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A method is proposed, permitting to determine those points of the Landau surface in which 
the contributions from Feynman diagrams are holomorphic functions. The Mandelstam rep­
resentation is proved for the "envelope" diagram, for the Kim diagram, and the "tetrahe­
dron" or "opened envelope" diagram. 

1. INTRODUCTION 

J T is well-known that all the singularities of con­
tributions from Feynman diagrams are situated on 
Landau surfaces [1J. In order to prove the Mandel­
starn representation [2] it is necessary to know 
which points of the Landau surfaces can be singu­
lar points of the diagrams, situated in the ''phys­
ical" sheet. However, to date, this problem has 
not been solved. Therefore in proving the Mandel­
starn representation for concrete diagrams one 
uses various tricks which do not require the use 
of the Landau surfaces. There exists only one 
paper by Tar ski [3] in which the Mandelstam rep­
resentation is proved for a fourth -order diagram 
by means of an analysis of the character of the 
singular points of the Landau surfaces. 

In recent papers, the present author[4•5J pro­
posed to use the continuity theorem to find those 
points on the Landau surfaces which are singular­
ities for diagrams situated in the "physical" sheet. 
It turned out that on the basis of the behavior of the 
Landau curves in the real domain one can decide 
whether the Mandelstam representation exists for 
a given diagram. On the basis of these results the 
Mandelstam representation is proved in the pres­
ent paper for certain relatively complicated dia­
grams. Scalar particles of equal mass will be con­
sidered. 

Section 2 will be devoted to the problem of find­
ing those points of the Landau surfaces which can 
be singularities for Feynman diagrams. In Sec. 3 
the proof of the Mandelstam representation by 
means of Eden's method is criticized. Section 4 
contains a proof of the Mandelstam representation 
for diagrams of the "envelope" type, the "truss" 
diagram (the diagram proposed by Kim in order 
to prove the Mandelstam representation wrong), 
and the "tetrahedron" diagram. 

2. ANALYTIC PROPERTIES OF DIAGRAMS IN 
THE COMPLEX DOMAIN 

The contribution to a scattering amplitude from 
Feynman diagrams can be written in the following 
form 

F(s, t) =) o (~1 a;- 1) {/(a)s + g(a)t 
n 

j > 0, (2.1) 

where s and t are the Mandelstam variables, m 
is the meson mass, f( a), g( a), k( a), d (a) are 
real functions of a = ( a 1; ••• , an ) . As is well 
known [s-a], 

f (a) s + g (a) t- m2k(a) < 0, (2.2) 

if s, t E B ( s, t I s < 4m2, t < 4m2, 4m2 - s - t < 4m2 ) , 

a E Tn. 1> (For individual diagrams the domain in 
which the inequality (2.2) holds may even be larger.) 
The functions f( a), g( a) are in general of indefi­
nite sign. utilizing the third Mandelstam variable 
u = 4m2 - s - t, one can prove the following 
lemma [5, 4]: 

Lemma 1. The function F ( s, t ) can be repre­
sented as the sum of functions of three types: 
F 1(s,t), F 2(s,u), and F3 (u,t); the denominators 
of the corresponding expressions for F 1 ( s, t), 
F2(s, u ), and F3(u, t) contain positive coefficients 
in front of s and t, s and u, u and t, respec­
tively, and the denominators do not vanish for 
s <4m2, t <4m2, for s <4m2, u <4m2 and for 
u < 4m2, t < 4m2, for F 1 ( s, t ) , F 2 ( s, u), and 
F3(u,t), respectively. 

l)The symbol (a[ ••• ) ( (s,t [ •.• ))denotes the set of points 
a= (a, ... , a 0 ) (or the set of points (s,t)), satisfying the con­
conditions I ... ). 
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According to Lemma 1, we may limit ourselves 
to functions F ( s, t) defined by integrals (2.1) such 
that f( a) 2:: 0, g( a) 2:: 0 and with the denominator 
f( a )s + g( a )t - m2k( a) < 0 in the domain 
B1(s, tIs< 4m2, t <4m2 ). The remainder of the 
present section will refer just to such functions 
F ( s, t). In principle, the properties of the func­
tions F ( s, u) and F ( u, t) with respect to the 
variables s, u and u, t do not differ from those 
of the function F ( s, t) with respect to the vari­
ables s, t. The function F(s, t) will be consid­
ered on its "physical sheet," i.e., for 
0 < arg ( s -4m2 ) , arg ( t -4m2 ) < 21r and for 
s, t E B1 the function F ( s, t) takes on values de­
termined by the expression (2.1). 

