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Elasticity equations for metals are derived by taking into account the forces which the con­
ductivity electrons exert on the lattice. In the limiting case of high frequencies, when colli­
sions in the electron gas are not important, the equations transform into the elasticity equa­
tions with spatial dispersion, proposed by Silin, but contain an additional force to account for 
nonconservation of the conductivity-electron quasimomentum. The laws of conservation of 
energy and momentum are examined. 

A dispersion equation describing sound wave propagation in metals situated in a magnetic 
field is derived from the elasticity equations. The dispersion of sound velocity is consid­
ered in the absence of a magnetic field and for the limiting cases of strong and weak spatial 
dispersion. When A.ac ~ A.em ( w~ 109, A.« Z), where A. is the wavelength and l is the elec­
tron path length, a certain type of "resonance" should occur. Thus the relative change b.s/s 
of the velocity of sound should increase sharply and become of the same order of magnitude 
as the absorption. 

1. INTRODUCTION 

QuASIPARTICLES-conduction electrons-in a 
deformed metal are acted upon, in addition to Lo­
rentz forces which include macroscopic electro­
magnetic fields, also by forces due to direct inter­
action between the electrons and the lattice, owing 
to the change in the microscopic atomic electric 
fields. The resultant reaction on the lattice (aver­
aged over the electrons ) leads to terms that are 
functionals of the electronic distribution function 
in the equations of elasticity theory. These forces 
are far from small. 

Thus, in conductors the interaction between the 
conduction electrons and the lattice gives rise to an 
appreciable influence of the electrons and the elas­
tic properties of the body, so that in the case of 
sufficiently large electron free paths the closed 
system of equations comprises the kinetic equa­
tion for the conduction electrons, Maxwell's equa­
tions, and the equations of elasticity theory. 

The forces which the deformed lattice exerts on 
the conduction electrons [which according to mod­
ern metal theory form an ideal gas of quasipar­
ticles with dispersion E0 (p )] have an electromag­
netic character, but only the smoothed long-range 
fields can be taken into account with the aid of 
Maxwell's equations. It is quite important that 
for deformations that vary over distances greatly 
exceeding atomic distances this interaction can be 

taken into account by a change in the dispersion 
law (Hamilton function) of the conduction electrons 
[ 1]. The conduction electrons can, as before, be 
regarded as an ideal gas of quasiparticles, so that 
the well developed formalism of modern electron 
theory of metals can be used [2]. 

This method of describing this interaction, first 
proposed by AkhiezerC1J, is based on the fact that 
the dispersion law becomes applicable at distances 
on the order of several atomic distances (which 
are already affected by the periodicity of the lat­
tice), and consequently within atomic time dura­
tions. During these times and at these distances 
the lattice can be regarded as stationary and pe­
riodic, but with somewhat modified periods and 
with suitable symmetry, so that the concept of a 
local dispersion law 1> can be introduced for a con­
duction electron in a deformed lattice. 

The electrons can exert a particularly strong 
influence on the elastic properties of the body (in­
cluding the properties of the sound waves propa­
gating in the body ) in a magnetic field at low tern­
peratures near the numerous magnetoacoustic 
resonances which exist in metals [3•5•6]. It is of 
interest in this connection to obtain an expression 
for the force contained in the equations for the 

!)This reasoning can be used, of course, only in a local 
coordinate system that moves together with the considered 
lattice element[' '4 ]. 
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elasticity of metals. This makes the indicated 
system of equations closed, since we know the 
form of the kinetic equation with allowance for 
the deformation interaction between the electrons 
and the lattice. 

In the case of sufficiently high frequencies, when 
collisions in the electron gas can be disregarded, 
such a closed system of equations was proposed by 
Silin [7]. Our purpose is to obtain equations suit­
able for both high frequencies (in the classical 
region tiw « E0, J.lH « Eo) and for the low fre­
quencies. In the derivation of the equations it is 
necessary to take into consideration the difference 
between the properties of the quasimomentum of 
the electrons in the metal and the momentum of 
the free electrons. This circumstance, in partic­
ular, gives rise in the high frequency region to 
force terms not allowed for in Silin's expression 
and responsible for the additional momentum trans­
fer to the lattice. 

In addition, it follows from the derivation given 
below that the "energy" approach to the calcula­
tion of the sound absorption [2-s] is suitable also 
in the case of high frequencies. In particular, the 
equations of elasticity theory follow from the con­
dition of the minimum free energy of the system, 
determined for the nonequilibrium state in terms 
of the energy and entropy of the nonequilibrium 
Fermi gas. The effect of the electrons reduces 
to changing the elasticity theory equations into 
nonlocal integra-differential equations, i.e., spa­
tial dispersion begins to assume a major role. 

