
SOVIET PHYSICS JETP VOLUME 19, NUMBER 1 JULY, 1964 

GROWTH OF FLUCTUATIONS ASSOCIATED WITH INSTABILITY OF A SYSTEM. I 

V. L. GUREVICH 

Semiconductor Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor June 27, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 354-367 (January, 1964) 

A theory of low frequency hydrodynamic fluctuations in nonequilibrium states characterized 
by weak time-dependence of the nonstationarity and weak spatial inhomogeneity is developed. 
The theory is used to investigate the spatial growth of fluctuations associated with convec­
tive instability of a system. As one of the examples of instability, the growth of acoustic 
fluctuations in a piezoelectric semiconductor located in a constant electric field is consid­
ered. As another example, the growth of fluctuations in the electron concentration is inves­
tigated for a semiconductor with a negative differential conductivity. 

1. INTRODUCTION 

THE problem of fluctuations in a state of thermo­
dynamic equilibrium has been worked out very 
thoroughly. The fluctuation-dissipation theorem 
of Callen and Welton [1] (also see [2]) establishes 
a relation between the fluctuations in a system 
and its dissipative properties when an external 
force is acting on it. There is no such general 
theorem for the fluctuations in a stationary non­
equilibrium state. But if the kinetic equation is 
applicable for a description of the stationary 
state, then a sufficiently general method does 
exist for the investigation of such fluctuations on 
the basis of this equation.C3•4J It is easy to gener­
alize this method for an investigation of the fluc­
tuations in arbitrary nonstationary states. 

In all of the enumerated cases, the fluctuations 
represent a comparatively small effect. But in 
the presence of an instability in the system, they 
may increase to a large level. The case of con­
vective instability, when the fluctuations remain 
stationary at each point of space but on the other 
hand inhomogeneities appear, revealing spatial 
growth "along the current," is of particular in­
terest from the viewpoint of experimental possi­
bilities. Nonstationary and inhomogeneous low 
frequency fluctuations are investigated in the 
present article for the case when the nonstation­
arity and inhomogeneity are small. The growth 
of fluctuations associated with an instability of 
the system is investigated on the basis of this 
general theory. 

Let us analyze the problem of the description 
of nonstationary fluctuations, i.e., fluctuations in 
a system whose macroscopic state depends on the 

time t. Let the system under investigation inter­
act with any kind of external system [in the 
special case of thermodynamic equilibrium-let it 
interact with a heat reservoir (thermostat)], and 
owing to such interaction let it be characterized 
at each moment of time by a certain distribution 
over microstates, so that one can talk about the 
probability for a given microstate as a function 
of t. Then it is possible to introduce the concept 
of average values for the system under consider­
ation. The calculated average value will be under­
stood as the average over the probabilities for all 
the values which a given quantity can assume at a 
given instant of time. This average will be denoted 
by a bar. 

Let a certain time-dependent quantity u (t) be 
measured in a nonstationary state. Let us choose 
this quantity so that u ( t) = 0 at any moment of 
time. At the same time, the correlation function 
u ( t 1 ) u ( t2 ) is, in general, not equal to zero. It 
also characterizes the fluctuations of the quantity 
u. 

In a stationary state, the correlation function 
u ( t 1 ) u ( t2 ) depends only on the time difference 
T = t 1 - t2 , and the average which we were dis­
cussing above is equivalent to an average over 
the time t 1 for a fixed value of T. In a nonstation­
ary state, this correlation function also depends 
on the half-sum t = 1!2 ( t 1 + t2 ). Our goal is an in­
vestigation of the fluctuations at one instant of 
time, i.e., the determination of functions of the 
form u 2 ( t). 

For weak rionstationarity, it is possible in a 
number of cases to derive a simple equation 
which this function satisfies. Such an equation is 
obtained in Sec. 2 for the simplest problem of a 
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fluctuating oscillator under nonstationary external 
conditions. For us this problem is of purely sub­
sidiary value as the intermediate step in a deriva­
tion of the equation describing nonstationary and 
inhomogeneous fluctuations, also including fluc­
tuations which increase because of the instability 
of the system. We shall not attempt to give the 
most general formulation of this method for in­
vestigating fluctuations, but will confine ourselves 
to an analysis of several examples. 