utilizing the inequality (2.2), we can prove a 
lemma which determines the complex domain in 
which the function F ( s, t) is holomorphic [5 • 7 J: 

Lemma 2. The function F ( s, t) is holomorphic 
in the domain D which contains: 1) all points ( s, t) 
with Im s and Im t of the same sign and arbitrary 
Re s and Ret, 2) all points ( s, t) with Im s and 
Im t of opposite signs, situated in the domain 

Ret- 4m2 - ~:: (Ret- 4m2)< 0. (2.3) 

It turns out that the domain (2.3) is a domain of 
holomorphy[5J. However the domain (2.3) is not 
the domain of holomorphy of the function F ( s, t). 
All singular points of the function (2 .1) (situated 
not only on the "physical sheet" but on other 
sheets as well ) are determined by the Landau 
equations [1•9•10] and are situated on the analytic 
surfaces 

g;(s, t) = 0, i = 1, 2, ... , l, (2.4) 

where gi ( s, t) are irreducible polynomials in s 
and t with real coefficients; the number of surfaces 
(2.4) depends on the structure of the Feynman dia­
gram.2> 

Not all points on the Landau surfaces (2.4) are 
singularities of the function F( s, t) which are sit­
uated on the "physical sheet." Indeed, those points 
of the surfaces (2.4) which are situated within the 
domain D cannot be singular tJOints. Further, one 
must take into account the circumstance that the 
singular points of a function of several complex 
variables cannot be arbitrarily distributed. There­
fore, there arises the problem of determining all 
points on the Landau surfaces (2.4) which can be 

2lwe call Landau surfaces all surfaces formed by singu­
lar points of the function F(s,t), and not only those surfaces 
of singularities for which Landau has given the well known 
parametric representations[ "' 01. 

singularities on the "physical sheet" of the func­
tion F(s,t). 

This problem has been solved by the author in 
the papers [4•5] by use of Bremermann's continuity 
theorem [1!]. Before formulating the basic result 
we introduce several definitions and notations and 
formulate the continuity theorem. 

Consider a continuous layer of analytic planes 
E ( c ) ( c is a real number ) 

as+ bt = c, (2.5) 

Let there exist on these surfaces some domains 
G ( c ) which converge continuously to the domain 
G ( CI) on the boundary plane E ( CI). Then the 
holomorphy of the function F ( s, t) in all points 
of the approximating domains G ( c ) and in a single 
point of the approximated domain G( ci) implies 
the holomorphy of the function F( s, t) in the whole 
domain G( CI ). 

In our case it is necessary to consider only 
those planes (2.5) for which a > 0, b > 0, since 
according to lemma 2 the function F ( s, t) is holo­
morphic for I Im s I > 0, I Im t I > 0 on all planes 
(2.5) for a/b < 0. We separate on the planes (2.5) 
(a> 0, b > 0) the domains G1(c) (s,t I Im s > 0, 
Imt<O) and G2(c) (s,tiims<O, Imt>O). For 
c < c 1 (a, b) = 4m2 (a + b) the domains G1 (c) and 
G2(c) are contained in the domain (2.3). 

The plane (2.5) has a finite number of intersec­
tion points with the surfaces (2.4); among the in­
tersection points there may be both complex and 
real points. We denote by c 0( a, b) the smallest 
number determined by the condition that some in­
tersection points which are real for c = c 0( a, b) 
2:: c 1 (a, b) become complex for c = c 0( a, b). (It 
may also happen that points which are complex 
for c < c 0(a, b) become real for c = c 0( a, b) and 
become again complex for c > c 0 (a, b ) . Such a 
situation arises when there exist isolated singu­
larities.) The possibility that they again become 
real intersection points as c increases further 
is not excluded. 

Using the continuity theorem, one can prove 
the validity of the following fundamental theorem: 

Theorem. The function F(s, t) is holomorphic 
in the domains G1 ( c ) and G2 ( c ) on the analytic 
planes as+ bt = c, a> 0, b > 0 for c s c0(a, b). 3> 

Corollary 1. If for c > c 1 (a, b) and any a > 0, 
b > 0 the real intersection points do not become 
complex, i.e., the number c 0(a, b) does not exist, 
the function F ( s, t) has only those singularities 

3 lJf for s orne a > 0, b > 0, c > c, (a, b) no real intersection 
points become complex, then we consider that c 0(a,b) = oo. 
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which are singularities of a function which pos­
sesses a Mandelstam representation, i.e., its sin­
gularities are situated on the hyperplanes: s real, 
s >4m2, t arbitrary; or t real, t >4m2, s arbi­
trary. In other words, if the number c0 (a, b ) does 
not exist for any a > 0, b > 0, then the function 
F ( s, t) admits a Mandelstam representation. 

