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An approximate method of solving the equations describing the interaction of a quantum sys
tem with a strong field is developed. The system is described with the aid of probability am
plitudes and the density matrix. The solution obtained is applied to the electromagnetic field 
and clarifies the specific nature of the saturation effect for a large difference in the sponta
neous decay probabilities of the combining levels. The stability of the monochromatic regime 
in solid state quantum generators is discussed. 

THE investigation of the interaction of quantum 
systems with a strong field reduces, as is well 
known, to the solution of a system of linear differ
ential equations with variable coefficients. The 
mathematical difficulties arising here are due to 
the complicated dependence of the coefficients of 
the system on the time on the one hand, and to the 
necessity for accurate evaluation of the solution 
over extremely large intervals of time on the 
other hand. 

It has been possible to obtain comparatively 
simple formulas for the solution or to find it nu
merically in several interesting special cases. [t-s] 

In a broader class of problems it turns out to 
be possible to obtain an expansion of the solu
tion in powers of a small parameter, using the 
methods of perturbation theory[ to, It] or certain 
asymptotic methods.C 12 J However, in many prob
lems of interest, particularly to the theory of 
optical quantum generators, these methods impose 
overly stringent limitations on the magnitudes of 
the interaction matrix elements and their deriva
tives. 

In the present article the solution of the problem 
of the interaction of a quantum system with a strong 
field is carried out based on a method proposed by 
A. M. Molchanov in his lectures at Moscow State 
University. Here the fundamental matrix for the 
system of differential equations is sought in the 
form of a product of matrices, similar to the way 
this is done in the method of "variation of con
stants." The initial linear system of equations is 
reduced to a nonlinear system, whose solution is 
found by the method of successive approximations. 

In the method considered here, convergence of 
the successive approximations also occurs only 

under certain definite restrictions on the magni
tude of the interaction. However, these limitations 
are not substantial for a number of problems in
volving a strong field. Thus, for example, one can 
investigate the dependence on the field of the 
"material constants" in Maxwell's equations[ 13 ] 

on the basis of the expressions obtained for the 
solution. 

For simplicity of presentation, we here limit 
ourselves to an investigation of a model quantum 
system possessing two excited levels, using both 
the equations for the probability amplitudes of the 
states (Sec. 1) and the density matrix formalism 
(Sec. 2). 

1. For a description of the behavior of the two
level system in the quasiclassical approximation, 
we shall use the following differential equations 
for the probability amplitudes am, an of states 
m, n: 

am + r m (t) am= - iV (t) an, 

an+ Yn (t) an= - w• (t) am. ( 1.1) 

In many problems the quantities Ym ( t) and 
Yn (t) are markedly different from each other. 
For the case of the electromagnetic field, for 
example, Ym and Yn are equal to one-half the 
probabilities of spontaneous transitions from the 
levels m and n, and as a rule they differ by an 
order of magnitude or more. We shall assume 
that the following inequality is fulfilled for all 
values of t ::::: t 0: 

Yn (t) ~ y m (t) > 0, 

and the functions Ym(t), Yn(t), V(t) are bounded. 
Let a ( t) be a two-dimensional vector with 

507 



508 T. A. GERMOGENOVA and S. G. RAUTIAN 

components am ( t), an ( t). The solution of the 
system (1.1) for arbitrary initial conditions can 
be easily found if the fundamental matrix S ( t) of 
the system (1.1) is known: 

a (t) = S (t)a (t0). 

The matrix S ( t) obeys the equation 

as;at = Ps, (1.2) 

where P ( t) is the matrix composed of the coeffi
cients in the system of equations (1.1): 

, (-im(t) -iV(t) ) ( 
p (t) = - iV*(t) -in (t) • 1.3) 

The initial condition for S ( t) has the form S ( t0) 

= E, where E is the unit matrix. 
Following the idea of A. M. Molchanov, we shall 

seek S ( t) in the form of a product of two triangu
larmatrices S(t) =X(t)Y(t), where 

X (t) = c:(t) ~). , _ (At (t) iy (t)) . 
y (t) - \ 0 A2(t) 

In this connection 

, (.· At (t) iy (t) ) 
S (t) = ix (t) At (t) A2 (t)- x (t) y (t) · (1.4) 

For a periodic or quasiperiodic function V ( t), 
such a procedure enables us to separate to some 
extent the exponential change of the elements of 
the matrix § ( t) from the periodic variation. We 
shall try to represent the first change, which is 
basically defined by the quantities Ym and Yn• by 
the functions At and A2, the second variation-by 
the functions x and y. 