Before going on to the exposition of the theory, 
we mention several possible applications of it 
which are of interest. The growth of acoustic 
fluctuations in piezoelectric semiconductors is 
investigated in Sees. 5 and 6. As Hutson et al.l5J 
showed, a convective instability with regard to the 
generation of sound vibrations appears in a pie­
zoelectric semiconductor under the effect of a 
constant electric field E which exceeds a certain 
critical value Ec. Ec is determined from the 
condition V ( Ec) R:: w, where V is the drift veloc­
ity of conduction electrons 1) in the field E, w is 
the phase velocity of the acoustic wave. Such an 
instability was directly observed experimentally 
in the work by Hutson et al. [5J 

In the experiment of Smith [s] a similar insta­
bility appeared in an indirect manner, causing a 
rather sharp kink in the current-voltage charac­
teristics for V ~ w. The Smith effect is un­
doubtedly caused by acoustic fluctuations which 
grow under conditions of convective instability 
and which change the density of the constant cur­
rent due to the strong acoustoelectric effect [7- 10] 

which is characteristic of piezoelectrics. The 
amplitude of the growing fluctuations may be 
limited either by nonlinear effects (whose exist­
ence was pointed out by Hutson [s] and the author 
L11J) or by the finite dimensions of the sample. 

Nonlinear effects begin to play a role only for 
a sufficiently large amplitude of the growing 
acoustic waves, i.e., for not too small values of 
the difference E - Ec. On the other hand, in the 
region of small values of the difference E - Ec 
corresponding to the beginning of the kink in the 
current-voltage characteristic, the coefficient of 
amplification, which is proportional to this differ­
ence, is also small, and the Smith effect can be 
considered with the aid of the linear theory of 
acoustic fluctuations developed in the present 
article. 

Another interesting problem for the application 

l)A semiconductor with current carriers of one sign only, 
which for concreteness are assumed to be electrons, is con­
sidered. 

of the theory of fluctuations to piezoelectrics is 
the scattering of light by growing acoustic waves. 
Experimental study of this effect enables us to 
investigate the same process of amplification of 
acoustic waves and to determine their amplitude 
and spectral composition. 

As another example, we considered the growth 
of fluctuations in the electron density inside a 
semiconductor with a negative differential con­
ductivity. As shown by Kazarinov and Skobov, and 
by L. Gurevich and I. Korenblit, [12] a state with 
negative conductivity can exist, for example, in 
the presence of sufficiently strong crossed elec­
tric and magnetic fields. Such a state is unstable2 l 
-a growth of small inhomogeneities in the elec­
tron concentration takes place in it. It is of in­
terest to ascertain how this convective instability 
must manifest itself in the shape of the current­
voltage characteristic, i.e., in what manner the 
presence of a negative conductivity must be ex­
perimentally exhibited. 

2. FLUCTUATIONS OF AN OSCILLATOR UNDER 
NONSTATIONARY EXTERNAL CONDITIONS 

We consider the problem of the motion of a 
point mass m on which the following forces act: 
A quasielastic force -mw6 u proportional to the 
displacement u from the equilibrium position, a 
frictional force -myu proportional to the velocity 
u, and a random force rnA ( t). The corresponding 
equation of motion has the form: [1' 14] 

ii + yu + ro~u = A (t), 

where the function A ( t) satisfies the relation 

where T is the temperature (in energy units). 
Let us assume that one (or several) of the 

quantities T, m, or y are changing with time. 

(2 .1) 

For concreteness, we consider a variation of T. 
Let the corresponding frequency p of the varia­
tion be much smaller than w 0. We shall also as­
sume that 1/w 0 is much larger than the charac­
teristic time for the establishment of equilibrium 
in the external system. In this case, the state of 
the latter may be characterized by a temperature 
which depends on time, and one can use the corre­
lation relation (2.2) for a description of the fluc­
tuations. Let us derive the equation which the 
function U( t) = u2 ( t) satisfies. 

The presence of the frictional force leads to a 

2 >1 thank G. E. Pikus who called my attention to the ex­
istence of such an instability in semiconductors. 
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decrease of U ( t), and the effect of the random 
forces is to cause at each moment of time the ap­
pearance of new fluctuations, i.e., an increase of 
U ( t). The desired equation represents a condi­
tion of balance which takes the opposing effects of 
these two factors into account. 

The law describing the damping of U in the 
absence of random forces is obtained from Eq. 
(2.1) with the right side set equal to zero. Its 
solution is 
u = e-Yt/z [u0 cos w't + (r/2w') u0 sin (J)'t 

+ (1/w') u0 sin w't], (2 .3) 

where w' = ./ w~- (1/4 ) y2, u 0 = ult=o• u0 = lilt=o· We 
shall assume that the damping is small: y/u.'o « 1. 

Then to the lowest approximation in y I "''o 

U = e-Yt (u~ cos2 (J) 0t + (~/(J)~) sin2 w0t + (u~uof2w0) sin2(J)0t). 