Corollary 2. Singularities of F ( s, t ) can only 
be those points of intersection which become com­
plex for c > c0 (a, b) and also those complex inter­
section points which for a certain c = c0 (a, b) co­
incide with complex intersection points which ap­
pear for c > c0(a, b). 

In order to determine the intersection points 
of the surface (2.4) with the surface (2.5) one must 
find the roots of the equation 

g;(s, -(alb) s + c/b) = 0. (2.6) 

In order that some intersection points which are 
real for c = c0(a, b) become complex for c 
> c0 (a, b) it is necessary that some roots of (2. 6), 
which are real for c = c0(a, b), become complex 
for c > c0 (a, b) (due to the fact that the coefficients 
of the polynomials gi ( s, t ) are real there will be 
an even number of pairwise complex conjugate 
roots). 

There exists a simple but rather lengthy cri­
terionC12 ] which permits, on the basis of the coef­
ficients of Eq. (2.6), i.e., on the basis of the coef­
ficients of the polynomials gi ( s, t ) , to determine 
the number of pairs of complex roots of the equa­
tion (2.6) and thus answers the question whether a 
number c0 (a, b) exists. However, if the algebraic 
curve gi ( s, t) = 0 has no singularities in the do­
main s ~ 4m2 or t ~4m2 (the real section of the 
surface (2.4) is an algebraic curve which we will 
call the Landau curve ) one can indicate a simple 
geometrical condition which allows one to estab­
lish the existence or non -existence of the number 
c0 (a, b ) on the basis of the behavior of the alge­
braic curve only in the domain s > 4m2 or t > 4m2• 

More precisely, we have the lemma: 
Lemma 3. A necessary and sufficient condition 

for the appearance of complex intersection points 
for c > c0(a, b) > c 1(a, b), points which for c 
::::; c0 (a, b) had been real, is that in the domain 
s >4m2 or t >4m2 there exist at least one por­
tion on one of the branches of the algebraic curve 
gi ( s, t) = 0 with its convex side directed upward 
and for which the straight lines as + bt = c 0(a, b) 
are tangents. If such a portion with upward con­
vexity does not exist for the curve gi ( s, t ) = 0 in 
the domain s > 4m2 or t > 4m2, then the number 
c0 (a, b) does not exist and in this case the function 
F ( s, t) possesses a Mandelstam representation. 

We remark here on the following circumstance. 
The Landau curve g(s, t) = 0 consists of a certain 
number of branches. In some cases it is known 
exactly which branch of this curve can be singular 
in the "physical sheet." Let this branch be de­
scribed by the equation t = t ( s ) . It is also known 
that complex singularities of the contribution 
F(s, t) on the "physical sheet" can be situated 
only on the surface t = t ( s). In order to solve 
the problem of the existence of a Mandelstam rep­
resentation in this case, it is not necessary to 
analyze the behavior of all the branches of the 
Landau curve g(s, t) = 0, but it is sufficient to 
show that for the branch t = t ( s ) the number 
c0(a, b) does not exist. If, for instance, the branch 
t = t ( s ) has its convexity directed downward and 
has no singularities, the number c 0 (a, b ) does not 
exist. 

3. A CRITICISM OF THE PROOF OF THE MAN­
DELSTAM REPRESENTATION BY MEANS OF 
EDEN'S METHOD 

From the reasoning above it follows that the 
function F ( s, t) may have complex singularities 
only if certain roots of the equation gi ( s, - ( a/b )s 
+ c/b) = 0, which are real for c = c0 (a, b) 
~ c1(a, b) become complex for c > c0(a, b) (a and 
b are arbitrary numbers such that a > 0, b > 0, 
a 2 + b2 = 1 ). This result which we have obtained 
by means of the strengthened Bremer mann con­
tinuity theorem may produce certain misunder­
standings, the essence of which reduces to the fol­
lowing. 

On the basis of their proof of the Mandelstam 
representation Eden et al. [ta] have reached the 
conclusion that the function F ( s, t) can have com­
plex singularities only in the case when the Landau 
curves have isolated singularities in the domain 
s >4m2, t >4m2• This result seems more restric­
tive than the one given above. Indeed, instead of 
investigating the intersection points of the curves 
gi ( s, t) = 0 with all straight lines as + bt = c 
(a>O,b>O, a 2 +b2 =1, c>c1(a,b)), onepro­
poses to find only the isolated real singularities 
of the Landau curves in the domain s > 4, t > 4. 
We show that this result of Eden et al. is insuffi­
ciently founded. 

