 
numbers describing the states of the particle in 
the given field. 

In this connection we note that the state of the 
particle in an arbitrary constant field is deter­
mined by the same number of quantum numbers 
as the state of the free particle, and that these 
quantum numbers may always be cho.sen so that 
when the field is turned off they transform into 
the quantum numbers of the free particle, i.e., 
into the four-momentum of the free particle PJ.! 
( p2 = -m2 ) and the projection r of its spin. Thus 
the state of the particle in a constant field can be 
described by a constant four-vector PJ.! and a 
discrete number r. 

We now consider for simplicity these processes 
in a constant field which are caused by a single 
particle. The total probability for such a process 
(averaged over r) may depend only on the field 
F p, v and on the vector Pp,. If one is dealing with a 

probability calculated per unit volume and per 
unit time, such a probability must be an invariant 
quantity and hence can depend only on the invari­
ants ( Fp,vPv)2, F~v' F~vFpv· Moreover since 
in a constant field the electric charge e can 
occur in the probability only in combination with 
the field F p, v , we find that 

w = w (x, f, g), (42) 

where x2 = e 2 ( F p )2/m6 f = e 2F2 /m4 
p,v v • p,v • 

g = e 2 FP,v F p,vlm4 are dimensionless parameters. 
The function W( x. f, g) is unknown. However we 
have found the exact function W for the crossed 
field, where f = g = 0, i.e., the function 
W ( x. 0, 0). Therefore if 

j, g~i, ( 43) 

then the function W ( x. 0, 0) obtained for the 
process in the crossed field will be a good ap­
proximation to the function W( x. f, g). The con­
dition f, g « 1 reflects the smallness of the con­
stant field F p,v in comparison to the critical field 
m 2/e ~ 10 13 absolute Heaviside units. Since the 
presently available fields are several orders of 
magnitude smaller than the critical field, the 
condition f, g « 1 can always be assumed to hold. 
The condition x2 » f, g is satisfied for particles 
with relativistic energies, i.e., for Po » m. 

The invariant x may be considered to be the 
eigenvalue of a certain operator which is con­
served. Actually, we consider the operator 
( Fp,viiv )2, where liz;= -i8/axv- eAv is the 
kinetic momentum operator. In a crossed field 
the operator ( F11 v1Iv) 2 is conserved and its 
eigenvalues are equal to ( F p,v Pv )2. In an arbi­
trary constant field the operator ( F p,vii v )2 is 
conserved for scalar particles and is not con­
served for spinor particles. In this latter c~se 
however its commutator with the operator II is 
proportional to f, g and if these latter quantities 
are small, the operator ( F p,vii v )2 may be re­
garded as conserved even for spinor particles. 
To the same degree of accuracy, the eigenvalues 
of the operator ( F11 z;Tiz;) 2 are equal to ( Fp,vPz;) 2• 

Similarly the components of the vector Pv• con­
tained in the invariant x. may be considered to 
be the corresponding components of the kinetic 
momentum. Since (Fp,vPv) 2 =(pxH+p0E)2 

- (pE) 2, we have in a crossed field ( FJ.!z;Pz;) 2 

= B2 ( p 0 - p 3 ) 2, and p 0 - p3 is equal to the differ-
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ence between the kinetic energy of the particle 
and the component of its kinetic momentum along 
the axis E x H, while in a magnetic field we have 
( F~-tvPv)2 = H2p12, and Pl is equal to the com­
ponent of the kinetic momentum perpendicular to 
the magnetic field, etc. 

Thus the probability found in Sees. 4 and 5 for 
the emission of a photon by an electron and the 
probability for pair production by a photon 
exactly describe these same processes in the 
crossed field and approximately describe these 
processes in an arbitrary constant field; the 
degree of approximation is given by the conditions 
(43). In particular if one takes F~tv to be a con­
stant magnetic field, we obtain both the probabil­
ity for the corresponding processes in a magnetic 
field and the applicable invariant conditions ( 43). 
The emission intensity from an electron and the 
probability for pair production by an unpolarized 
photon in a magnetic field found in this way agree 
with the formulas derived by Klepikov [2J. 