(2 .4) 

In the stationary state uu = 0. In the case under 
consideration uu/wo ~ ( p/wo) u2, i.e., it is_Eegli­
ble for p « w 0 . With the same precision, u2 

=w5u2. Hence U(t)=e-Ytu02, andthechangeof 
this quantity during a time interval .6.t « 1/y is 

(2. 5) 

Let us determine the average lhcrease of U, 
caused by the random force, over a time interval 
.6.t satisfying the inequalities 

(2.6) 

One can set y = 0 in Eq. (2 .1) for an investigation 
of time intervals .6.t « 1/y. Then the solution of 
(2.1) has the form 

t.t 

u (Ll t) = w0i ~ sin w0 (Ll t - t1) A (t1) dt1 

0 

Squaring ( 2. 7) and averaging with account of 
(2.2), we obtain 

(2.7) 

(2.8) 

Taking the slowly-varying function T( t 1 ) outside 
the integral sign, we find the term linear in .6.t: 

[ilU]T = (rT!mw~) M. 

Combining this with (2.5), we obtain an equation 
for the function U ( t) averaged over time inter­
vals .6.t »1/u. 0: 

In the stationary case au/at= 0 and U = U0 in 
accordance with the theory of thermodynamic 
fluctuations. 

(2.9) 

In conclusion we remark that the ratio U/a5, 
where a 0 = ./n/mw0 is the amplitude of the zero­
point vibrations of the oscillator, is from the 
viewpoint of quantum mechanics the average value 
of the quantum number N which characterizes the 
state of the oscillator. In analogy with (2 .9), one 
can write 

oN lot = - r (N- N 0), N 0 = T/1iw0 • (2.10) 

Equation (2.10) has larger limits of applicability 
than (2 .9). It is also valid in the case of a slowly 
varying natural frequency w 0 of the oscillator, since 
tiN = mw 0U is an adiabatic invariant of the har­
monic oscillator, which remains unchanged upon 
variation of w 0. 

3. FLUCTUATIONS OF ELASTIC WAVES 

Let us consider a continuous isotropic 
medium in which longitudinal elastic waves are 
being propagated. As Landau and Lifshitz [t 5J 
showed, the acoustic fluctuations in such a medium 
are described by the equation 

( 3 .1) 

Here p is the density of the medium, A. is the 
bulk modulus of compressibility, TJ is the corre­
sponding coefficient of viscosity, and s are ran­
dom stresses 3 l which satisfy the relation 

s (lp r1) s (t 2 , r 2) ~ 2Trp'l (r1 - r 2) 6 (t1 - t 2). ( 3.2) 

The frequency of the fluctuations is assumed to be 
so small that dispersion is absent from TJ. 

Let us expand the functions u ( r, t) and 
s ( r, t) in Fourier series with respect to the 
coordinates ( V 0 is the volume of normalization): 

u (r, t) = ~ uqeiqr, 
q 

Uq = V~1 ~ cflre-iqr U (r, t), 

(3.3) 

The Fourier coefficients uq satisfy the equation 

( 3.4) 

3 >For simplicity we consider the case when it is possible 
to neglect (see [ 16 ]) the effect of temperature gradients ac­
companying the propagation of longitudinal acoustic waves 
on the absorption of sound and on the fluctuations. 
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where y = TJq2Jp, w~ = A.q2/p. For the quantities 
sq ( t) we have 

s_q (t 1) Sq• (t2) = (2T·r/V0) <'1qq•<'1 (t1 - t 2). ( 3. 5) 

We shall derive for the present case an equa­
tion of balance of the type (2.9). First we deter­
mine the law governing the decrease of fluctua­
tions in the absence of random forces. The solu­
tion of Eq. ( 3.4) with the right side set equal to 
zero has the form 

uq = u~1 ) + u~2>, u~1 ' 2 ) = a~1 ' 2 ) exp {- yt/2 =F iw~t}, (3.6) 

where u..•Q_ = ..Jw&- (1/ 4 )y2, the a~• 2 l are con­
stants. Expression (3.6) describes a superposi­
tion of two traveling waves propagating in oppo­
site directions. The solution of the homogeneous 
equation (3.4) with wave vector q is a superpo­
sition of two such waves. 

We further restrict ourselves to the case of 
small damping, y/wq « 1, and consider the wave 
packet: 

F(l) ( q' r' t) = eiqr 2J I xU~]Jxeixr 
" 

= eiqr 2J I xa~~x exp [ ixr - iwq+xt - yt/2]. (3.7) 
X 

The coefficients fK are different from zero in the 
region f:::.K « q and satisfy the normalization 
condition 

We construct the quadratic combination: 

== u~1l*u~1l during a time interval f:::.t satisfying an 

inequality of the type (2.6). If an arbitrary solu­
tion, uq(t), of Eq. (3.4) is given, then the func-

tions u~1 l and u~2 ) can be expressed in terms of 

it according to the formula 
(1,2) 1 - • . ' 1 • .. 