Let us assume that A1 and A2 are different 
from zero for all times t 2: t 0, and let .\i = Ai / Ai. 
Then from Eqs. (1.2)-(1.4) we obtain the following 
equations for the functions x and y: 

X+ (yn- Ym) X=- V*-Vx\ (1.5) 

(1.6) 

Here 

A,l = Ym- Vx, (1. 7) 

and the functions At, A2 can be determined from 
the equations 

(1.8) 

The initial conditions for x, y, At and A2 are de
termined by the form of §, given by Eq. (1.4): 

Equations (1.5), (1.6), and (1.8) are exactly 
equivalent to the initial system of equations (1.1). 
All the difficulty in solving the problem is now con
centrated in the nonlinear equation (1.5) for the 

single unknown function x ( t). The remaining 
equations are linear and are easily integrated for 
a known x(t). The probability amplitudes am(t), 
an ( t) are expressed in terms of the functions x, 
y, At, A2 as follows: 

a, (t) = A 1 (t) am (t0) + iy (t) an (to), (1.9) 

an (t) = ix (t)A 1 (t) am (t0) + [A 2 (t)- x (t) y (t)] an (t0). 

For Yn > Ym the solution of Eq. (1.5) for x ( t) 
may be found by the method of successive approx
imations according to the formulas 

t 

x<o> = 0, x<n> = - ~ {V* (t') + V (t') [x<n-1) (t') )2} 
t, 

t 

xexp{-\<r -r )dt"}dt'. 
~ n m 

( 1.10) 
t' 

For IV ( t)/[ Yn ( t) - Ym ( t)] I sufficiently small 
the sequence {x(n)} 0 converges to the solution 
x ( t). Actually, let us assume 

e= max <-I v (t) I 1 
- t>t, in(t)-im(t) 2 

( 1.11) 

and for a certain n = n0 let I x(n) I < 2E. Then it 
follows from (1.10) that this same bound also holds 
for n = n0 + 1, and since x 10l = 0, so all the quanti
ties x(n) are uniformly bounded: I x(n) I < 2E, and 
the rate of convergence of the sequence x(n) is at 
least no less than that of the geometric progres
sion with ratio 4E2• 

If the function x ( t) is determined correct to 
within a quantity of order E2n, then we can inte
grate the linear equations (1.6) and (1.8) with the 
same degree of correctness and find 

t 

A1 (t) = exp {- ~ [ym (t') - V (t') x (t')] dt'}, 
t, 

t 

A 2 (t) = exp {- ~ [yn (t') + V (t') X (t')l dt'}, 
t, 

t 
(• 

y (t) = - ~ V (t')A 2 (t') 
t, 

t 

X exp {- ~ [ym (t")- V (t") x (t")} dt"}dt'. (1.12) 
t' 

In order to clarify the physical meaning of the 
assumptions made, let us consider the case of an 
electromagnetic field, when Ym and Yn do not 
depend on the time, in more detail. We confine 
our attention to the leading terms, assuming 
E2 « 1 and Ym « Yn· Then from (1.10) and (1.12) 
we find 
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t 

x (t) =- ~v· (t') e-Yn(t-t'>dt', 

t, 

t 

y (t) = -A 1 (t) ~ V (t') e-Yn(t'-t,) dt', 

t, (1.16) 
t t' 

A1 (t) = exp {- "(m (t- t0) - ~ ~ V(t')V'(t") e-Yn<t'-t") dt'dt"}, 
t, t, where At and A2 are integration constants. If 

(1. 13) condition (1.11) is satisfied, then the radical is 
real and am, a0 decrease monotonically with 

First we consider the initial conditions am ( t0 ) 

= 1, an ( t0) = 0 (excitation of the system to the 
level m at the moment of time t 0): 

am (t) =A~; (t) 

t t' 

=exp {- Ym (t- to)-~~ v (t') v· (t") e-Yn(t'-t") dt' dt"}, 
toto 

t 

an (t) = ix (t) Al (t) = - iam (t) ~ v· (t') e-Yn(t-t') dt'. 

t, (1.14) 

