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The stability of an inhomogeneous plasma is considered. A method for constructing finite 
solutions that correspond to localized perturbations is presented. It is shown that a corre­
spondence exists between these results and the results obtained by using the approximate 
quasiclassical theory in the same problem. [ 1- 5] The shearing effect of nonparallel magnetic 
lines of force is taken into account; it is shown that shear effects lead to stabilization of the 
so-called universal instability of a low-pressure inhomogeneous plasma when particle colli­
sions are neglected. 

1. INTRODUCTION 

GOING beyond the framework of magnetohydro­
dynamics in the theory of plasma stability one finds 
new instabilities associated with the excitation of 
so-called drift waves. [1- 5] In this case, in solving 
the problem of stability for a given plasma configu­
ration, one makes use of an approximate quasi­
classical theory and the dependence of the perturbed 
quantities on coordinates is written in the form 

X 

\jJ (x, y, z, t) = 'Po exp { i ~ kx (x) dx + ikyy + ikzz + iwt}, 

(1.1) 
where the x axis is taken in the direction in which 
the plasma is inhomogeneous. In the final expres­
sions for the growth rates of the kinetic instabili­
ties and the frequencies of the oscillations that de­
velop one introduces a total wave number k1 ( x) 
= v'ki(x) + k~ at a given point of the x axis [cf. 
(1.6)]. The exact value of the latter is determined 
by solving the equations for the perturbed quanti­
ties although, even if it is unknown, one can make 
certain qualitative statements about the stability 
of the plasma. [1- 5] 

Although the solution of the stability problem 
(but not that of determining the exact values of the 
growth rates) does not require the explicit depend­
ence of the perturbed quantity if;(x) on the coordi­
nate x one always requires that the solution be 
finite [if;( x) -- 0 when x-- ± oo ]. The finiteness 
of the solution itself must be obtained rigorously 
from the appropriate differential equation for 1/J(x) 
(we note that in the quasiclassical approximation 
(1.1) the latter can easily be obtained from the dis­
persion equations [Z-4] by making the substitution 
kx- -i8/8x). 

In the general case we obtain a differential equa­
tion of "infinite" order 1> for 1/J(x); however, in two 
limiting cases: 1) the drift approximation k1q « 1 
(ri = ,JT/mi mic/eH is the ion Larmor radius, and 
2) in the approximation k1ri » 1, this equation re­
duces to a second-order equation 

rJd21jJ/dx2 - [U (x, w, k) + iV (x, w, k)l\jl= 0, (1.2) 

which is in the form of the Schrodinger equation 
with a complex potential energy U+iV. 2> Multi­
plying this by if;* ( x ) and integrating between infi­
nite limits we obtain for the finite solution the in­
tegral conditions 

+oo +oo 

,; ~ I~~ r dx + ~ u (x) I \jJ [2 dx = 0, 
-00 -00 

+OO 

~ V (x) I \jJ [2 dx = 0 . (1.3) 
-00 

In the usual quantum mechanical case we deal 
with (1.2) with V(x) = 0. In the quasiclassical ap­
proximation for this case finite solutions always 
exist for a potential energy U ( x) in the form of a 
well. The condition for finiteness of the solution 
is found by joining the solutions that decay at both 
infinities with the solutions inside the well at the 
turning points xi> x2 [ U(x1 ) = U(x2 ) = 0] and mak­
ing use of the quasiclassical Bohr quantization rule 

1>More precisely a second-order integro-differential equa­
tion (this is due to the fact that the particle density flux in 
Maxwell's equations is a functional of the electric and mag­
netic fields). 

2)In which we also include the well known instabilities of 
the magnetohydrodynamic typeJ•] 

1292 



INSTABILITY THEORY FOR A LOW-PRESSURE INHOMOGENEOUS PLASMA 1293 

x, 

~ V- U (x, (J)<P>, k) dx = nri (P + ~). (1.4) 
x, 

In stability problems in which an equation of the 
form in (1.2) is obtained for the perturbed quantity 
with a real potential energy ( cf., for example, [6]) 

it is not necessary to determine precisely the fre­
quency spectrum w<P) from (1.4). It is sufficient 
to note that at the turning point x<P), which corre-

1 
sponds to a characteristic value of the frequency 
wCP), we have ( cf. [8]) 

U (x<P), (J)(P), k) = 0, (1.5) 

from which it is possible to determine the sign of 
the imaginary part of the frequency and thus to 
solve the stability problem for a given plasma 
configuration. 