Uq = 2 (uq+ Uq/(Uuq =f yj2)j;.::::; 2 =f (UqUqjlWq)• 

To the precision used here, uq uq = w~ u~ uq; 
therefore 

U(q, t) = u~1 )*u~l) = U~Uq- (u~uq- u~uq) j2iwq. ( 3 .10) 

The appearance of the extra factor 2 is related to 
the fact that in (3.10) the contribution from the 
solution of Eq. (3.4) with wave vector -q is also 
taken into account. 

In complete analogy with Sec. 2, [ l:::..uq x Uq] T 

= ( yT I p V 0 w~) f:::.t, and [ t::..uq_ x uq J T == [ t::..uq_ x uq) T 
= 0, since to the precision we are using, the cor­
responding expressions do not contain a term 
1 in ear in f:::..t. Hence 4) 

[!1U(q, t)lr = (yT/pV0w~) M. (3.11) 

Finally, for &/q « 1 

[ U( ) l ~ · rT rT "'-' • rT 11 q, r, t T = LJ f xl x --2 - M;.::::; --2 L! f xf x = --,, · 
" pV0 wq+>< pV0 wq x pV0 w;j 

(3.12) 

Finally we obtain the following equation for the 
function U( q, r, t): 

au • [ au J at+wVU+rU =7ft r' [ au J rT at r = -v z • (3.13) 
. p oWq 

This equation can be generalized in a trivial 
manner to the case of arbitrary elastic aniso­
tropy. 

We choose the interval f:::.K so that 

In analogy with (2.10), instead of Eq. (3.13) one 
(3.8) can consider the equation for the "phonon distri­

bution function" Nq = pV0wqU ( q, r, t)/11: 

where w = Bw/Bq is the group velocity of sound. 
Assuming approximately that 

we obtain the following equation for the function 
U: 

8U/8t + wVU + yU = 0. (3.9) 

We note that this equation is also valid for y < 0, 
since no assumptions with regard to the sign of y 
were made during its derivation. 

Now let us determine the increase caused by 
the random forces in the quantity U ( q, t) 

aNq a(uq aNq awq aNq = _ (N' _ N ) -+----- y q QO> at aq ar ar aq 

T 
Nqo= -· 

nwq 
(3.14) 

In contrast to (3.13), (3.14) is also valid for the 
case when wq is a function slightly (weakly) de­
pendent on the coordinates and the time. 

In conclusion, we write down three inequalities 

4 lit would also be possible to obtain expression (3.11) by 
a more direct method- with the aid of the equations for the 
functions uq(t,2) 

-uu. 2) = _ (l ±. ')11(1. 2) + _i. ~ 
q 2 !(J)q q . 2 . . •• 

' p '(;2 + !(J)q 
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which, together with the requirement that disper­
sion be absent from the coefficient T), determine 
the limits of applicability of the present approach: 

d';JY1jq. 

Here p and d are, respectively, the character­
istic frequency and the characteristic length of 
the variation in the function U. We note that these 
inequalities also determine the limits for applica­
bility of the kinetic equation to a system of pho­
nons. 

4. FLUCTUATIONS OF THE ELASTIC VIBRA­
TIONS IN PIEZOELECTRIC SEMICONDUCTORS 

A varying electric field, proportional to the 
strain, arises in piezoelectrics during the propa­
gation of acoustic waves. In an investigation of 
fluctuations in a piezoelectric semiconductor, it 
is necessary to take the interaction of this field 
with the conduction electrons into consideration. 

We select any direction (x axis) of high sym­
metry in the piezoelectric, along which purely 
logitudinal vibrations exist. The complete system 
of equations describing the fluctuations of these 
vibrations has the form L 17 • 7J 

( 4 .1a) 
a2~ a2u __ 

8 ax2 + 4:n~ ax2 -- - 4:nen. ( 4 .1b) 

an aj . a~ an (4 1 ) eat+ &x = 0, 1 =- o ax - eD ax+ g. . c 

Here {3 is the piezoelectric constant, cp is the 
electrostatic potential, £ is the dielectric per­
mittivity of the piezoelectric (at constant strain), 
e is the electron charge, n is the excess (in 
comparison to the equilibrium value n 0 ) concen­
tration of electrons, CJ is the conductivity, D is 
the diffusion coefficient, j is the total density of 
the alternating currents, g is the density of the 
random currents. It is assumed that there is no 
generation and recombination of electrons. 