2. KINETIC EQUATION 

The form of the kinetic equation for the distri­
bution function f( r, p, t) of the quasiparticles­
conduction electrons in a deformed crystal was 
established in the papers of Akhiezer [iJ, Akhiezer, 
Lyubarski1, and KaganovC8J, V. Gurevich[3J, and 
Blount [4] from the absorption of ultrasound in 
metals. We write the kinetic equation in the form 

dfjdt + ~f = 0, (2.1) 

where 

(2.2) 

is the Stokes operator of the field derivative with 
respect to time, v the collision operator, and F 
the external forces, in which we include the Lorentz 
force: 

e [ae J F = - eE - c ap H • (2.3)* 

The deformation interaction with the lattice is in­
eluded in the Hamiltonian of the conduction elec­
tron. 

The dispersion law, i.e., the Hamilton function 
of the conduction electron, can be represented in 
the laboratory coordinate system (l.s.) in which 
the kinetic equation (2 .1) is written in the form 

e(r,p,t)=e0 (p)+6e(r,p,t), (2.4) 

where E0(p) is the law of dispersion of the elec­
tron in the undeformed lattice and od r' p, t) is 
the local variation of the dispersion law in the case 
of the crystal deformation. We shall give the spe­
cific form of DE: below (3.13), but some of the 
derivations can be made without concretely spe­
cifying o E:. 

Values averaged over the quasiparticle mo­
menta will be denoted by means of double brackets: 

2 \ dS 
('ip) = (2nli)3 .l 'ljJ v · (2.5) 

Integration over the momentum volume ( ( ... ) ) is 
within the limits of one unit cell of the reciprocal 
lattice. The surface integration ( ... ) is carried 
out over the unperturbed Fermi surface v = 8E0 /8p 
-unperturbed quasiparticle velocity over this 
surface. 

The quasiparticle distribution function f ( r, p, t) 
is connected with the density n ( r, t) of the free 
electrons by the normalization condition 

{f)>= n (r, t). (2.6) 

The quasiparticle flux ((( 8E/8p )f)) is equal, in 
view of the continuity equation, to the flux of the 
true electrons. In this connection, the density of 
the electric (electron) current is 

je1 =- e { (oejop) f)> (2. 7) 

and the mass flux density, i.e., the momentum den­
sity of the free electrons, expressed in terms of 
the distribution function and the quasiparticle dis­
persion law, is ( - e and m are the charge and 
mass of the free electron) 

~ = m {(oefop) f)> (2.8) 

The latter circumstance was used by Landau, in 
the theory of the Fermi liquid, to establish a con­
nection between the effective mass of a quasipar­
ticle in liquid He3 and the mass of the helium 
atom. In a metal, in view of the fact that p is a 
quasi momentum, we have ((pf)) -m(((8E/8p)f)), 
generally speaking, different from zero. However, 
as before, the quantity 1r is the free-electron mo­
mentum density. This important relation will be 
essentially employed in what follows. 

Let us obtain an expression for the electron 
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energy in the laboratory system. The trans forma- = [ exp { ( E -1-'o )/kT} + 1] - 1 ( 1-'o -chemical po-
tion from the coordinate system K', which moves tential of the electrons ) . This deduction is the 
together with the volume element dV of the lattice direct consequence of the fact that the character-
in the laboratory system, is by means of the ca- istic parameters of the collision acol are con-
nonical transformation siderably smaller than the length of the sound wave 

i\. (or, in general, the distances over which the 
r = r' + u (r', t), (2·9) elastic field varies), while the collision times (but 

where u ( r', t) is the displacement of the lattice 
point with coordinate r' at the instant t. A ca­
nonical transformation with a generating function 
cf? = ( r' + u ( r', t) )p from the old canonical vari­
abies r' and p' to the new variables r and p, 
yields, as usual, 

e'(r', p', t) = e(r, p, t)-up, 

p'=P+v(up). 

(2.10) 

(2.11) 

We note that inasmuch as the coordinate trans­
formation (2.9) contains the time explicitly, and E' 

is not a quadratic function of p', then, in accord­
ance with the relations known from mechanics [9 J, 
the new Hamilton function E does not coincide, 
generally speaking, with the energy of the quasi­
particle. Nonetheless, a simple connection exists 
between its mean over the, quasiparticle distribu­
tion and the average electron energy. This con­
nection can be obtained by multiplying (2.10) by 
the invariant of the canonical transformation 
f dV dp = f' dV' dp' and integrating over the quasi 
momenta. It follows therefore that the electron 
energy in the system K' is 

dE'= {/f') dV' = {ef) dV- u {pf) dV. (2.12) 

On the other hand, we use the known thermody­
namic identity for the energy 

dE= dE'+ udP, (2.13) 

where dE is the average energy of the electrons 
in the volume V (in the l.s.) and dP is the elec­
tron momentum per unit volume, which, in ac­
cordance with (2.8), is equal to 

dP='I'CdV = m{(iJe/iJp) f}dV. 