If V(x) ;t! 0, then the points at which the real 
and imaginary parts of the potential energy vanish 
are not the same in the general case; hence we do 
not have vanishing points for the total complex po­
tential energy U(x) + iV(x) on the real axis. How­
ever, if we regard U(z) + iV(z) as a function of 
the complex variable z = x + iy such points can 
exist in the complex plane z and by joining the 
quasiclassical solutions at these points we obtain 
the existence condition for finite solutions. The 
latter is the Bohr quantization condition over a 
length L of the real phase of the quasiclassical 

z ,---,-----
wave function Im J ,j- (U + iV)dz = 0 which con-

z2 

nects the complex turning points. 
After verifying the existence of finite solutions 

one can draw qualitative conclusions as to the sta­
bility of the inhomogeneous plasma from the fol­
lowing considerations. According to the integral 
condition (1.3), for each characteristic value of the 
frequency w (p) there is a point x<P) in the localiza­
tion region of I{J ( x) such that 3 > 

V (x<P>, ffi<P>, k) = 0, Re k~ (x<P>) + U (x<P>, (J)<P>, k) = 0, 

(1.6) 

where the second condition is obtained from (1.2). 
We note that (1.6), which plays the same role as 
(1.5) in the stability problem with V(x) ~ 0 is 
written now not at the turning point, but at the 

3>Conditions like (1.6) derived earlier[2·•] without analysis 
of the spatial behavior of the function cp(x) remain formally 
valid when k~-+ Reki = Rek~ + k~. However, the problem of 
forming a finite solution for the integro-differential equation 
obtained in this particular case can be solved by means of 
(1.1). 

point at which the imaginary part of the potential 
energy vanishes. In order to find the exact bounda­
ries of the instability and the growth rates we must 
solve the problem starting from the analytic de­
pendence of U(z) and V(z) and the Bohr quanti­
zation condition. 

We now consider the case in which the real part 
of the potential energy is in the shape of a hill. The 
nontrivial question now arises of whether finite so­
lutions are possible if there is an imaginary part 
V(x) (it is known from quantum mechanics that 
if V(x) vanishes there are no such solutions in 
this case). We consider this problem using the 
simple example of the equation of an inverted os­
cillator: 

d21p/dx2 + 2 {E + 1/ 2 Q2x2ei8}1p = 0. (1. 7) 

Assume first that o = 0. Then, on the lines 
z4/l z4 1 = -1 the relative sign of the second deriv­
ative d21{J/dz 2 (with respect to the potential energy 
!J2z 2/2) changes and we obtain a potential well at 
these lines. The complex turning points lie on 
these lines ( arg z = ± 7T/4) and the eigenvalues of 
the energy corresponding to solutions that are fi­
nite on these lines are E = 'F m ( p + Y2 ). The posi­
tion of the Stokes lines M and the lines L of the 
real phase for E = m ( p + Y2 ) are shown in Fig. 1. 

FIG. 1 

Since the asymptotes of the L lines are in this 
case the semi-axes of x, it is sufficient to take 
an arbitrarily small negative imaginary part V(x) 
= -I o I !J2x2/2 in order that the lines L rotate and 
that the real semi -axes of x lie in the region 1 
where all solutions decay as I z 1- oo. 

In the stability problem the approximation for 
the potential energy U1 + iV1 by an oscillator 

Ul (X)+ iVl (X) = l12Q2x2eiS (1.8) 

holds only in the finite region I x I < R while the 
potential goes to the constant value U1(oo) + iV1(oo) 

when I x I - oo. In this case, for the lowest levels 
the turning points z 1 and z2 do not go outside the 
region of validity of the approximation in (1. 8) and 
the characteristic energy values are again E 
= 'F iQ ( P + % ) (for V 1 (X ) = 0 ) . But the asymptotes 
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of the lines of real phase L now make some angle 
a; hence when V1(x) = 0 there are no finite solu­
tions and we require a finite imaginary part V 1 ( x) 
of definite sign so that rotation of the line L allows 
the real semiaxes x - ± oo to lie inside the region 
of finite solutions. 

To determine which of the solutions is finite for 
a given sign of V1(x) we make use of the quasi­
classical solutions continued analytically from re­
gion 1 to the x axis: 

X 

'ljJ ~ (E- ~:t iV)'/. exp {± i ~ V2 [£- ul (x)- iVl (x)] dx 

------+ const exp {± ix V2 [E- U1 (oo)- iV1 (oo )J}, 
X-KJO 

which correspond to the characteristic values E 
= '~' H2( p + Y2 ) [ if the imaginary part V 1 ( x) = 0 
these solutions must grow with x along the real 
axis, and, as follows from this expression, the 
angle a of the asymptote to the line L is of order 
arc tan (IE l/1 U1(oo)I)J. 