The rate of change of the entropy of the piezo­
electric due to dissipation of elastic energy 
equals 

S. -- I d3 (-s- aU. + _j_ a~ ) 
--.lrTax Tax· ( 4 .2) 

From here one can see that the fluctuations of the 
current density and of the stress tensor are 
statistically independent: L13] 

Furthermore 

The previous expression ( 3 .2) is retained for the 

correlation function of the xx-component of the 
stress tensor. 

Expanding the quantities appearing in (4.1) in 
Fourier series with respect to the coordinates 
and eliminating the potential cp, we obtain the 
following system of equations for the Fourier 
coefficients: 

piiq = - (A. + 4:n~ 2/e) q~uq- r]q~uq + 4:ne~nq/e + iqxsq; 
(4.4a) 

-rM8nq/8t + (1 + q~jx2) nq = ~q~uqle + i1:,.qxgqle, ( 4 .4b) 

where K2 = 47rCJ/eD, TM = £/47rCJ. 
With regard to order of magnitude, nq ~ wqnq 

where Wq is the frequency of acoustic waves with 
wave vector q. For 

( 4. 5) 

the first term in Eq. (4.4b) is small in compari­
son with the second, and then it is possible to 
solve this equation by the method of successive 
approximations. Limiting ourselves to quantities 
of lowest order in the terms containing uq. uq 
and gq, we have 

~ q~ ~ q~TM • iqxgq TM 

nq = e 1--\- q~fx2 Uq- -e- (1--\- q~fx2)2 Uq + 1--\- q~fx2. 
(4.6) 

Substituting (4.6) into (4.4a), we obtain the 
equation 5l 

uq + yuq + w~uq = iqx ( sq + -~ 1 + :lfx2 ) • ( 4. 7) 

where 

q~ [ ~2 1 J w2 = q~ (A. ...J-- 4n~2 ____§___) 
r = p rJ + (j (1 + q~fx2)2 ' q p . e q~ + x2 ' 

and also (4.8) 

g;j (t1) gq•(l2) = 2Tcrliqq'i) (t 1 - t 2)jV0 • (4.9) 

Equation (4.7) has exactly the same form as 
Eq. (3.4). Therefore, using the results of the pre­
ceding Section, one can at once conclude that Eq. 
(3.13) holds for the function U(q, r, t), where 
for y it is necessary to substitute expression 
( 4 .8). 

5. FLUCTUATIONS IN PIEZOELECTRIC SEMI­
CONDUCTORS IN THE PRESENCE OF DRIFT 
OF THE CURRENT CARRIERS 

Now let us consider the fluctuations in a piezo­
electric semiconductor in which a constant elec-

5 ll£ inequa-lity (4.5) does not hold, then it is necessary to 
solve the problem exactly and to investigate the equation, not 
of second order but of third order in the time, which is ob­
tained from the system (4.4). 
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tric field E exists and a constant current density 
J ( E) appears. We shall find out what kind of 
change it is necessary to make in the initial equa­
tions of the preceding Section in order to account 
for this case. 

In the expression for the density of the alter­
nating current in (4.1c), it is necessary to add the 
term enV, where V = ( 1/e) BJx/Bn0. In the same 
equation it is necessary to substitute the differ­
ential conductivity BJx/BEx for u. Equation (4.1c), 
modified in this manner, is valid for arbitrary 
(and not necessarily linear) dependence of J on 
E. 6) 

It is necessary to assume relation (3.2) the 
same as in the absence of the electric field E. 
The point is, as A. Akhiezer [i 8] showed, that the 
coefficient of viscosity T) is determined by the 
interaction of sound with short-wavelength pho­
nons. Yet only the long-wavelength phonons inter­
act with the conduction electrons, as is evident 
from an analysis of the appropriate conservation 
laws, and only their state can change due to the 
"heating" of the electrons by a constant electric 
field. As for the state of the short-wavelength 
phonons in experiments with a strong field, as a 
rule it remains unchanged and is determined by 
the equilibrium Planck distribution function with 
lattice temperature T. Therefore the presence of 
a strong field does not change relation ( 3 .2). For 
the same reason it is necessary as before to as­
sume that the correlation function 
s(r1, tt)g(r2, t 2 ) is equal to zero. 