The physical meaning of these expressions is com
pletely clear. The quantity I At ( t) 12 is the prob
ability of finding the system in the state m; it de
creases with time as a result of both spontaneous 
and induced (the double integral in the exponent of 
the exponential) transitions. The probability 
I a 0 ( t) 12 of finding the system in level n is 
proportional to I am ( t) 12 and to the function 
I x ( t) 12, which therefore describes the induced 
transitions from m to n. We obviously have the 
following estimate for the ratio I a 0 ( t) /am ( t) J2 

t 

I an (t) 12 = j \ V'(t') e-Yn(t-t') dt' J2~ max IV t = e2. 
~00 J ~ 

t, (1.15) 

The approximation E2 « 1 means therefore that 
I an ( t) 12 « I am ( t) 12 for all moments of time. 
This is related to the fact that after an induced 
transition m - n the system rapidly relaxes due 
to the condition Yn » Ym· One can interpret the 
subsequent approximations of order E2, E 4, and so 
forth, as successive transitions m - n - m - n 
and so on. 

In connection with these ideas, it is of interest 
to clarify the meaning of condition ( 1.11) for the 
convergence of the successive approximations. 
For this purpose let us consider the case of a 
monochromatic external field whose frequency we 
shall assume, for the sake of simplicity, equal to 
the transition frequency wmn· In this case the 
probability amplitudes are given by the expres
sions[7J 

time. However, if IVI/(y 0 -ym) > Y2 then the 
a t,2 are complex quantities and am, a0 in addi
tion to decreasing with time will undergo oscilla-
tions with a frequency that depends on IV 1. Thus, 
condition ( 1.11) means that the method considered 
of solving the system of equations (1.1) only en-
compasses the "aperiodic behavior" of the tran
sitions. 

It is usually assumed that nonlinear effects in 
radiation (including saturation effects) are 
expressly associated with the presence of oscilla
tions in I am 12 and I a 0 12 P 4J If several oscilla
tions of I am 12 and I a0 12 occur during a lifetime, 
this means that on the average the population of 
both levels is the same, and the system can neither 
absorb, nor radiate energy. This reasoning cor
responds in reality only to the case Ym = y 0 , when 
the "oscillatory behavior," as is evident from 
(1.16), begins at very small values of IV I, and the 
damping does not depend on the field. However, if 
Yn » Ym• then saturation is also possible for E2 

« 1, when, according to (1.15), the average popu
lations of the levels differ by a factor of E2 • For
mally, this is due to the fact that the degree of 
saturation is determined[ 7J by the magnitude of 
the parameter IV 12 hmYn = E2y 0 /Ym· which may 
be large for small values of E2 if Ynhm » 1. An 
intuitive interpretation of the nonlinear effects in 
this case is that the induced transitions increase 
the damping constant of the level m and reduce, 
by the same token, its average population to that 
value to which the oscillations in the case Ym 
= Yn reduced the difference of populations. This 
circumstance is also reflected in expression (1.14) 
for am in the case of arbitrary dependence of the 
field on time. With respect to order of magnitude, 
the double integral in the exponent of the exponen
tial in (1.14) is equal to the maximum value of 
IV 12 (t- t 0)/yll' i.e., its role will be appreciable 
if max IV 12 /yn ~ Ym• which agrees with the cri
terion given above for the existence of nonlinear 
effects. 

It should be noted that rapid decay of the state 
m because of the induced transitions is not equiv
alent in general to a broadening of the level. In 
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particular, it is shown in [7] that the induced 
transitions in a strong monochromatic field do 
not lead to broadening, but to a splitting of the 
spontaneous emission line. 

Now let us investigate the case of excitation of 
the shorter-lived state n (i.e., am (t0 ) = 0, an (t0 ) 

1 ). Here 

am (t) = iy (t), an ( t) = A 2 ( t) - X ( t) y ( t) • ( 1. 1 7) 

The term A2 ( t) in an ( t) describes the usual re
laxation after excitation of the system. The func
tion y ( t) determines the population of the level m 
due to the induced transitions n- m. Since the 
function ix ( t) gives the ratio of the probability 
amplitudes of the states n and m for the transi
tion m- n [see (1.14)], and in the present case 
am = iy, so the term -xy gives the contribution 
of the inverse transitions m - n to the probability 
of finding the system in the state n. We note that 
the function y ( t) decreases with time like At ( t), 
i.e., considerably slower than A2 ( t). Therefore, 
for sufficiently large times t - t 0 > y~1 , the term 
xy will be the leading term in the expression for 
an. Thus, for excitation of a state with a large 
damping constant, the first approximation takes 
into account the two-step transition n- m - n. 