So far we have been dealing with processes 
involving a single particle. If the process in­
volves two particles, as for example in the case 
of the annihilation of an electron-positron pair, 
the total probability of such a process will depend 
on the total number of invariants. In this case the 
probability of a process calculated per unit 
volume and per unit time may be zero, since the 
interaction depends in a sensitive manner on 
their relative motion. However, in this case there 
may be physical meaning to a probability of a 
non-invariant sort, for example the probability 
per unit volume, etc. (cf. Sec. 6). These proba­
bilities may be put in the form of a product of an 
invariant function and a certain non-invariant 
multiplying factor. The invariant function must 
be the same for all constant fields, and when con­
ditions of the type ( 43) are satisfied, this function 
may be taken to be the one found for the crossed 
field. However, the non-invariant multiplying 
factor may change in going from one field to 
another. Therefore, for processes involving two 
particles the connection between the probability 
for the crossed field and the probability for an 
arbitrary field is more complicated and will not 
be discussed here 

In conclusion we thank I. E. Tamm, V. L. 
Ginzburg, and D. A. Kirzhnits for fruitful dis­
cussions of this work and for valuable comments. 

APPENDIX A 

Certain Properties of the Function An ( s, a, {3 ) 

It follows from (10) that the functions An are 
real. Using the relationship eia sin 'I' 

00 

= I; Jz(a) eilcp and formula (9) it is not difficult 
l=- 0(, 

to show that 
00 

A 0 (s, a, ~) = ~ ls+2t (a) lc (ln. (A1) 
l=-oo 

It follows from the definition (10) that the func­
tions An are connected with the function A0 by 
the relations 

A 1 (s, a,~) = -f [A 0 (s- 1, a,~)+ A 0 (s + 1, a,~)], 

A 2 (s, a, ~) = + [A 0 (s- 2, a, ~) + 2A 0 (s, a, ~) 

(A2) 

Since the integrand in (10) is periodic with period 
7T 

27T, we have J exp f ( cp) df ( cp) = 0, from which 
-'IT 

follows the important relation 

(s- 2~) A 0 - aA 1 + 4~A 2 = 0. (A3) 

From (A1) and (A2) it follows that 

An (s,- a,~) = (-1)s+n An (s, a,~). (A4) 

Therefore the combinations A5 and Ai - A0A2 

are even functions of a. P~tting cp = 0 in (9) we 
obtain 

()() 

~ A 0 (s, a, ~) = 1. (A5) 
,~=-00 

Multiplying (9) by its complex conjugate and in­
tegrating with the weighting factor eikcp over cp 
between 0 and 27T we obtain 

()() 

~ A 0 (s, a,~) A 0 (s + k, a,~)= 6ko· (A6) 
S=-00 

APPENDIX B 

Asymptotic Expressions for the Functions A0, 

A~ and A~ - A0A2 for x -- oo 

We now find an asymptotic expression for the 
function 



P R 0 C E S S E S IN T H E F I E L D 0 F A P L AN E E L E C T R 0 MAG N E T I C W A V E 5 39 

r. ~ 

A 0 (s, a, ~) = 2~ ~ eH'Pldcp = Re ~ ~ ef(cp) dcp, 
-;-; 0 

f (cp) = - ia sin cp + i~ sin 2cp + iscp (B1) 

As x - oo, using the method of steepest descent. 
To do this we transform the integral (B1) into an 
integral over a contour C which goes through the 
saddle point ct = cp0, where f' (<Po) = 0, and at 
the ends of which Re f ( ({') = - 00 • We expand 
f ( cp) in a series around the saddle point: 

f (cp) = f (cro) + ;h f" (cro) (cp - Cf!o) 2 

+ ~ r (cro) (cp - Cf'o)3 + ... (B2) 