The correlation function of the random currents 
in general depends on E. A method of calculating 
this correlation function by solving the corre­
sponding kinetic equation was proposed in the 
author's article. [4] Analysis of this equation leads 
to the following results. Time dispersion (depend­
ence on the frequency w) of the Fourier compo­
nent of the correlation function for the random 
currents starts at frequencies w ~ 1/ Ts if the 
electrons are strongly "heated" (i.e., if the sym­
metric part of their distribution function deviates 
strongly from its equilibrium value), and starts at 

6 >1t is assumed that dispersion (dependence on wand q) of the 
quantities a and D does not play a role. In the presence of ap­
preciable departures from Ohm's law it is necessary for this, 
in any case, that wr8 « 1, where rs is the relaxation time for 
the symmetric part of the electron distribution function. For 
the interpretation of Smith's experimentd 6 ] such a condition is 
obviously not a serious limitation, since these experiments 
were carried out at room temperature, when the principal re­
laxation mechanism for electrons is their interaction with op­
tical phonons (vibrations) and the time Ts is sufficiently 
small. 

w ~ 1/ T a if the electrons are slightly (weakly) 
"heated." Here Ts and Ta are, respectively, the 
relaxation times of the symmetric and antisym­
metric parts of the electron distribution function. 
Thus, for strongly "heated" electrons dispersion 
is not present at characteristic values of the fre­
quency w « 1/ Ts, 7) and for slightly (weakly) 
"heated" electrons there is no dispersion for 
w « 1/ T a. Making the inverse Fourier transfor­
mation, we find that in the case of no dispersion, 
one can consider the current correlation function 
to be proportional to 6 ( t 1 - t 2 ). 

Similar statements are also true with regard 
to the spatial dispersion of the current correlation 
function, with only this difference: It is necessary 
to compare a typical value of the wave vector q 
with 1/vTs and 1/vTa, where V is the average 
velocity of the electrons. 

Finally, if neither spatial nor time dispersion 
plays a role (and in what follows, we shall be 
interested in precisely this case), then the corre­
lation function for the current density is 

r:: (r1, tJ) g (r2, t2) = 2n0 ~2Do (t 1 - t 2) o(r1- r 2). 

Introducing the electron noise temperature, 
Te = n0e 2D/u, one can rewrite this expression in 
a form similar to Eq. (5.3):8 ) 

g (1:1, t1) g (r2, t2) = 2oTeo(r1 - r 2) o (t1- t2). 

First let us determine the average uquq for 
an infinite continuous medium in the subcritical 
regime and under stationary conditions. The 
problem of the determination of similar quantities 
in a state of thermodynamic equilibrium in gen­
eral did not arise for us, because it is possible to 
determine them at once from the expression for 
the mechanical energy of a deformed continuous 
medium. In the present case, for the determina­
tion of uquq we shall directly use the system of 
equations (4.1) together with relations (5.1) and 
(3.2) (at the same time we take the additional 
term neV in the expression for j into considera­
tion). 

Expanding the quantities appearing in (4.1) 
into Fourier series with respect to the coordinates 
and in a Fourier integral with respect to the time, 
we obtain 

s~s~: = (TinV0) Oq,-q•O (w + w'), (5.2) 

7 >In this case there is also no dispersion for frequencies 
in the interval 1/rs « w « 1/ra• 

8 >We emphasize that in those cases when the electron dis­
tribution has the form of the Boltzmann function with a certain 
effective temperature T, the latter in general does not in the 
least coincide with the noise temperature T e (see [ •]). 
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g;g~; = (T0/JtV0) al\q,-q' 1\ (w + w'), 

"' . s~ + ~g~ja [- i (w- qxV) + q~jx2 ] 
Uq =- lqx 

pwz- (A+ M) q~ 

where 

A = "A - iwT], M = M' - iM" 

4n~z - i (w- qxV) 't'M + q~;xz 
= -e-1-i(w-qxV)'t'M + q~jx2 

(5.3) 

(5.4) 

4n~2 (q~;xz) (1 + q~jx2) + (w- qxV)2 't'~ 
_ - i (w- qxV) 
- -e- (1 + q~;xz)•+ (w _ gxV)2 't'~ 

(5.5) 

Hence 

00 00 

u~uq = ~ dw ~ dw'u~qu~' 
-co -co 

(5.6) 

It is possible to transform expression (5.6) into 
the form 

00 -.- 1 \ d 1 
UqUq = 2nipV0 J COWl]+ M" 

-00 

X [ w2 - P~- i (~lJ + M") g~/p 
- wz- P~ + i (~lJ + M") q~/ p J 
X [TTJ+ TeW 1 ]• 

a (1 + q~jx2)2 + (w- qxV)• 't'~ 

where 

(5.7) 

p 2 (co = _q_~_ [A 41t~2 (q~;xz) (1 + q~jx2) + (w- qxV)2t~ ] • 

q ) p + e (1+q~jx2)"+(w-qxV)2-r~ 
( 5.8) 