2. For many problems a description of the 
quantum system with the aid of the density matrix 
turns out to be advisable. Here the equation for 
the fundamental matrix S also has the form (1.2) 
and the matrix P for a system possessing two ex
cited levels and three relaxation parameters [ t5] 

will have the form 

p = 0 - r n (t) - iV* (t) iV (t) (2 .1) ( 
- r m (t) 0 iV* (t) - iV (t) ) 

w (t) - i v (t) - r (t) o · 
- iV* (t) iV*(t) 0 - r (t) 

In the optical region the parameters rm, r n and 
r are markedly different from each other. Usu
ally the following inequality holds: 

r (t) ~ r n (t) ~ r m (t). 

Problems for which either 

Pmm (to}= 1, 

Pnn (to) = Pnm (to} = Pmn (to) = 0 (problem I), 

or 

Pnn (to} = 1, 

Pmm (to) = Pnm (to) = Pmn (to) = 0 (problem II). 

are of interest. 
For the solution of Eq. ( 1.2), we write as we did 

in Sec. 1, S in the form of a product of triangular 

matrices X and Y: 

( I 
0 0 

~)· s =X'/, X= X2t 1 0 
ixat ixag 

-ixu - ix42 X43 

(
At Yt2 Yta Yt4 ) 

0 Ag Y2a Y24 

0 0 Aa YM • 
0 0 0 ~ 

(2.2) 

The factors i and - i are introduced here for the 
sake of convenience in writing subsequent expres
sions. It is obvious that in order to solve problem 
I it is necessary to determine the elements of the 
first column of the matrix S, i.e., the quantities 
xit• At, and in order to solve problem II, one must 
determine the elements of the second column-xi2, 

y 12 and A2 • In the same way as in Sec. 1, it follows 
from the form of the matrix S and the initial con
dition S(t0 ) = E that Xij (t0 ) = Yij (t0) = 0, and 
Ai (to)= 1. 

The equations for these quantities can be ob
tained from Eq. (1.2) and relations (2.1), (2.2). 
The functions x2 1, x3t, and x 4t are determined by 
the following system of equations: 

Xa1 + (f - f m) x31 = V - V X21 + Xat (V*x31 + V x41), 
x41 + (f- fm) x41 = V*- V*x21 + x41 (V*x31 + Vx41), 

x21 + (r n - r m) x21 = (1 + x21) (V*xal + v Xu)-

(2 .3) 

At is the solution of the equation 

The solution to the system (2.3) can be found by 
the method of successive approximations according 
to formulas similar to ( 1.10). In order to deter
mine the n-th approximation, the quantities x2 t, x3t, 
x 4t on the right side of Eqs. (2.3) are assumed to 
be known to the ( n - 1) -th approximation. In the 
zeroth approximation they are assumed equal to 
zero. The functions x~n) ( i = 2, 3, 4; n = 0, 1, 2, 

11 

. ... ) are uniformly bounded and as n - oo they 
converge to the exact solution of the system (2 .3), 

provided the parameter E =max I v /( r n - r m) I 
is sufficiently small. Actually, having assumed for 
example that E < 'l'5 and that the following inequal
ities are satisfied for a certain value n = m: 

[x~~> [ < e, [ x<n>[<.!!...e 
31 2 ' 

it is easy to prove from integral expressions of the 
type ( 1.1 0) that these same bounds also hold for 
n = m + 1. Since x~ 0 l = 0, it therefore follows that 

l1 

inequalities (2.4) hold for all n = 1, 2, ... , and the 
successive approximations x~n) converge to the 

11 
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solution of the system (2.3) no more slowly than a 
geometric progression with ratio 

5 max I v 12 /[ < r - r m > < r n - r m > 1. 
Relying on the convergence of the successive 

approximations, it is easy to verify that x;1 = x 41 

and x21 is a real function. We give the expression 
for the leading term in the solution (the first 
approximation), whose relative deviation from the 
exact solution is a quantity of order E2: 

t t 

Xu (t) = x;1 (t) = ~ V* (t') exp {- ~ (f- f m) dt"} dt', 
to t' 

t 

r, it turns out that x42 = -x41 , and 

t t 

Y12 (t) =At~ [V*x=1 + Vx41 ] exp{-~ !fn- fmldt"}dt', 
t, t' 

t 

A 2 = exp {- ~ fndt'}. (2 .9) 
t, 

The solution of problem II for known functions 
y 12 , x 42 , and A2 can be obtained from the formulas 

X21 (t) = ~ [V* (t') x:1 (t') + V (t') Xu (t')] 
t, 

t 

X exp {- ~ (f n - f m) dt"} dt'. 