Eliminating dE' from (2.12) and (2.13), we obtain 
a connection between the average energy and the 
average Hamilton function in the l.s. 

dE= {ef)dV -u{(p-miJejiJp)f)dV. (2.14) 

In the derivation of the equations of elasticity 
theory we shall not use any specific structure of 
the collision integral. Following Pippard [5], we 
shall assume that the collision integral is made 
to vanish instantaneously by an equilibrium dis­
tribution function f0( E - p • u - OIJ ), where f0 ( E) 

-Fermi distribution function, f0 ( E) 

by no means the relaxation times ) are smaller 
than the period of the elastic oscillations, the scat­
tering centers being dragged by the moving lattice. 
For scattering on impurities, these conditions, ob­
viously, are satisfied. For collisions with phonons, 
the parameter is the wavelength of the thermal 
phonons i\.ph"' a®/T, where @ is the Debye tem­
perature and a is the lattice constant. (The ques­
tion of the electron -phonon collisions is more 
complicated, owing to the need for considering 
the deviation of the phonon distribution function 
from equilibrium [4•10].) 

Thus, the collision integral is made to vanish 
by a Fermi function of the argument Eo+ o'E, 

(2.15) 

where 

68 = 6e - pit - 6~, (2.16) 

i.e., o'E includes both the variation of the Hamilton 
function and of the chemical potential of the elec­
trons. 

The total distribution function is best sought 
in the form 

f (r, p, t) = fo (e0 + 6e) + x (r, p, t) iJf0/iJe. (2.17) 

The distribution function x satisfies the normali­
zation condition 

<x> = o, (2.18) 

if we assume that both the total and the instantane­
ously-equilibrium distribution functions are nor­
malized to the electron density n( r, t) at the given 
point of the lattice. The current density j repre­
sents the sum of the electron current (2. 7) and the 
ion current hat= enu 

jel = e (v (6e- 6e + x)> = e <vx> - enu. (2.19) 

The current is therefore 

j = j 1 + j = e (vy.). 
e lat 

(2.20) 

The electric neutrality condition uf the metal 
assumes the form 

div (vx> = 0. (2.21) 

The continuity equation for the electrons 

iJn/iJt + div {fiJe/iJp} = 0 (2.22) 
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using (2.17)-(2.21) leads to the condition 

(lie) = n div u. (2.23) 

From this we get the expression for i5p. [see (4.5)]. 
The equation which x satisfies will be given below 
(4.4). These relations are already determined by 
the specific form of the dispersion law in the de­
formed crystal. 

3. CONSERVATION LAWS 

The electrons of a metal constitute a non-closed 
system that interacts with the lattice and with the 
electromagnetic fields. Therefore the entropy Se z 
of the non-equilibrium electron gas is not a mono­
tonically increasing function of the time, as would 
be the case with a closed system. Using the defi­
nition 

Set=- k ~ dV {(1- f) In (1- f)+ fIn f), (3.1) 

we can readily obtain 2> 

dSet r ~ A 

T dl = j dV ((lie+ X) vx). (3.2) 

For brevity we shall not write out in the inter­
mediate formulas the terms which contribute to 
the fluxes through the surface. For the same rea­
son, we take the field derivative d/dt under the 
sign of averaging over the momenta, since obvi­
ously for any arbitrary quantity we have by virtue 
of (2.2) 

We shall henceforth regard the electromagnetic 
field and the lattice as mechanical systems, as­
suming the temperatures to be so low that the con­
tribution of the phonons can be neglected, and con­
sequently TdSez/dt = TdS/dt, where S is the en­
tropy of the entire system, which consists of elec­
trons, the electromagnetic field, and the lattice. 
The system is in a thermostat with temperature T. 
In this case the direction of the physical processes, 
as is well known from statistical physics of non­
equilibrium processes, is determined by the de­
crease in the total free energy of the system (for 
the closed system which includes the thermostat 
this corresponds to the increase of the total en­
tropy ) . The free energy of the electrons, in ac­
cordance with (2.14), is 

2)To prevent misunderstanding we note that in the coor­
dinate frame connected to the moving lattice we have TdS/dt 
= f dV' <(o£' + x){;x>, i.e., it is by far not equal to 

JdV' <x{:;x>· 

F et = Eet- TSet> Eet = ~ dV {(e- ti (p- mae/ap)) f). 

(3.4) 

Using expression (2.16) for OE- o?, and recog­
nizing that ( vX) = 0 by virtue of the conservation 
of the number of particles, we obtain 

dF t \' { de · · ( ae ) A • -i-= JdV <&fJ-u{ p-map- f)-<pvfJ;u 

· a ( ae) A } - uar< p -map f)- <xvx>. (3.5) 

To determine the force f in the equations of 
elasticity theory 

(3. 6) 

we start with the law of conservation of the total 
momentum fP for a system consisting of free elec­
trons, the lattice, and the electromagnetic field. 
This conservation law, of course, is exact if we 
disregard the momentum transfer to the phonons: 

(3. 7) 

The first term [see (2. 8)] represents here the 
momentum of the free electrons, expressed in 
terms of the dispersion law and the quasiparticle 
distribution function, G is the momentum of the 
electromagnetic field, and Plat is the density of 
the ions making up the lattice. 