We will show below that when x - oo we have 
Ref( <Po)- const and f"( cp 0 )- oo like x 2, 

whereas f'" ( q;0 ) and all higher derivatives at the 
point <Po approach infinity like x 3. It is clear 
from this that the effective region of integration 
over cp- <Po is ~x- 1 and that the second and 
third derivatives make comparable contributions 
to the integral; at the same time it is clear that 
the contribution of the remaining derivatives ap­
proaches 0 as x- 00 • Hence we need retain only 
the first three terms in (B2) and can replace the 
contour of integration C by a line L, at both ends 
of which Re f"' (<Po) ( <p - cp0 ) 3 = - 00 • This means 
that the ends of the contour L go to infinity in 
those sectors of the complex plane of the variable 
<P in which Re f"' ( cp0 ) ( <P - Cfo )3 < 0 (they are 
hatched in Fig. 1). Then, designating by f, f", and 
f"' the values of the function f ( <p) and its de­
rivatives at the saddle point cp = cp 0, and using the 
notation 

we obtain 

~ eH"> dcp :::::::: ~ ef,(cp) dcp 
C L 

= exp {f + j"3/3f"'2} ~ dcp exp {f"'u3/6- j"2u/2f"'}, (B3) 
L 

/" 
u=<p-!Jlo+r'· 

The contour L may be deformed into the 
straight line L 1 which is parallel to the boundary 
of the sectors and which goes through the point 
u = 0 (cf. Fig. 1). We put u = rei1J and f"' 
= I f"' I eie. Then if the contour L goes from 
sector to sector in the positive direction (i.e., 
counterclockwise as in Fig. 1) and then along the 
straight line L 1 ) we have 31J + e = rr /2, f'" u 3 

= i I f"' I r 3• If however the contour L goes from 
sector to sector in the negative direction, then 

along the line L 1 we have 31J + e = 3rr /2, f"' u 3 

= -i I f"' I r 3. Hence 

co 

~ d<pef'"u'/6-t"'/21"' = ei1l ~ dr exp (± i l.1:l r 3 - E:_ ei11 r \ 
6 2/"' I 

L, -co 
1f. 00 

= 2 Cfl, 1) ei1l~ dtcos(;+ yt), 
0 

where y = ± i f"~2f'" ( 2/ I f"' I) 1/ 3 ei1J and the ± 

signs correspond to the positive or negative di­
rection of the contour L. 

Using the Airy function <l>(y) [tO,l1], which is 
finite for real values of its argument, 

co 

(B4) 

1 . (t3 ) 
<D(y) = v-n ~ cos 3 + yt dt, (B5) 

0 

we obtain 

-- !"' . c \ v-... s; 2 f+ 3/"'' +111 ~ eH'P) d<p:::::::: j ef,(cp) dcp = 2 n V T7"'T e <D(y), 
C L 

. f"2 , a;-2- . 
y = ± ~ 2/"' V f7"T e'11. 

L 

FIG. 1 

(B6) 

Here 1J is the angle of the straight line L 1 ob­
tained by straightening the contour L, and the 
± signs correspond to the positive or negative 
directions of the contour L. 

We now turn to the actual calculation of the 
function A0• We use the second representation 
(B1). As in Appendix A we take a > 0. Moreover, 
we note that {3 > 0 always, since it can be put in 
the form {3 = -e2a 2 ( kf )/8 ( kq) ( kq') where f is 
the total number of neutral particles, and ( kf) < 0 
for time-like vectors f. From the condition 
f' ( cp) = 0 at the saddle points we obtain 

cr [( cr )2 1 s 1';, cr . l'cr 
cos cp1 ,2 = 8~ ± ~ + 2 - 4(3J = 8~ ± l-x-. (B7) 

As was shown in the text, as x - oo the quantities 
a/8{3 and a approach constant values ( a/8{3 )0 

and a0• 

We assume that 0 ~ ( a/8{3 )0 ~ 1, a 0 > 0. Then 
for the saddle points we can write 

cos cp1,2 = cos \j; ch e ± i sin \jJ sh E, 

sin Cfi1.2 = sin \jJ ch e =t= i cos \jJ shE, (B8) 
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where the new variables lf! and £ are connected 
with a, f3, and s by the relations 

<l 

8~ =cos'¢ ch e, 

[ s 1 ( <l )2 ]'/, . h 4]3 - 2 - 8;3 = sm 'ljJ s e, 

;b = 1 + 2 cos2 'ljJ + 2 sh2 e. (B9) 

Thus in this case we have two saddle points 
4? 1, 2, lying respectively above and below the half­
plane; moreover, as x- oo we have 0 :s Re cp 1, 2 

:s rr/2, and Im cp1, 2 = =F £- 0 (cf. Fig. 2). 
Let the integration in (Bl) be transformed to 

the contour C' + C + C" which goes through the 
saddle point cp2 as shown in Fig. 2. Since the 
vertical portions C' and C" give pure imaginary 
contributions, only the integral along the contour 
C, at whose ends Ref( cp) = - 00 , remains. 