The interpretation of the solutions obtained is 
similar to that given in Sec. 1 for the case of the 
description of the system in terms of probability 

(2.5) amplitudes. 
t' 

For a known quantity x41, the function A1 is deter
mined by the expression 

t 

A 1 (t) = exp{- ~ !fm (t') + v· (t') x:1 (t') 
t, 

+ V (t') x41 (t')] dt'}, (2 .6) 

and the solution of problem I is found according to 
the formulas 

The functions y 12 , x 32 , x42 and A2, needed for 
calculating the solution to problem II, are deter
mined by the equations 

x32 + (f - f n) x32 

x42 + (r- fn) x42 

= - V* + ( X41 - X42 - X4::X21) (V* X32 + V X42), 

If the xi1 ( i = 2, 3, 4) are known, the function x 32 

or x 42 , which is equal to x;2, can be found from 
(2. 8) by the method of successive approximations, 
the condition for the convergence in this case 
being smallness of the ratio I VI ( r - r n) 1. 
After this the equations for y 12 and A2 are easily 
integrated since they are linear equations with 
known quantities on the right sides. We note that 
in this case, when it is possible to confine our at
tention to the first approximation for the solution 
and one can neglect r n• r m in comparison with 

Now let us consider, with the aid of the solutions 
obtained, the question of absorption and emission 
of photons of a weak electromagnetic field in the 
presence of a "strong" field. We shall assume 
r m• r n• and r to be real constants which charac
terize the relaxation processes taking place in the 
system.[ 15] The matrix element of the interaction 
V ( t) has the form 

V (t) = Vle-in,t + V2e-in,t, 

Ql = W1- wmn• Q2 = w2- wmn• V1 = PmnElj21i, 

V2 = PmnE2j21i. (2.10) 

Here w 1, w2 and E 1, E2 are the frequencies and 
amplitudes, respectively, of the strong and weak 
fields, Pmn is the matrix element of the dipole 
transition m -- n. We shall assume that the con
ditions for applicability of the first approximation, 
which is given by formulas (2.5), (2.6) and (2.9), 
are satisfied. 

The probability of stimulated emission (or ab
sorption) of photons nw 1, nw2 of the strong or 
weak fields is given by the following two expres
sions: 

co 

W1 = 2Re {i ~ V 1 (t) Pnm (t) dt}, 
t, 

co 

W 2 = 2Re {i ~ V2 (t) Pnm (t) dt}. (2 .11) 
t, 

For definiteness, let us consider problem I. Then, 
using (2.7) we find 

co 

Wn = 2Re {~ vl (t) Xu (t)Al (t) dt}, 
t, 

co 

W 2 1 = 2Re {~ V2 (t) x41 (t) A1 (t) dt}. (2.12) 
t, 



512 T. A. GERMOGENOVA and S. G. RAUTIAN 

By a "weak" field we mean a field which does 
not give any contribution to saturation. This means 
that it is necessary to expand the exponent in for
mula (2.6) for A 1 in powers of V2 and for the cal
culation of W2r according to (2 .12), it is necessary 
to limit ourselves to the first nonvanishing term in 
V2. Averaging Wti, W21 over the phase difference 
between V1 and V2 and assuming r » rn » rm, 
it is easy to obtain the following expressions with 
the aid of (2.10), (2.5) and (2.6): 

w - 2f I Vll2 
11 - r m Q~ +-f-2 -'--+--"2'-'-r-,-I_V_l_l2/_f_m_ ' 

(2 .13) 

The dependence of W2r on the frequency 0 2 of the 
weak field has the form of the usual dispersion 
curve of width r (the factor r 2 I ( r 2 + 0~ ) in 
front of the curly brackets), and near 0 2 = 0 1 

there is a narrow "dip", determined by the 
second term inside the curly brackets. The width 
of this "dip" is (11 = rm + 2r I Vtl2/(r2 + o;), so 
that under our conditions it is considerably less 
than the total line width r. The relative depth of 
the dip is 

which for 21 V 1 12 /r mr ~ 1 amounts to approxi
mately one-half the intensity of the line. The com
plicated frequency dependence of W2r is a good 
illustration that the shortening of the lifetime of 
the upper level caused by induced transitions is 
not equivalent to its broadening. 