Eden's mistake consists in an incorrect appli­
cation of the continuity theorem (to say nothing of 
other false assertions). As we have seen above, 
in order to apply the continuity theorem it is nec­
essary that there exist a layer of analytic planes 
E (c) and on these planes there should be sepa-
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rated domains G(c ), which converge continuously 
to the domain G ( ci) on the boundary plane E ( CI). 
Eden has used that version of the continuity theo­
rem, according to which the holomorphy of the 
function F ( s, t ) in all points of the approximating 
domains G( c) and their boundaries and the holo­
morphy on the boundary of the approximated do­
main G( CI) (and not just in one single point of the 
domain G(ci), as demanded by Bremermann's 
theorem ) imply the holomorphy of the function 
F(s, t) in the whole domain G(ci). 

Eden applies the continuity theorem to the do­
mains 1) Im s > 0 and 2) Im s < 0, situated on 
the analytic planes t = c. It follows from lemma 
2 that the function F(s, t) is holomorphic in these 
domains for c < 4m2• For c = 4m2 all points of 
the plane t = c are singularities of the function 
F ( s, t ) even if the Mandelstam representation is 
true, and the continuity theorem gives nothing for 
c >4m2• Therefore Eden chooses the number c as 
follows: c = Re c ± iE, E > 0, applies the continu­
ity theorem to the domains 1) Im s > 0 and 
2) Im s < 0 and arrives at the already mentioned 
conclusion on the validity of the Mandelstam rep­
resentation, if the curve (2 .4) has no isolated 
points. ( Even disregarding the fact that not all 
conditions which are necessary for the applicabil­
ity of the continuity theorem are satisfied, by ap­
plying the continuity theorem in an accurate and 
rigorous manner he could only arrive at the con­
elusion that the Mandelstam representation is valid 
under the condition that no real roots of the equa­
tion gi ( s, t) = 0, for t > 4m2, should become com­
plex.) 

The error in Eden's proof consists in the fol­
lowing: his assertion that for Re c < 4m2, Im c 
= + E the function F ( s, t) is holomorphic in all 
points of the domains 1) Im s > 0 and 2) Im s < 0, 
as required by the continuity theorem, cannot be 
considered as having a rigorous foundation. Eden 
takes this fact as obvious, as if its validity would 
follow from property (2. 2) of the denominator in 
the integrand of (2.1). Using the property (2.2) of 
the denominator Eden asserts that in the domain 
s <4m2, t >4m2 or s >4m2, t <4m2 there are 
no continuous branches of the Landau curves and 
no isolated singularities, and from this he derives 
the holomorphy of the function F ( s, t ) in the re­
quired domain. As follows from subsequent work 
of Eden and collaborators, they admit now that the 
problem of the existence of isolated singularities 
is not solved even for the case of scattering of 
particles of equal mass. A concrete example of 
a diagram ( cf. Sec. 4, Fig. 1c) shows that there 

are portions of branches of Landau curves in the 
domains s <4m2, t >4m2 or s >4m2, t <4m2• 

Thus Eden's assertion that the function F ( s, t) 
is holomorphic for Re c <4m2, Im c = ± E in all 
points of the domains Im s > 0 and Im s < 0 can­
not be considered as proved, since it is based on 
incorrect facts. It remains to be shown that the 
domain D does not contain all points of the do­
mains Im s > 0 and Im s < 0, with Re c <4m2, 

Im c = ± E, either. Indeed, the domain contains: 
for Im t = + E all points of the domain Im s > 0 
and for Im t = - E -all points of the domain 
Im s < 0 and only those points of the domain 
Im s < 0, for Im t = +E and of the domain Im s 
> 0 for Im t = - E, which also satisfy the inequal­
ity (2.3). Therefore one is not allowed to apply the 
continuity theorem for I E I > 0 in the form which 
has been used by Eden, and his conclusions are 
not proved. 

4. PROOF OF THE MANDELSTAM REPRESEN­
TATION FOR CERTAIN FEYNMAN DIAGRAMS 

A. Let us consider the "envelope" diagram, 
represented in Fig. 1a. It is obvious that for the 
"envelope" the domain B1 has the form B1 

( s, t I s < 9m2, t < 9m2 ) and the functions f ( a ) ~ 0 
and g( a) ~ 0. For the sake of convenience we will 
set m = 1 in this section. 