We obtain the momentum conservation law by 
equating to zero the time derivative of ffo. It is 
convenient here to add and subtract ((pf)) from 
the first term, and find the derivative (a /8t) « pf)) 
with the aid of the kinetic equation. According to 
Maxwell's equations 

ao)at = - ar,k!axk - c 1 [jHL 

where Tik is the electromagnetic field stress ten­
sor and j is the total current (2.20). It follows 
therefore that 

d.UP = \ dV {P ii + # p ~"' - _1_ lj H l - ~ # ( P - tn ~) f"' lJ . 
dt .l tat "' at # c at "'- ap "' 

(3.8) 

Finally, using the kinetic equation and the con­
dition divlat F = 0, we obtain (in the approxima­
tion linear in u ) : 

dfP. \ ' ( 1 . ) A Tt = ;dV { f1 - en E + -c [uH] 1 - {p1vf); 

- ~ <(P - m iJf;_) f);- ~1Jltk} = 0. at ' ap1 ax". 
(3.8') 

from which we get for the force 
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The tensor 1/Jik for the closed system must be ob­
tained from the energy conservation law. In the 
case of a system in a thermostat, we use for this 
purpose the condition of the minimum of free en­
ergy of the system (3 .4). 

It is natural to represent the total free energy 
of the electrons, lattice, and the electromagnetic 
field in the form 

F = Fel + :1Cem+ Felast• 

where Fez is the free energy of the conduction 
electrons with account of their interaction with 
the electromagnetic field and the lattice, 3Cem the 
energy of the electromagnetic field in the volume 
of the sample, and F elast the free energy con­
nected with the deformation and the lattice vibra­
tions. Strictly speaking, such a separation is quite 
arbitrary in view of the appreciable interaction, 
but we shall be interested in the time variations of 
these quantities. We have already calculated 
8Fez/8t in (3.5) above; for the remaining terms 
we obviously have 

a~tem =- ~ dVjE- ~ 4: [EH] ds, 

F = (' dV (__!_ iJz + 'Aiktmuikutm )· ')., 
elast .) 2 Pp 2 ' CJik = iklmUtm· 

It follows therefore that 

d~ = ~ dV { { a~18 f} - ii { ( p- m ;; ) f} 

+ U; {rpui- enEi- {P;'Vf} 

- __i_ { (p.- m!!...) f}- acsik}- (' dV <xvy.). 
at l api axk .l 

(3.10) 

Now we already have to use the explicit form of 
the deformation correction OE to the dispersion 
law, as obtained by Akhiezer, Gurevich, and 
Landau. 

In the coordinate system moving with the lat­
tice we can, in accordance with the foregoing, in­
troduce a dispersion law for the conduction elec­
trons in the deformed lattice. We note also that, 
owing to the acceleration ii, K' is a non-inertial 

· system in which the free electrons are acted upon 
by the volume inertia force - m ( (f)) ii (since 
m ((f)) is the mass of the free electrons per unit 
volume). 

Varying with respect to f, we find that in the 
system K' the quasiparticle should also be acted 
upon by a force -mii (m is the mass of the free 
electron), responsible for the Stuart-Tolman ef­
fect. According to Landau, the inertial force can 
be taken into account by including in the energy 
a term -mu8t/8p. Thus, 

8' (r', p', t) = Eo (p' + hik (p') Uik - muae/ap + /l' 8, 

(3.11) 

where Aik(P) is the deformation potential, intro­
duced by Akhiezer, which satisfies [like the dis­
persion law E0(p )] the condition 

f.ik (- p) = f.ik (p), (3.12) 

D.'E are terms quadratic in u (these terms must 
be taken into account, since the energy conserva­
tion law is written accurate to quadratic terms, so 
that the inertia force is also conveniently written 
in terms of 8E/8p and not in terms of v = 8E0 /8p). 

Carrying out the canonical transformation (2.9) 
to the laboratory system K, we obtain for OE: 

The asymmetrical part PiVk 8ui /8xk is the result 
of the fact that the local coordinate system not 
only executes translational motion, but rotates to­
gether with the lattice with an angular velocity 
% curl u. Obviously, the antisymmetrical part 
% (PiVk - ViPk) vanishes on going to an isotropic 
dispersion law. 

The quadratic terms b.E make a contribution 
((D.Ef0(E0 ))) to the free energy, which, obviously, 
reduces only to a renormalization of the moduli 
of elasticity J.LikZm. which includes only the equi­
librium electron distribution function. The term 
J.Liklm (p) UikUZm• which is the quadratic term of 
the expansion of E' ( r', p', t) in powers of Uik• 
leads to an addition (( J.Liklm ( p ) f0 ( E 0 ) )) etc. This 
renormalization is of the same order as that of 
Aik ( p ) . In addition, the "nonrenormalized" mod­
uli AikZm actually already include the interaction 
with the electrons, which is manifest in the tran­
sition from the free electrons to the quasiparticle 
with dispersion law E0(p ). Therefore it is mean­
ingless to take into account the terms which re­
normalize the moduli with the equilibrium electron 
distribution function [due, for example, to the 
terms with Aik ( p)], and we shall omit them hence­
forth (stipulating this every time ) . We are inter­
ested only in the contribution of the non-equilib­
rium part of the distribution function, which is 
responsible for the dispersion, the dependence 
on the magnetic field, etc. 