FIG. 2 

Formula (B6) can be applied to this integral. With 
the help of (B8) and (B9) we find the values of f, 
f", and f"' at the saddle point cp2 in terms of lf!, 
£, and s and their limiting values for x- oo ( £ 

- 0): 

R I l. sh e ch e (1 + 2 cos2 1jl) l 4sea sin•ljl 
e =S. 1+2cos2 1Jl+2sh'e -es->0->-3(1+2cos2 1jl)' 

Iml = _ [ sin1j)cos1j)(1 +2ch2e) _ •h] 
s 1 + 2ch•e- 2 sin2 1jJ 'I' •--n 

-+-S [:{sin 1jJ cos 1jJ _ •h] 
3- 2sin2 1jl 'I' ' 

I" 4s sin 1jJ sh e [ . . h . h J 
= - 1 F' 2 1P + 2 h' sm 'ljJ c e + z cos 'ljJ s e 2--o - ~cos . s e 

4se sin2 1jJ 
-+- 1 + 2 cos2 11'' 

j'" = [4s [-sin 1jJ cos 1jJ she ch e -1. i (sin2 1jJ- cos• 1jJ sb•e))J 
1 + 2 cos2 1jl + 2 sh2 e . 

X -+ i 4s sin2 1jJ 
s~o 1 + 2 cos2 1j) · 

(BlO) 

Since s ~ x 3 and £ ~ x- 1 as x- oo, we have 
Ref- const, Im f ~ x 3, f" ~ x 2, and f"' ~ x 3 as 
x - cc. The remaining derivatives at the saddle 
point will behave like x 3 as x- oo. 

Using (B6) to write the integral over the con-

tour C, for which the angle TJ = 0 and for which 
the direction of traversal is positive, we obtain 

\ /('P) d = 2 y- v3/ 1 + 2 cos2-ijl i Im I <1> ( ) 
~ e <p :rt 2s sin2 1jl e y ' 

= 82 ( 2s sin2 1jJ )'/, 
Y 1 + 2cos2 1jl • 

(Bll) 

We point out that Re f + f"o/3f"' 2 = 0 when x- oo. 

Using (Bll) and the variables a and 1f! we 
write 

( X )'' Y = 2xx' sin~' .·a a, ( 1 + 2cos2 "')'/, = -. /cr 
2s sin2 1jJ x sin 1jJ V y ' 

( 3 sin 1jJ cos ~' \ 
I m I = ~ = s '¢ - 3 2 · ., '" ) · - sw- 'Y 

(Bl2) 

where 

2 -v-A = ----- ~ <l>(y) cos " 
o 1f n x sin lj; y '" 

A~= nx•y2~in•ljl <t>•(y)(1 +cos 2~). (B13) 

We now calculate the combinations Ai - A0A2 
for x- 00 • Since to a first approximation in x- 1 

all of the An are equal, we can not use the 
asymptotic expressions already obtained, but must 
begin instead from the exact expression. 

tt2 (Ai- A0A 2) = (He~ cos <p e1<'P>d<p )2 

c 

- Re ~ e 1 <'~>l d<p ·He~ cos2 <p ef<'~>>d<p. 
c c 

(B14) 

Inserting in this expression the expansion of 
cos cp about the saddle point cp2: cos cp = cos cp2 

- sin cp2 · ( cp - cp2 ) - ( % ) cos cp2 • ( cp - cp2 ) 2 + ... , 

and taking account of the fact that Re cos cp2, 

Re sin cp2 ~ 1, and Im cos cp2, Im sin cp2 ~ x- 1, 

( «P- 'P2 )eff. ~ X- 1 as x - oo, we obtain, accurate 
to terms of order x- 3 J~, 

:rt2 (Ai - A 0A 2) 

= (Im cos <p2) 2 [l0 [2 + (Re sin <p2) 2 l (Re 11 ) 2 

- Re 10 ·Re 12] + 2 Resin <p2 ·Im cos cp2 lim 10 ·Re 11 

where 

Jo = ~ ef('Pl dcp, 
c 

Jl = ~ (cp - cp2) el<'~>l d<p, 
c 

J2 = ~ (cp- cp.)• el<'~>>d<p. 
c 

(Bl5) 