The Landau curve corresponding to the proper 
singularities of this diagram has been computed 
by Kolkunov, Okun', and Rudik[ 14J and has the fol­
lowing parametric representation: 

t = 1 + 2 [1 +cos (a+ n/3))2- 2 (1 

+ cos a) [1 + cos (a + n/3)] sin (a + n/3)/sin a, 

s = 1 + 2 ( 1 + cos a) 2 - 2 ( 1 + cos a) [ 1 
(4.1) 

+ cos (a + n/3) ]sin a/sin (a + n/3). 

It is easy to see that the Landau curves for the 
reduced diagrams corresponding to the "envelope" 
degenerate into the straight lines s = 9 and t = 9. 

Let us concentrate our attention on the qualita-

)s(~ 
c d 

FIG. 1 
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tive behavior of the curve (4.1). Since the right­
hand sides of the equalities (4.1) are periodic func­
tions of a with the period 21r, we consider the ex­
pressions (4.1) for 0 ::s a ::s 2rr. From this expres­
sion it follows that the Landau curve of our diagram 
has the following asymptotes (we give not only the 
asymptotes but also the values to which they cor­
respond): 

1) a = + 0, t = - oo, s = 9 - 0; 
2) a+ :rt/3= 2:rt- 0, t= 9-0, s = -oo; 

3) a + :rt/3 = 2:rt + 0, t = 9 + 0, s = + oo; 

4) a= 2:rt - 0, t = + oo, s = 9 + 0. (4.2) 

From Eq. (4.1) it also follows that t( a) < 9 
and s (a ) < 9 for 0 < a < % rr. An elementary 
computation shows that dt/da and ds/da can be 
expressed in the following form: 

:~ =- 2sin-2a{(1 +cos a) sinocfcos(a + ~) 
+ cos 2 (a + i) J 
L (cos a + cos 2a) sin ( oc+ ~) [ 1 + cos (a+ i) ]}. 

:~ =-2sin-2 (a+ g) {[1 +cos (a +i)] sin(a+i) 

X (cos a+ cos 2a) 

- [cos (a+ J) + cos 2( a+ i) J sin a( 1-tcos a)}· (4.3) 

This implies that for % rr < a < 2rr the function 
dt/da > 0 and the function ds/da < 0. 

From (4.3) we obtain 

dt/ds = - sin2 (a + :rt/3)/sin2a, (4.4) 

i.e., the curve (4.1) has everywhere a negative 
slope. Taking into account Eqs. (4.2) we come to 
the conclusion that the curve (4 .1) has two branches: 
one in the domain s > 9, t > 9 (% rr < a < 2rr ), and 
the other in the domain s < 9, t < 9 ( 0 < a < % 1r ) • 

On the basis of Eq. (4.4) we obtain 

d2t - 1 d ( t~) 
dsZ - ---,- da. --, 

sa. sa. 

1 sin 2a. sin2 (a.+ :Jt/3) -sin 2 (a.+ n/3) sin2 a. 
== ---;-

i.e., d 2t/ds2 > 0 for % rr < a < 2rr. Thus the branch 
which is situated in the domain s > 9, t > 9 has its 
convex side downward. 

Since dt/da and ds/da do not vanish anywhere 
for % rr < a < 27r, the branch which is situated in 
the domain s > 9, t > 9 has no singularities; it is 
easy to show that isolated singularities are also 
absent [ 13 ]. 

Thus, according to lemma 3, the number c 0 (a, b ) 
does not exist for the curve (4.1) and the contribu-

tion of the "envelope" diagram admits the Mandel­
starn representation 

(X) (X) 

F( ) - \ \ p ( s' • t') d ''d ' 
S, t - J J (s'- s) (t'- t) ~ t · 

9 9 

B. Let us consider the "truss" diagram of 
Fig. lb. The interest in this diagram has been 
aroused by a recent paper by Kim, in which it is 
claimed that the contribution from this "truss" 
diagram does not possess a Mandelstam repre­
sentation. 