We see that when I V1 ( oo) I > I E I and is negative 
[positive] the solution that corresponds to E 
= -iQ(p + Y2> [ E = W(p + Y2)] is finite. In insta­
bility problems we find I V I « I U I so that local 
solutions can only exist at the hill itself (i.e., for 
small values of the quantum number p ). 

2. DERIVATION OF THE BASIC EQUATIONS 

The equations we require can be obtained by the 
substitution kx- - id/dx in the dispersion rela­
tions that have been obtained earlier;[2- 5J for com­
plete clarity, however, we shall derive them in the 
drift approximation[!] (the wavelength of a pertur­
bation ;\ is much greater than the ion Larmor rad­
ius). The analysis is carried out as in [1-s] using 
the example of a plane low-pressure plasma layer 
1 » {3 = 81mT/H2 »me /mi in a gravitational field 
g along the x axis. 

The unperturbed distribution functions for the 
ions and electrons are taken in the form 

/ (0) ( ) ( ) ( m;, e ) 'I• 
;, e X, v = n X '2nT (x) 

(2.1) 

The lines of force of the magnetic field lie in the 
y-z plane and are straight lines, whose inclination 
angle O(x) (with respect to the z axis) depends 
on x. This rotation of the lines of force is due to 
the current of electrons along the lines of force so 
that the inclination angle 8, in accordance with the 
Maxwell equation \7 x H = 47rj/c, is related to v~0 > 
by 

de!dx = - (4nenofcH0) v~o> (x); 

Following the conventional approach in the 
linear theory of stability we superimpose small 
perturbations on the stationary background. We 
assume that the plasma density is so low that par­
ticle collisions can be neglected and write the ki­
netic equations for fy >, the correction to the ion 
and electron distribution functions in the drift ap­
proximation, neglecting the collision integral: 

k 11 = kz + ku \ ~e dx, 
• \ X 

j={i,e} . 

(2.2) 

Here, we have used a local coordinate system 
{x, s1, SJI} ( s11 is a unit vector in the direction 
of the magnetic line of force, s1/l s1l = [ SiiXl/ 

I sll II xI). 
We consider the self-consistent problem so that 

the kinetic equations are supplemented by the Max­
well equations for the electric and magnetic fields 
associated with the perturbations E and H: 

dH 1_ _ "k H _ 4n ·(l) 
dx ll_x-cln• 

ik1_E 11 -ik 11 E1_ = -iwHxlc, 

d£1_/dx- ik1_Ex = 0. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

In these equations we have used the quasiclassical 
condition in going from the Cartesian variables to 
the local triads of coordinates. Furthermore, we 
have neglected the perturbation H11, as is valid 
when f3 « 1. 

Finally, invoking the quasi -neutrality condition 
(j(f{t> - f~t>) dv = 0) the complete system of equa­
tions describing the plasma in the present approxi­
mations is written 

(1)- (' m; (v}_ + v~) f<,.I) dv, 
p - ~ 2 (2. 7) 

where the second and third terms come from the 
so-called second-order drift (inertia drifts), while 
the fourth term represents the drift due to the 
gravitational force. 
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Under the assumption that the derivatives with 
respect to x of the perturbed quantities are appre­
ciably greater than the derivatives of the unper­
turbed quantities [ quasiclassical approximation, 
which applies when Ax « R; R is the distance in 
which there are appreciable changes in n(x), T(x), 
and O(x)], (2.3)-(2.8) can be reduced to the single 
fourth-order equation for frequencies w » k11ui: 

( 
_ !.tl2 + k j_ vn (1 +'I]) !.tl ) 

1 2 2 
kiiVA 

( 2 d2 k2 2) ridx•- j_ri 'ljl, 

Vn (x) = kj_cTn'/eHn, n' = dn (x)!dx, 

v~ = H2!4rtnm;, Ui, e = VT!mi," 

'I']= d 1nT!dlnn, 

'ljJ (x) = Ej_ (x). 