(B16) 

In place of the integrals J 0, J 1 and J 2 in (Bl5) 
we can use their asymptotic expressions. The 
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asymptotic expression for J 0 is given by formula 
( B6). The asymptotic expression for J 2 can be 
obtained by differentiating the right and left sides 
of (B6) with respect to f". We then obtain 

12 = \ (qJ- qJ2)2 elo(«>) dqJ 
L 

_ s -v n- ( 2 )''• { r" _)_ . } - j""""" 1FT exp f + 3/"'" , lTJ 

X [y'!, cD(y) + ycD'(y)). (B17) 

We note further that since Re f0 ( cp) = - oo at the 
ends of the contour L, we get 

~ ef,(«>l df0 (qJ) = 0, 
L 

(B18) 

from which follows a relation between the asymp­
totic values of the integrals J 1 and J 2: 

2/" \ (qJ- qJ2) ef,(c;.l dqJ + f"' \ (qJ- qJ2) 2 ef,(«>l dqJ = 0. (B19) 
f i 

With the help of (B17) and (B19) we obtain 

J 1 = ~ (qJ - !p2) eM~> d<p 
L 

4 lin!"' ( 2 )'/, { /"3 • } = - f"2 U !"' I ex p f + 3/'"2 + lTJ 

X [y'!, cD(y) + ycD'(y)). (B20) 

Putting these asymptotic expressions for J 0, 

J 1, and J 2 in (B15) and using (B8), (B10) and 
(B12) we obtain 

A~- AoA2 = nx'~a:in21jl-{cD2 (y) + t cD'2 (y) 

+ [ $2 (y)- + cD'2 (y)] cos 2~}· (B21) 

We now assume that 0 :::s ( a/8{3 )0 :::s 1, u 0 < 0. 
In this case, as follows from (B7), we may write 
for the saddle points 
'P1.2 ='I' =t= e, cos qJ1 ,2 = cos 'iJ cos e ±sin 'iJ sin e, (B8') 

sin qJ1 ,2 = sin 'iJ cos e =t= cos 'iJ sin e, 

where the variables lf! and £ are related to a, {3, 
and s by 

a: [((X )2 + 1 s ]'!. . •h . 8f3 = COS 'iJ COS e, 8f3 "2 - 4~ = SID 'I' SID e, 

i = 1 + 2 cos2 'iJ- 2 sin2 e. (B9') 

The saddle points cp 1 2 are located on the real 
axis, and for x - oo we 'have 0 :::s lf! :::s 1r /2 and 
£ - 0 ( cf. Fig. 3). The function A0 is the real 
part of the sum of two integrals along the con­
tours C1 and C2 going through the saddle points 
<p1, 2 as shown in Fig. 3. Using (B6) to calculate 
the asymptotic form of these integrals, using the 
angle 7) 1,2 = ± 7r/3 and the negative direction of 
traversal of the contours, and using the relation 

FIG. 3 

e-i7r/3 ci>(-ye-i7r/3) + ei7r/3<1>(-yei7r/3) = ci>(y) 

we obtain for A0 and for Aij the same expres­
sions (B13) as in the case O" > 0, if by y and ~ 

we mean the functions given by (B12). One may 
show analogously that the asymptotic expression 
for Ai - A0A2 in the case under consideration is 
given by the same formula (B21) as in the case 
(J" > 0. 

Thus in the case 0 :::s ( a/8{3 )0 :::s 1, the func­
tions Aij and Ai - A0A2 are given asymptotically 
by (B13) and (B21), regardless of the sign of O". 

It is not difficult to see that in the case ( a/8{3 )o 
> 1 the functions Aij and Ai - A0A2 decrease, 
like as exp ( -Cx3) as x- 00 , and that we can 
therefore limit ourselves to the region 
0 :::s ( a/8{3 )0 s 1. In conclusion we note that in 
integrating expressions involving Aij and Aj 
- A0A2, the oscillating terms may be omitted 
since they give a vanishing contribution as 
X __,.. oo. 
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