Using the dispersion law (3.13), we get from 
(3.10) 

dF (' · acrik ' 
dt = .l dVu;{{;- enEi- axk - { pivf} 

-a~ { ('J.,ik + PiVk) f} 
k 

- ~ { (Pt - m !!!:_) f)} - \ ( X~X) dV. 
at api .l (3.14) 

Choosing the volume V large enough to cause the 
surface integrals (which we have not written out 
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so far) to vanish, we arrive at the conclusion that 
the thermodynamic potential F will be a quantity 
of fixed sign, which decreases in any process, pro­
vided the expression for the force fi is taken from 
the momentum conservation law (3.9), and the ar­
bitrary tensor 1/Jik contained in it is set equal to 
(( ( Aik + PiVk )f)) + Uik· 

The energy conservation law takes the form 

(3.15) 

where the flux density of the free energy q is equal 

qk = { efoe/opk) + { B (oe + 'lJ iJf!iJpk)- U;CJ;k 

- u; ((A.tk + p;vk) f)+ (c/4n) [EHh. (3.15') 

Accordingly, the momentum conservation law takes 
the form 

dffo;ldt = - ~ dskTitk. (3.16') 

where IIik is the momentum flux density tensor 

f11k = Tik + {pJoe/iJpk} + o,k {foe} 

- CJ;k - { (A.tk + PtVk) f) 

( T ik is the Maxwell stress tensor ) . 

4. EQUATIONS OF ELASTICITY THEORY 

(3.16) 

As a consequence of the energy and momentum 
conservation laws, the equations of motion of the 
lattice assume the form 

P1a1u; =en (E + + [uH] ); + a~k {(A.tk + p;vk) f) 

a~ "k ' a ( ae ) '\ 
+ax: + {p;vf) + ar{ Pt- map, f }. (4.1) 

The physical meaning of the first term is obvious: 
ne is the density of the equilibrium charge of the 
lattice. The second term is essentially connected 
with the deformation interaction between the elec­
trons and the lattice. It coincides with the corre­
sponding term introduced by Silin [i] in the equa­
tion of motion of the lattice, if we take the tensor 
Al~) introduced by Silin, to mean Aik + PiVk· The 
last two terms are missing from Silin's equations. 
The first is connected with the momentum trans­
ferred from the electrons to the lattice as by the 
collisions, while the second 3> takes into account 
the non -conservation of the conduction electron 
quasimomentum, connected with the momentum 
exchange between the free electrons and the lat­
tice. The expression for the force can be trans­
formed to a more convenient form, if we use the 

3lThis term was obtained also by K. B. Vlasov and V. I. 
Filippov (private communication). 

quasimomentum transport equation. We note by 
way of introduction that 

( ae ) a , m aj 
{ p- m ap f} = - ((p- mv) x> = - ar <Px> ' e-ar. 

(4.2) 

This can be readily demonstrated if we recognize 
that A.ik(P) = Aik( -p), and we use the expressions 
for o€ and o€- oE:. On the other hand, we can re­
normalize Uik• including in it the term - ( ( A.ik 
+ PiVk)( Azm + PZVm)) 8uz/8xm, after which 

(4.3) 

We multiply the equation for x. which is of the 
form 

(d/dt + ;) 'X= g= evE - AtkUtk. Atk = A.tk - (A.Lk) I (1), 

(4.4) 

E = E + c-1 [uH] + e-1VOj.t + mule, Oft = Utk (A;k) I <I>' 
(4.5) 

by p and average over the Fermi surface. We ob­
tain, using (2.20), 

i!_ (P'X) + _!__ (pvkx>+ (pvx) =- .!_ [jH] + enE. (4.6) at axk c 

Substituting (4.2) and (4.3) into the expression 
for the force and using (4.6) and (2.18) we obtain 
(carrying out one more renormalization of Uik• 
namely including in it the term - Oikno~) the fol­
lowing equation of elasticity theory: 

(4.7) 

Here p is the total density of matter, p =Plat + nm. 
The complete system of equation now comprises the 
equation of motion (4. 7), the kinetic equation, (4.4), 
(4.5), the expression for the current (2.20) in terms 
of the distribution function, and Maxwell's equations 

rot rot E = - 4nc-2iJj/iJt. (4.8)* 

The boundary conditions for this system are the 
boundary condition on the distribution function x 
(the condition of reflection of the electrons from 
the boundary), the continuity of the components 
IIiknk of the momentum flux, and the continuity of 
the tangential components of the electric field and 
of the normal component of the magnetic field. The 
system of equations obtained above now enables us 
to solve those problems of the linear theory of 
elasticity in metals, in which an appreciable role 
can be played by electrons and electromagnetic 
fields; in particular, the problem of the mutual 
transformation of electromagnetic and sound 
waves [UJ. 