The Landau curves corresponding to the proper 
singularities of this diagram have been computed 
by Liu Yi-ch'en and Todorov [15 ] and have the fol­
lowing parametric representation 

1 2 1 
3 s = 3 + "I A,• + 3A. + 3 ' 

1 (A. + 2)3 4' 2 9' 6 ( ) 
3 t = (A.• + 3A. + 3)' ( "' + "' + ). 4.5 

The "truss" diagram has only one reduced dia­
gram, for which the singularity curves depend si­
multaneously on s and t and which is shown in 
Fig. lc. The proper singularities of this diagram 
are situated on the curve [ 15] 

t = 16s (s- 4)/(s- 1) (s- 9). (4.6) 

For the diagram represented in Fig. lc, as for 
the "envelope" diagram, all singularities of the 
reduced diagrams do not depend on s and t si­
multaneously. For the diagrams in Figs. lb and 
c the domain B1 has the form B1 ( s, tIs < 9, t < 16 ), 
and the functions f( a) ~ 0 and g( a) ~ 0. 

Let us investigate the curve (4.5). It is easy to 
see that it has the following asymptotes: 

1) ')., = + 0, s = + oo, t = 16 + 0; 

2) ').. = - 0, s = - oo, t = 16 - 0; 

3) ')., = + oo, s = 9 + 0, t = + oo; 

4) ')., = - oo, s = 9 - 0, t = - oo. (4. 7) 

From Eqs. (4.5) we obtain 

~ = - 3 21..4 + 101..3 + 271..2 + 36A. + 18 
dA. A.2 (A.2 + 3A. + 3)2 ' 

dt - 3 (A.+ 2)2 (41..4 + 201..3 + 54!..2 + 721..+36) 
dA. - (A.2 + 3A. + 3)3 • 

(4. 8) 

On the basis of Eqs. (4.8) we see that ds/dA. < 0 
and dt/dA. > 0 for A. > 0, and from Eqs. (4.8) it 
follows that 

dt!ds = -·2'A2 (f.,+ 2) 2/('}.,2 + 3'A + 3), 

i.e., dt/ds < 0 for all A.. 
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Thus, the curve (4.5) consists of two branches, 
one in the domain s > 9, t > 16 and the other in the 
domain s < 9, t < 16, both having negative slopes. 

For d 2t/ds2 we obtain the following formula: 

with normal thresholds, and for 1 < s < % its 
branch leaves the domain t < 16 ( cf. Sec. 3 in this 
connection). According to lemma 3 the curve (4.6) 
also does not have a number c 0(a, b). 

Thus for the curves (4.5) and (4.6) the number 
~:~ =- 2 ___!,I. (1. + 2) [(4/. + 4) (~~;:~~.+:)3f (21.. + 3) (t.z + 2/.)J , c 0( a, b) does not exist and the "truss" diagram 

s~, (4. 9) possesses the Mandelstam representation 

which implies that d 2t/ds2 > 0 in the domain s > 9, 
t > 16. Thus the branch of the curve (4.5) which is 
situated in the domain s > 9, t > 16 has its convex 
side pointing downwards and thus has no singular­
ities. 

Since for real positive A., ds/dA. ;r. 0, the im­
plicit function theorem shows that for A. > 0, s > 9 
the first equation (4.5) can be represented in the 
form A. = A. ( s ) . Substituting A. = A. ( s ) into the sec­
ond equation (4.5) we obtain the equation of the ana­
lytic surface t = t( A.( s )). 

In the paper by Liu and Todorov [15 ] it has been 
shown that the singular curve is on the ''physical 
sheet" for real positive A. and consequently the 
singularities from the contribution on the ''phys­
ical" sheet can be situated only on the surface 
t = t(A.(s )). Therefore we can restrict ourselves 
to a consideration of that branch of the Landau 
curve (4.5) which corresponds to real positive A.. 
Obviously, the number c 0 (a, b ) does not exist for 
this branch. 

Let us now consider the curve (4.6). It has the 
asymptotes s = 9, s = 1. We obtain the following 
expressions for the derivatives: 

'!!_ _ _ 96 s2 - 3s + 6 
ds - (s- 1)2 (s- 9)2 ' 

d2t _ 96 2s3 - 9s2 + 36s - 93 
ds2 - (s - 1)" (s - 9)' 

(4.10) 

It follows from (4.10) that dt/ds < 0 for all s, 
therefore the curve (4.6) has no singularities. 