(2. 8) 

This equation holds only for wavelengths Ax ( x) 
that are appreciably greater than the ion Larmor 
radius. However, if the turning points of U(x) are 
far from each other this condition is violated in the 
region of the minimum of the potential well of U ( x). 
Hence, we limit our analysis to the lowest levels, 
those almost at the bottom of the well. For these 
levels, using the quasiclassical Bohr quantization 
condition we can approximate U(x) in the entire 
region of integration by two terms of the expansion. 
The fact that (2. 8) does not generally hold in the re­
gion of small gradients n' /n ~ 0 does not affect the 
validity of the results since the solution is negli­
gibly small in this region. 

Furthermore, we assume that the variation of 
density and temperature with the x coordinate is 
similar, that is to say TJ = d ln T/d ln n = const 
and that it is so small ( ~n « n, ~ T « T) that 
all the quantities that depend on it can be regarded 
as constant so long as they are not functions of 
their gradients. 

3. INSTABILITY OF AN INHOMOGENEOUS 
PLASMA IN A STRONG MAGNETIC FIELD 
WITH PARALLEL LINES OF FORCE 

In the preceding section we have obtained a 
differential equation for the perturbed quantities 
which, in the most interesting cases, reduces to 
a second -order equation ( Schrodinger equation). 

In the theory of stability we are only interested 
in finite solutions that vanish at infinity. Hence, 
the entire stability problem for an inhomogeneous 
plasma reduces to an investigation of the charac­
teristic values of the equations that are obtained. 

Equation (2.8) includes the well-known magneto­
hydrodynamic instability of the flute type. [G] How­
ever, we shall not be interested in instabilities 
connected with the effect of the gravitational force 
which will therefore be neglected (with the excep­
tion of the last section of the paper, where we con­
sider the effect of a weak gravitational force on 
the stabilization of drift instabilities). 

In the absence of the gravitational field ( g = 0) 
the instability is of oscillatory nature. Everywhere 
in what follows, in solving the problem of the char­
acteristic values, we will use the laboratory coor­
dinate system so that the frequencies in (2.8) are 
to be replaced, in accordance with the relation 
w- w*=w-(l+TJ) xklvn(x) [(2.8) iswrittenin 
the coordinate system in which Eo = 0]. Then, for 
perturbations in the intermediate frequency region 
(kzUi < w* < kzue ), in terms of the approximations 
made above, we have from (2.8) 

X ( 1 - _(2_+_'11_):-"Y'---v_n _(x_) 

X [w -2kyVn (1 + '1']/4)1} 'ljJ = 0. (3.1) 

A. We first consider the case of potential per­
turbations ("V x E = 0, which applies when w* 
« kz VA). In this case the real part of the poten­
tial energy U ( x) is a well 4 > while the imaginary 
part V ( x) is small so that the required finite 
solutions always exist. Because of the interac­
tion of the wave with resonance electrons (vii 
= [ w- kyvn(x)(l +TJ )]/k11) the amplitude can grow. 

Mathematically this interaction is described by 
the residue in the integrals containing the electron 
distribution function. The growth rate of the insta­
bility can be determined from the integral condi­
tion (1.3): 

4>Here, and everywhere below in the analysis of drift waves, 
we assume that k.L Vn > 0. As is evident from (3.1) and (3.8), 
the case k,1.vn < 0 coincides with the preceding if we make the 
formal substitution 

Re !.tl->- Re!.tl, Im !.tl-> Im !.tl, 
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+oo 

~ I'IJ 12 {kyVn (x) (2 + f]) k~ :. B. For perturbations that have a strong distort­
ing effect on the lines of force of the magnetic field 

2k v (1 + 14) ]} ( w2 » k~ Vi) the real part of the potential energy 
Y nRe w TJ dx = 0, has the form of a hill when 1) > -2. Again expand-

-oo 

(3.2) ing the function kyvn(x) in a series, from (3.1) 

which expresses the conservation of energy for the 
system consisting of the wave and the plasma par­
ticles. When X« qv'mi/me I kz I uifw* (X is 
the distance between the zeroes of the function 
U ( x)) we can apply perturbation theory and in 
this condition we can substitute the solution ¢0(x) 
and the frequency w found from (3.1) neglecting 
the imaginary part V ( x). 

However, as indicated in the introduction, we 
use an expansion of the function kyvn ( x) in a 
series about the point x = x0 ([ n' ( x0 )/n l' = 0). 
Then our equation reduces to the equation for a 
harmonic oscillator with energy E and frequency 
n [cf. (1.7)]: 

k2 
E _ 1 [ Wo (2 + T])- w (1 . ) + . Wol] J y 

- 2r~ w -tr 1Yzw -2' 
l 

=-./~w-(1+TJ)W0 ~! 
r J1 2 I kz I ue ~ ' 

Q2 = _1_ {(2 + TJ) Wo 
r7R" w 

_ i [(2 + TJ) Wo 1 (J)~ (1 + T]) l] _ Wol] ]} 
y w T 2w (W- Wo (1 + TJ)) 2w ' 

k ( (x- Xo)2 ) yVn (x) = w0 I - R" . 