*rot = curl. 
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5. THE DISPERSION EQUATION 

" We introduce the Green's operator R(p) of the 
kinetic equation and its parts that are symmetrical 
and antisymmetrical in p 

R_s.a_ + CR(p) ± R <- p)): 

k. (p) = ld!dt + v ]-1 • (5.1) 

The formal solution of the kinetic equation is of the 
form 

X!= k_aevE -R5AtmUtm• 
(5.2) 

The current and the deformation force [ the last 
term in (4.8)] are expressed respectively in terms 
of the antisymmetrical ( xa) and symmetrical ( xs ) 
parts of the distribution function: 

j; = e2 (v;R 5Vk)Ek- e (v;RaAtm) Utm, 

f1 = - 'Vk {e (A;kf<.avt) Et- (A;kR 5Atm) Utm}. (5.3) 

In the case of weak spatial dispersion, we obtain 
from (5.3) Ohm's law, which includes also the de­
formation currents produced not by the fields but 
by the deformation of the crystal. If the source of 
the fields is sound excite(l in the crystal, then by 
solving Maxwell's equations we can express the 
effective electric field E in terms of the deforma­
tions 

(5.4) 

The operator EkZ is connected with the Green's 
tensor of Maxwell's equations. Expressing the cur­
rent and the force with the aid of (5.2)-(5.4) in 
terms of the displacement, we obtain 

A d A 

j; = juUt, f; = fuut. 

] it = e2 (VtR 5 Vk) Bkt - e (v;RaAtm) ()2/iJtiJxm, 

~~ =- 'Vk {e (AiiJ?.avn) e~,l -(A;kR5Atm) iJ21iJtoxm. (5.5) 

The equation for the displacement u assumes 
the form 

A _ -l !"" A 

Uu --- (c BimnHn + O;m (m/e) iJ/iJt) ]mt + tu· 

(5. 6) 

(5. 7) 

Here EikZ is a unit antisymmetrical tensor. 
In our case Dil iS an integra-differential opera­

ator with a rather complicated kernel. In a homo­
geneous unbounded medium, the kernel becomes of 
the difference type in the coordinates, and the 
Fourier method can be employed. For plane waves, 
in which the quantities vary as exp [ i ( k • r - wt)], 
the Fourier components will be denoted in the same 
manner as in the coordinate representation, leav­
ing out the indices k and w. 

Equations (5.4) and (5.5) assume the form 

(5. 8) 

Here CTik is the conductivity, 8i[ the ''deformation 
conductivity," and Cin and biZ characterize the 
changes in the elastic moduli connected with the 
non-equilibrium nature of the electron gas: Cin 
is due to the field and biZ is directly due to the 
deformation interaction 

a;k = e2(v1Rsv">, iJu = - ewk (viRaAtx), 

C;n = - iek <AxRavn), bu = iwk2 (A;xR'Atx)· (5.9) 

We use the notation ai[Kl = aK, where IC = k/k and 
ail is an arbitrary tensor. 

Let p and q be the principal axes of the tensor 
A.iKlK· We denote by 77p the eigenvalues of this ten­
sor in units of ps2, where s is a certain charac­
teristic velocity of sound. Then 

'1'1-0 ='A /ps2 • 
'lp pq pxqx (5.10) 

No summation is carried out over the barred 
index. 

Equation (5.6) for the Fourier components of 
the displacement in terms of the principal axes 
p and q assumes in the dimensionless variables 
the form 

{ (TJiJ - ~) Opq + dpq} Uq = 0. (5 .11) 

Here 

(5.12) 

The eigenvalues ?; are determined from the dis­
persion equation 

(5.13) 

If I dpq I « 1, then for 77 1 "" 77 2 "" 773 the eigenvalues 
?; in the approximation that is linear in dpq are 

(5.14) 

In the case of twofold degeneracy (for example in 
an isotropic medium) 17 = 17 1 = 172 ""17 3 in the same 
approximation, ?;3 is again expressed with the aid 
of (5.14), and 

~1.2 = T] + f ldn + d22 ± V (du - d22)2 + 4d12d21 ]. 

(5.15) 

If dpq > 1, then it is necessary to solve (5.13). 
The tensor dzm has in accordance with (5. 7) and 
(5.12) the form 

(5.16) 
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We have introduced here the notation be observed in metals. We consider below the de-

we= eH/mc. (5.17) 

Let us now find the tensor Eik· We introduce 
axes orthogonal to K, which we denote by the Greek 
indices a, {3, y, etc. From jK = 0 follows an ex­
pression for the longitudinal field in terms of the 
transverse field 

obtained from Maxwell's equations (4.9): 

The current jd is equal to 
(5.18) 

j~ = a: 13 (c-1 (uHJ 13 + mii13!e) + a:tu1• 

The renormalized tensors a~ and a~z are ex­
pressed in terms of Uik and Bik in the following 
manner: 

while the resistivity p a{3 is given 
(5.19) 

p = [cr* + iQsalJ-I, Qs = k2c2/4naw, 

P - (Pcx(3), (5.20) 