Equation (4.6) implies that the inequality 16 
< t ( s ) < oo holds for 9 < s < + oo , the inequality 
- oo < t( s) < oo for 1 < s < 9, and the inequality 
t ( s) < 16 for s < 1. The curve (4.6) has three 
branches, one in the domain s > 9, t > 16, the sec­
ond in the domain 1 < s < 9, and the third in the 
domain s < 1, t < 16. For s > 9 we have d 2t/ds2 

> 0, i.e., the branch situated in the domain s > 9, 

t > 16 is convex downward. 
From (4.6) it follows that t(s) > 16 for 1 < s 

< %. and from Eq. (4.10) it follows that d2t/ds2 > 0 
for 1 < s < %. Therefore the portion of the branch 
of the curve (4.6) which is situated outside the do­
main s < 9, t < 16 has a negative slope and is con­
vex downward. One should note that the curve (4.6) 
has the asymptote s = 1 which has nothing to do 

co co 
(' , · , p(s', t') 

F(s, t) = j ds ~ dt (s' _ s) (t' _ t). 
9 16 

At the same time we have proved that the diagram 
in Fig. 1,c admits a Mandelstam repres.entation. 

C. Let us consider the diagram of the "opened 
envelope" or "tetrahedron" type, represented in 
Fig. 1d. For this diagram the domain B has the 
form B(s, tIs< 16, t < 16, u < 16) and the func­
tions f( a) and g( a) are of indefinite sign. The 
diagram of Fig. 1d is of very great interest, since 
the indefiniteness of the sign of the functions f( a ) 
and g( a) implies that it can be represented on the 
basis of lemma 1 in the form of three functions 
F1(s, t), F 2(s, u), and F 3(u, t) and that it will pos­
sess a Mandelstam representation with three 
terms. 

The Landau curve corresponding to the proper 
singularities of this diagram has been computed 
in the paper by Kolkunov, Okun', and Rudik [ 14 J as 
well as in the paper of Lugunov, Todorov, and 
Chernikov [ 10]. We will use the results of the 
latter work. The Landau curve can be represented 
in the form 

(s/16)'1, + (t/16)'/, + (uj16)'!. = 1. (4.11) 

The singularities of all the reduced diagrams are 
situated on the surfaces s = 16, t = 16, u = 16. We 
will prove the Mandelstam representation for the 
function F 1(s, t). Due to the symmetry of the 
"opened envelope" diagram we have the relation 
F1(s,u) = F 2(s,u), F 1(u,t) = F 3(u,t), therefore 
the Mandelstam representation is valid for F 2 ( s, u) 
and F 3(u,t) if it is valid for F 1(s,t). The singu­
larities of the function F 1 ( s, t) are determined by 
the same Landau equations as the singularities of 
the functions F(s, t), i.e., the singularities of the 
functions F 1 ( s, t) are also situated on the surface 
(4.11). 

We start the discussion of the curve (4.11). For 
the sake of convenience we also make use of the 
parametric representation of this curve [10]: 

(_/,) - {/. + lf2/. -'!, (('/• -/.) (1-2/.- 4J.2)J'Iil" 
t+ - 2 (/. - 1/t) r (4.12 
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Since we are not interested in the behavior of the 
curve (4.11) in the region s < 16, t < 16, we only 
investigate its behavior for s > 16, t > 16. Owing 
to the symmetry of (4.11) with respect to s and t, 
it is sufficient to investigate the curve ( 4.11) for 
s > 16. 

It follows from (4.12) that s > 16 only for 0 < ,\ 
< 1,14• Indeed, from (4.12) it follows that 

ds 3 (l!z- A )2 1 
dA = 2 t/4- A (t/4- A)2 , (4.13) 

i.e., ds/dA. > 0. Besides, we have 

s (A.)lx='/,+o = ± oo. 

Thus, 16 < s(A.) < oo for 0 < ,\ < %. 
We show that for 0 < ,\ < 1,14 the variable t_ ( ,\) 

is inside the interval 16 < t_ ( ,\) < oo • Indeed, we 
have 

t_ (A.) I X=+o = + oo, t_ (A.}Ix=•f.-o = 16 + 0. 

From Eq. (4.11) we obtain 

dt 
liS 

1 - (4- s- t)'l•;s'l, 

1 - (4- s- t)'!.;t'l• ' 
(4.14) 

therefore the slope of the curve (4.11) is negative 
in the domain s > 16, t > 16. 

Instead of considering the function t ( ,\) for 
0 < ,\ < 1,14 we can consider the function t ( s) 
= t ( ,\ ( s)) for 16 < s < oc. If for a certain s > 16, 
the function t ( s) would take on values which are 
smaller than 16, then, due to the fact that t ( s) 
- 16 + 0 as s - co, the quantity ds/dt would take 
on positive values in the region t > 16, s > 16. 
Thus we have 16 < t ( s) < co for 16 < s < oc or 
16 < t( ,\) < oo for 0 < ,\ < %- Thus the curve (4.11) 
has one branch in the domain s > 16, t > 16, with 
the asymptotes s = 16 and t = 16 and with negative 
slope. 