Expression (2 .13) enables us to solve the 
interesting problem of the stability of the mono
chromatic regime of generation in a solid state 
quantum generator. Let a monochromatic field 
of frequency w1 be established in the generator. 
Due to spontaneous emission, electromagnetic 
waves with other frequencies w2 »' w1 will exist 
in the medium of the generator, where one can re
gard the amplitudes of these waves as small in the 
:;;ense that they do not cause saturation. If these 
weak fields decay with time, then the monochro
matic regime of generation is stable, but if the 
weak fields increase with time-it is unstable. 

Such a formulation of the problem was adopted 
in [ 16]. For a model of a quantum generator in the 
form of a layer of "active" material bounded by 
mirrors with high coefficients of reflectivity r 1, 

r 2, it was shown that nontrivial and exponentially 
time-dependent solutions of the wave equation 

exist if the following conditions are satisfied: 

oo1c-1 Veol (~e" (ool)- cl/2] = 1 - (r1 + r2)/2, 

oo2c-1 Veol~e" (oo2) = 1- (r1 + r 2)/2 + 2y2ljc. (2.14) 

Here l is the thickness of the layer; -~E" is the 
imaginary part of the dielectric permittivity due 
to population inversion; c 1 is the amplitudE of the 
first harmonic in the Fourier expansion of ~E"; 
y2 is the imaginary part of the frequency of the 
weak field. The term 2y 1Z/ c is absent from the 
first equation of (2.14), since it was assumed that 
the strong field is stationary, y 1 = 0. Inside the 
layer the strong field has the form of a standing 
wave 

(2 .15) 

and due to the saturation effect the dielectric per
mittivity of the medium turns out to be a periodic 
function of the coordinate x. The bar over ~E" 
in (2 .14) denotes average over the period of the 
standing wave. The presence of an inhomogeneous 
medium leads to the reflection of the waves prop
agating in the layer by each inhomogeneity. If the 
period of inhomogeneity is equal to one-half the 
wavelength, as happens for the strong field, then 
the reflected waves are shifted in phase by 21r, and 
it turns out that they reduce the amplifying effect 
of the medium. This effect also leads to the term 
ctf2 in condition (2.14) for the strong field. The 
wavelength of the weak field differs from twice the 
period of the inhomogeneity, and in this case it 
turns out that the reflected waves completely 
damp one another_[ 16] 

The stability or instability of the monochroma
tic regime of generation obviously depends on the 
sign of y2. If y2 > 0 then the weak field will grow 
with time, which finally leads to the disruption of 
the generation of the field with frequency w 1. 

However, if y2 < 0 then the weak field turns out to 
be damped, and the strong field is stable. The 
sign of y2 is determined by the magnitude of the 
ratio 

X = ~e" (w2)/(~e" (w1) - c1/2). 

If x > 1, then y2 > 0; however, if x < 1, then 
Y2 < 0. 

Let us consider the simplest case I V 10 12 

« rmr. which is adequate for our purposes. 
Under this condition one can neglect the depend
ence of (11 on I V 1 12. Assuming for simplicity that 
0 1 = Wt- Wmn = 0, with the aid of (2.3) and (2.15) 
we find: 
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The maximum value x = x m is reached when 

(2 .17) 

Substituting (2.17) into (2.16), it is easy to show 
that Xm ~ 1, provided 

(2 .18) 

If r m/r is sufficiently small, then condition (2 .18) 
is fulfilled for I V10 f « rm r, and the extremal 
value of Q2 (in order of magnitude) is equal to 
r m• i.e., much smaller than the linewidth r. 

The quantity I V10 12 is related to Q, the number 
of acts of excitation per unit volume and unit time. 
u I v 10 12 /r mr « 1, then from the first equation of 
(2 .14) one can find [ 17] 

(2 .19) 

where Q0 is the threshold value of Q at which 
generation begins. Thus, the condition for stability 
of generation takes the form 

(2.20) 

Upon reversal of the inequality sign in (2.20) 
the weak fields turn out to increase with time, 
which leads to a change in the conditions of gener
ation. Since r m and r usually differ by several 
orders of magnitude, so (2.20) is practically never 
satisfied. We note that the criterion (2.20) actually 
coincides with the similar criterion obtained in [ 16 ] 

for the case 2r = rn + rm » rm· 
The authors express their deep gratitude to 
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