Finally, using the relations already written, we 
obtain for Eik the expression 

Etq = - (Otcx - Otx crxcx Pcx{3 { iaQs (mw/e) (w0{3q 
crxx 

+ iw~e13qs) + a~q} - Otxax/axx· (5.21) 

The phase velocity of the sound wave in the 
metal can be obtained in accordance with (5.12) 
from the formula 

(wlk); = s-,11;, (5.22) 

where ti is the i-th root of the dispersion equa­
tion. In the case of (5.14) we obtain, for example, 

(5.23) 

Thus, the real part of the element dii"/21'/i is a 
dimensionless addition to the velocity of sound 
(the imaginary part of dii/21'/i in units of the un­
perturbed velocity of sound s ...fT/i describes the 
absorption). 

The absorption coefficient y per unit length is 
equal to 

y = - w Im d., /2sn/' ll ., (Im d;; < 0). (5.24) 

6. DISPERSION OF THE VELOCITY OF SOUND 

Owing to the interaction with the electrons, ap­
preciable dispersion of the velocity of sound should 

pendence of the velocity of sound on the frequency 
in the absence of a magnetic field. We shall pre­
sent also a new result pertaining to the absorption 
of sound. 

We introduce the relaxation time 1/v(p ). Then 
the inverse operator of the kinetic equation has the 
form 

R. (p) = [i (kvx- w) + v]-1, Vx = (vx). (6.1) 

In the case of strong spatial dispersion ( kv K » v) 
we have 

R. 0 p 
a=- ikV, 

X 

R.s = T 0 (vx), 

R.s _ v- iw P 
Vx --k-2-v' 

X 

R.a _ 1 --!- ll (w + iv) _. ( ) 
Vx -- fk k u Vx , (6.2) 

here P is the symbol for the principal value of the 
integral and will be left out henceforth. 

From (5.9) we obtain the principal terms of the 
tensors, for which we present the estimates 

a"13 ~a (1 + is/v), a";= ax; ~a (v + iw)!kv, a= ne2/mkv, 

C;cx ~en (l + is/v), Cix ~en (v + iw)/kv, au= iWCu, 

bu ~ inmwkv (l + is!v), 

Further estimates are essentially connected 
with the quantity Qs (5.20). By definition Qs = 

("-em /"-ac )2, where "-em = c/ .J 47Taw is the length 
of the electromagnetic wave in the medium (with 
account of spatial dispersion), and 1tac = s/w -
the wavelength of sound. All these lengths differ 
appreciably, i.e., we have either Q8 « s/v or Qs 
» v/s, we obtain for dpq according to (5.16), 
(5.20), (5.21), using the estimate (6.3) (m and M 
are the masses of the electron and ion): 

dpq ~ (mv/Ms) (i-]-- s/v) (kv ~ v) (6.4) 

The sound absorption coefficient increases in 
accordance with (5.24) linearly with the frequency, 
as shown by Akhiezer, Lyubarski1, and Kaganov [B]. 

The variation of the velocity of sound 6-s ~ sm/M 
is, in accordance with (5.23), s/v times smaller 
than the absorption. 

It is easy to see that when Hs » v/s the con­
tribution to the absorption from the electric fields 
can be neglected, while when Sls « s/v the electric 
fields make a noticeable contribution to the absorp­
tion, comparable with the deformation absorption 
(see, for example, [a]). In this connection, when 
Qs "' 1 (i.e., "-em"' "-ac• which corresponds to 
frequencies w "' 109 ), a transition should take 
place from a linear dependence for Qs « s/v to 
a linear dependence (but with a different coeffi­
cient) for Qs » s/v. It turns out that in this re­
gion there is a strong dispersion of the velocity of 
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sound, and the variation of the velocity of sound 
becomes of the same order as the absorption. In 
this region of frequencies we can obtain rather 
simple formulas for the velocity of sound, but 
when it comes to absorption it will be shown below 
that when s/v « ns « 1 there should exist one 
more region that is linear with the frequency, and 
simple formulas can be obtained for the entire fre­
quency region s/v « ns, including the transition 
region near ns ~ 1. Indeed, for ns ~ 1, 

Paf3 - a-1 (1 + i), eu ~ (m/e) wkv (I + i). (6.5) 

It is seen even from this that the electric fields at 
ns ~ 1 should make a contribution of the same 
order both to the absorption and to the dispersion. 