The denominator WTJ + M" vanishes at the 
point w = S]q which is the solution of the equation9 l 

. 4n~2 (Qq- qxV) -r., = 0. 
-j- e- ( 1 + q~jx2)2 + (Qq - qxV)" 't';I ( 5 .9) 

The expression inside the square brackets in 
(5.7) also vanishes at this point, so that the com­
plete expression under the integral sign remains 
finite at this point. We deform the contour of inte-

9 lWe shall be interested in the case when this cubic equa­
tion has only one real root. If there are three (real roots), then 
the appropriate sums enter into formulas (5.10) and (5.11). 

gration into the complex w plane, going around 
the point w = s-2q below (the real axis). For 
E < Ec the first term inside the square brackets 
has a pole in the upper half-plane; closing the 
contour of integration below the real axis, we find 
with the aid of the theorem of residues that the 
contribution from this term vanishes. The second 
term has a pole in the lower half-plane; closing 
the contour of integration below the real axis, we 
obtain 

( 5 .10) 

where Pqo = Pq ( s-2q). 

In a similar way we find 

-.-.- -.-.-
UqUq =- UqUq 

Thus, when the difference Pqo - s-2q is positive 
but small, the fluctuating vibrations with wave 
vector q increase sharply. 

Whenever the poles of one of the terms in the 
integrand of ( 5. 7) turn out to lie on both sides of 
the real axis, a Fourier analysis is unsuitable for 
investigation of the correlation function 
u_q ( t) uq ( t + T), because this quantity does not 
decrease with increasing T, but increases. In 
other words, here the system becomes unstable. 

The investigation of the fluctuations in the 
regime of weak inhomogeneity and nonstationarity 
is carried out in essentially the same way as in 
the preceding section. The equation correspond­
ing to ( 4 .4b) has the form 

-rM (fJ/fJt + iqxV) nq + (1 + q';,/x2) nq = ~q~uq/e + i-rMqxg.Je. 
( 5 .12) 

If, apart from the inequality (4.5), the following 
inequality also holds 

( 5 .13) 

then one can solve this equation by the method of 
successive approximations. Substituting its solu­
tion into Eq. (4.4a), we obtain 

. ( + q';, ~ gq ) = lqx S -- • 
q p cr 1 + q';, ;xz 

(5.14) 
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Repeating the discussion of Sec. 3, we conclude 
that the quantity U ( q, r, t) satisfies the equation 

8U/8t + wVU + yU = [8U/8t]y. ( 5.15) 

One can determine [BU/Bt]T in the same way as 
above; however, the following method quickly 
leads to the goal. The stationary and homogeneous 
solution of Eq. (5.15) has the form 

ust= [8U/8t]yjy. (5.16) 

Hence, if ust and "Yare known, [ BU/Bt]T is 
determined. 

In the limiting case of interest to us 

( 5 .17) 

( 5 .18) 

and, as follows from Eqs. (3.10), (5.10) and (5.11) 

st -.- -.-.- -.• - . - 1 1 
U (q) = uquq- (uquq- uquq)/2~wq - pVo ro (ro _ Q ) q q q 

{ ~2T e 1 } I { [32 1 } 
x TJT + -cr- (1 + q~;x.z)z 1'] + ~ (1 + q~jx.2)2 

Combining (5.16)-(5.19), we find 

[8U(q)/8t]y = y0U0 (q}, U0(q) = T/pV0w~, 

(5.19) 

(5.20) 

This derivation of Eq. ( 5.15) is good for "Y > 0. 
However, as indicated in Sec. 3, the left side of 
this equation also retains its form for "}' < 0. As 
far as the right side is concerned, it is deter­
mined by the equation of motion with a random 
force for "Y = 0, and therefore it in general cannot 
depend on the sign of -y. Thus, this equation also 
holds for "Y < 0, i.e., it also describes increasing 
fluctuations. 

6. SPATIAL GROWTH OF FLUCTUATIONS 
ASSOCIATED WITH CONVECTIVE 
INSTABILITY 

Let us apply Eq. (5.15) to the investigation of 
the spatial growth of fluctuations associated with 
convective instability. We consider, for example, 
the fluctuations in a plane parallel plate of piezo­
electric. We choose the direction perpendicular 
to the surface of the plate as the x axis, and we 
assume that the electric field is directed along 
this axis (or makes a small angle with it). If the 

transverse dimensions of the plate are sufficiently 
large, then one can assume, neglecting edge effects, 
that U varies only in the x direction. Then the 
stationary equation (5.15) takes the form 

(6 .1) 

As the boundary condition, we assign the value 
of the function U on the surface of the plate, 
x = 0, on which the growth of fluctuations begins. 