For the investigation of the second case t 
= t + ( ,\) it is more convenient to use the ( s, u)­
plane, since in this case u ( ,\) = t_ ( ,\). As in the 
first case, we come to the conclusion that the sec­
ond branch of the curve (4.11) is entirely contained 
inside the domain s > 16, u > 16 and has the asym­
ptotes s = 16 and u = 16. Obviously, there are no 
singularities in the domain s > 16. 

Let us now investigate the slope of the curve 
(4.11) situated in the domain s > 16, s +t < -12 
(u > 16 ). It follows from Eq. (4.14) that dt/ds > 0 
in the domain s > 16, 2s +t < 4, and ds/dt < 0 in 
the domain s > 16, 2s +t > 4. For d2t/ds2 we ob­
tain the expression 

d2t _ 2 {[c'1•-(4-s-t)-'i•] (s-'1•+ (4- s-t)-'f, dtfds] 

ds2 - 3 [t 'Ia_ (4- s- t) 'h]2 

(s-'1,- (4- s- t)-'1•] [(4- s- t)-'1. + c'l. dtfds + (4- s- t)-'1• dtfds]} 

(t-'la- (4- S- t) '1•]2 ' 

It follows from Eq. (4.15) that d2t/ds2 > 0 in the 
domain s > 16, t > 16, i.e., the branch which is 
situated in the domain s > 16, t > 16 is convex 
downward and has negative slope. In the domain 
s > 16, 2s +t < 4, the quantity d2t/ds2 < 0, and in 
the domain s > 16, 2s +t > 4, d2t/ds2 < 0. Thus the 
second branch, situated in the domain s > 16, s +t 
< -12 has in the domain s > 16, 2s +t < 4 a posi­
tive slope and the convexity directed upward, and 
in the domain s > 16, 2s +t > 4 it has a negative 
slope and the convexity also directed upward. 

The domain t > 16 contains, besides the already 
investigated branch in the domain s > 16, t > 16, 
another branch in the domain t > 16, s +t < -12. 
For 2t +s < 4 its slope is positive, dt/ds > 0, and 
for 2t + s > 4 its slope is negative, dt/ds < 0; be­
sides d2t/ds 2 > 0 for t > 16, s + 2t > 4 and d2t/ds 2 

< 0 for t > 16, s +2t > 4. Thus for 2t+s < 4, this 
branch is convex downward and for 2t + s > 4 it is 
convex upward. 

The qualitative behavior of the curve (4.11) in 
the domain s > 16, t > 16 is shown in Fig. 2. In 
this case, too, there is no number c 0( a, b) ~ c 1 (a, b) 

(4.15) 

FIG. 2 

= 16 (a+ b). Indeed, although there are portions of 
branches of the curve which are convex upward 
and have positive slope, those are situated in the 
region s +t < -12, and it is easy to see that the 
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distance c (a, b ) between the tangents as + bt 
= c {a., b ) and the origin of the coordinates will 
always be smaller than c 1 (a, b). 

Thus, the number c 0 (a, b) does not exist and 
the function F 1 ( s, t) possesses the Mandelstam 
representation 

00 00 

\ \' p(s',t') 
F 1(s, t) = ~ ds' ~ dt' (s'-s)(t'-t) • 

16 16 

5. CONCLUSION 

It is obvious that the method developed above 
can be used to prove the Mandelstam representa­
tion for many diagrams. It is sufficient to obtain 
the Landau curves and to analyze these curves 
qualitatively. Difficulties can appear only in the 
case when the Landau curves corresponding to 
the singularities of the reduced diagrams have 
asymptotes situated higher than the curves which 
correspond to the proper singularities of the given 
diagram. Such a situation arises when one consid­
ers ladder diagrams. But these difficulties can 
be overcome, and we hope to expose the corre­
sponding results in a subsequent paper. 

In conclusion I express my sincere gratitude 
to V. S. Vladimirov who kindly pointed out to me 
the possibility of using Bremermann' s continuity 
theorem for the study of analytic properties of 
contributions from diagrams, to I. T. Todorov, 
for acquainting me with the manuscript of his 
paper and to 0. S. Parasyuk for useful discussions 
and constant interest in this work. 

Note added in proof Qanuary 16, 1964). In the proof of the 
Mandelstam representation in Sec. 4 we have in fact used 
the assumption that on the "physical sheet" all singu­
larities are exhausted by those surfaces which admit the 
Landau parametric representations[tJ. It can be shown that 
this assumption is satisfied for the diagrams which we have 
considered. 
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