Using the estimates (6.3), we find that only the 
deformation force rd makes a contribution to dpq• 
and the contribution made to it by the longitudinal 
electric fields can also be neglected. Then 

(s/v ~ Qs ~vis) 

In this frequency region the estimate for dpq has 
a form which differs noticeably from (6.4): 

dpq ~ (mv! Ms) (i + 1), kv~v, Qs ~I. (6. 7) 

It is sufficient to retain in the transverse spe­
cific resistivity Pa{3 only the real part of the ten­
sor a"&_(3, which simply coincides with aa{3· The 
answer is conveniently written by choosing for the 
coordinate axes the principal axes 11. and 11 of the 
tensor aa(3· In this case 

Pl'-v = {j1.vf(al'- + iaQs), al'-v = ai):{jl'-v' 

2al.2 = Spa ± v Sp2 a -4 Det a ' aA = (a,{l). (6.8) 

According to (6.6), (5.9), and (6.2) we obtain 

Substituting in (6.9) the value of aW 

al'- = ne2k-1 <v~{j (vx)), (6.10) 

we obtain for the diagonal element dpp [ assuming 
that case (5.14) is realized] 

(6.11) 

We note once more that (6.11) describes not the 
entire transition region from the low-frequency 
linear law to the high-frequency region. The linear 
region for the absorption with s/v « ns « 1 cor­
responds to the fact that contributions to the ab­
sorption are made only by those transverse elec­
tric fields, which determine the deformation force 
fd. For ns ~ s/v, there is still another transition 
region to the linear law with ns « s/v. The cor­
responding explicit expressions become cumber­
some and will not be presented here. 

According to (6.12), the change in the velocity 
of sound is a sum of two terms (JJ. = 1, 2) which 
differ from each other because of anisotropy. Each 
term is a symmetrical curve with a maximum at 

(6.13) 

Inasmuch as w1 and w2 do not equal each other in 
the presence of anisotropy, the dependence of the 
velocity of sound on the frequency will represent 
a double -humped curve with two minima, the posi­
tions of which can be readily obtained from (6.12). 
They are determined by the roots of the equation 
dRedpp/dw2 = 0, which is cubic in w2• 

In the case of weak spatial dispersion kvx « 11, 

obviously, 

The estimates for the tensors are: 

a,.k ~a (1 + iwlv), a = ne2/mv, cu - ne (kvlv)2 (I + iwlv), 

btk = imn (kv)2 (w/v) (1 + iwlv), a,l = iwcu. (6.15) 

In the case of weak spatial dispersion ns is 
proportional to the frequency, in accord with (5.20) 

lrilsl _l ___ ,ILlsl_ w s OJ s 

~~ --------7~L~=~~~~ 
M S / 

/ 
/ 

/ 
m / 

/ 
/ 

/ 
/ 

,--1 -r--------
" // I 

Absorption and dispersion of sound in the absence of a 
magnetic field. Relative variation of the velocity of sound 
6.s/s for ns 'V 1 (Aem 'V Aac) in the region kl « 1 becomes 
comparable with the relative absorption y/w. The curve with 
the two maxima corresponds to a sufficiently strong ani­
sotropy in the plane orthogonal to the wave vector (otherwise 
there is only one maximum). If the "resonance" (!1 8 = 1) 
turns out to be in the region of weak spatial dispersion 
(kl « 1), then a transition occurs to a steeper quadratic de­
pendence of 6.s/s on the frequency. 
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and (6.15), and it is convenient to represent fls in 
the form 

Qs = w/w, (6.16) 

The estimate for dpq assumes the form ( kv » v) 

nz ( v )2 w f. w} dpq -M s v LL + v for w<w5 , 

m ( v )2 w {. w Wv } dpq-M 5 v 1 +-;;;----v for w~w5 • 

Here wv = 47Tav2/c2 and wv /v = ( wpv/vc )2 

~ (lo14/ v )2 » 1. 

(6.17) 

(6.18) 

In the transition region fls ~ 1 we obtain for 
dpq: 

dpq - : ( ~ r ~ {i + [ ~ + 1 :~~; + Q1s ~v~r ] } . 
(6.19) 

We thus see from (6.19) that the correction to the 
velocity of sound is always much smaller than the 
damping when kv « v, including the case when 
fls ~ 1. Outside this region [formulas (6.18), 
(6,17)] it increases quadratically with the fre­
quency, and when fls » 1 the parabola is steeper 
than when fls « 1. 

When fls ~ 1, and only the last term in (6.19) 
is significant, we can write for dpq• the following 
explicit expressions which determine the absorp­
tion and dispersion 

(6.20) 

2 • A • 2 2 - 4ne2 ~ w < pxvxv,)v > 
Red =--- L.i 

PP ps2c2 fL~l (4ncr~s•jc2)2 + w• 
(6.21) 

Here v*=vf..l-aKf..lvK/aKK; a~ istheprincipal 
value of the renormalized tensor a~{3· 

If we disregard the frequency region where fls 
~ 1, then on the whole the picture of the velocity 
of sound dispersion is as follows. The addition to 
the velocity of sound increases in proportion to the 

square of the frequency at low frequencies, after 
which saturation sets in when kv » v. The tran­
sition region is kv ~ v, or l ~ i't-ac• where l = v/v 
is the mean free path. As in the case of absorp­
tionC8J, there is no boundary wT ~ 1 in dispersion. 

In conclusion, the author expresses sincere 
gratitude to I. M. Lifshitz, R. N. Gurzhi, E. A. 
Kaner, and V. M. Tsukernik for useful discussions. 
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