Let us set 

( 6.2) 

The solution of Eq. (6.1) for the boundary con­
dition (6.2) has the form 

U = Ule-Yxfwx + Uo (Yo/r) (1- e-yxfwx). 

In the case when "}' = 0, the solution is 

U = U1 + y0U.x;'wx. 

( 6 .3) 

(6.4) 

For "Y > 0, the first term in Eq. (6.3) decreases 
exponentially as one moves away from the sur­
face x = 0, and the second term approaches the 
value ust = -y0U 0/-y, which is the spatially homog­
eneous solution of Eq. (6.1). 

For "}' < 0 the spatially homogeneous solution 
of Eq. (6.1) does not have any physical meaning, 
since U is an intrisically positive quantity. On 
the other hand, the inhomogeneous solution (6 .3) 
remains positive even for "Y < 0. The first term 
on the right hand side of Eq. (6.3) describes the 
growth of surface fluctuations, and the second 
describes the growth of volume fluctuations. Near 
the production threshold when -y0/ I "Y I » 1, the 
second term in (6.3) is usually substantially larger 
than the first for sufficiently large values of x. 

The region of applicability of expression (6.3) 
is restricted to amplitudes such that the linear 
theory is still valid. If J '"""" E then, as indicated 
in the articles by La!khtman and the author, ~11] 
the condition for the linear theory to be applicable 
has the form: 

( 6.5) 

where qm is the characteristic value of the wave 
vector at which the coefficient of amplification is 
a maximum. 

7. FLUCTUATIONS OF THE ELECTRON 
DENSITY IN A SEMICONDUCTOR 

Let us consider one more example of increas­
ing fluctuations: Fluctuations of the electron 
density in a semiconductor in the presence of a 
drift due to a constant electric field E. The com­
plete system of equations describing the fluctua­
tions has the form 
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fJn/fJt + div j = 0, 

h = enV;- eD;kfJn/fJxk- cr;k8fi!/fJxk + g;, 

e;k82ff!/fJx;fJxk =- 4:rten, 

(7.1) 

(7.2) 

( 7 .3) 

where V = ( 1/e) 8J/8n0, Uik = 8Ji/8Ek. The cor­
relation function for the density of the random 
currents (see L3•19 •4J) is 

g; (r1, t1) gk (r2, t2) = 2n0e2D;k6 (t1- t2) 6 (r1 - r2)• (7 .4) 

Expanding all quantities in Fourier series with 
respect to the coordinates and eliminating j and 
cp from this system of equations, we obtain 

fJnq/8t + nq (iqV + 4:rtcrq/eq + q2Dq) + iqgq/e = 0, ( 7. 5) 

where uq = uikqiqk/q2 and in like manner for the 
other tensors. 

The spectrum (and the damping) of the 
"excitations" is obtained from the solution of the 
corresponding homogeneous equation and has the 
form 

w = qV - i (q2Dq + 4:rtcrq/eq) :== qV - iy/2. ( 7 .6) 

The case when uq < 0 is of particular interest. 
The state with aq < 0 is unstable, since for 
47T I aq 1/r.q > q2Dq the fluctuations of the elec­
tron concentration increase. For 47T I uq l/£q 
< v2/ 4Dq this instability is convective: The 
growing fluctuations move with velocity V to­
gether with the electron current. 

Let us form the average B ( q, t) 
= n_q( t)nq( t). A function of the type (3.8), 
B ( q, r, t) satisfies the equation 

8B/8t + VvB + yB = [8B/8t]y, (7. 7) 

where [8B/8t]T is determined with the aid of the 
solution of Eq. (7 .5) without account of damping: 

L'.t 

nq(!'lt) = ~q e-iqVL'.t ~ dtleiqvt,gq (tl) + n~o>, (7.8) 
0 

where n~> = nql~t=o• and relations (7 .4) also turn 
out to be: 

(7.9) 

For I aq I E « J the linear equations ( 7. 5) and 
(7 .9) have a rather limited region of validity, 
since even for comparatively small amplitudes 
the quadratic terms of the expansion of J in 
powers of 8 cp Ia xi begin to play a role in the os­
cillations of the electron density. It appears that 
the condition under which it is possible to neglect 

such terms is also, in the majority of cases, the 
fundamental limitation which determines the 
limits of applicability of the present linear theory. 
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