The finite solutions in this case are expressed in 
terms of the Hermite polynomials Hp ( x): 

1jlp (x) = (Q!n/' Hp (x }/Q) 2-P/2 (p!f'1'exp {- Qx2/2} (3.3) 

(far from the turning point where the series ex­
pansion is not valid, the solution of (3.3) is re­
placed by 

cons! 
1jlp (x) = I U + iV 1';, 

X 

x exp {- ~ }/ U(z, w<P>, k) + iV (z, w<P>, k)dz}) 
z, 

corresponding to characteristic frequencies 

w<P) = w0 (2 + fJ) + 1/ 2 iyf]w0 -k!r7w0 (2 + fJ) (1 + iy) 

-2r,K1 (p + 1 / 2) (2 + fJ) 
X w0 { I - iy [1 + f] 2/(4 + 2f])]}'/, (1 + iy). (3.4) 

We see from the last expression that an insta­
bility occurs when 

(3.5) 

that is to say, it is of universal nature. 

and the results of Sec. 1, we find that solutions 
with characteristic frequency 

w<P> = w0 (2 + fJ) + 1/ 2 iyw0YJ + k!r7k~V~w;1 (1 + iy) 

+ i2rtW1 (p + 1/ 2) V 2 + YJ {1-ir [ 1 + (2YJ2 + YJ)/(4+2YJ) ]}'1' 

X (1+ iy) I kz IV A (3.6) 

increase with time and are finite when 

11 < -2k!r7k;v~1/w~ -8r,W1 (~m)nme(' (p + 1/ 2) k;V~Iw~ < 0. 
(3. 7) 

If, however, the relative temperature gradient 
is twice as big as the relative density gradient, 
and in the opposite direction ( 11 < - 2 ) the real 
part of the potential energy is again a well; finite 
solutions exist and are unstable while the corre­
sponding characteristic values of the frequency 
are obtained from (3.6) by the substitution 
~-iv'-ry-2. 

C. In the case of high frequency perturbations 
( w * » kzue) for a plasma in which the density is 
not too low ({3 » me/mi), such as that being con­
sidered here, (2.8) becomes 

and has finite solutions (the situation is com­
pletely analogous to that in A) that are unstable in 
the range ( cf. [5]) 

(3.9) 

D. Up to this point we have only considered the 
excitation of drift waves with phase velocity w/kz 
greatly different from the Alfven velocity VA so 
that the boundaries of the potential well are deter­
mined by the vanishing points of the function 
w - ( 2 + 11) kyvn ( x) for approximately constant 
values of the factor [ kfl vi- w2 + kyvn ( 1 + 1) )w ]. 
In the general case ( w ~ kz VA), to make a quali­
tative investigation of stability we use (1.6), which 
yields 
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-Imro:==v 

= -lf ::_ (w- kyvn (1 + T])) (w- w d (x) + '12 kyvn '11) 

2 I kz I ue 

( (w- w d (x)) (w2 + k~V3t) )-1 
X 1 + W(W-W1 (x)){w-w2 (x)) ' 

rod (x)= kyVn (x) (2+YJ). (3.10) 

As we have already noted, a qualitative differ­
ence from the preceding cases arises only if the 
frequency can become equal to the frequency w1 ( x), 
w 2 ( x) at some point x, causing the factor ( w - w 1 ) x 
( w - w2 ) to change sign at this point. 

1. Suppose that w == w1 ( x) at some point. Then, 
as is evident from (3 .1), a potential well is produced 
in the region where w < Wd(x), w < w1(x), 
w(w -w2(x)) > 0. In the absence of a temperature 
gradient we find from (3.10) that an instability must 
arise when w > kyvn(x0 ) (this inequality is satis­
fied, for example, for zeroes of the function 
w - w1 ( x) that lie close together). 

The preceding case, in which the frequency is 
close to Wd ( x0 ), corresponds to the usual drift 
wave; hence the growth rates, to an accuracy of 
order unity, coincide with the growth rates given 
in A. 

Here, we shall only consider the excitation of 
a wave with frequency w ~ w1(x0 ). Then, expand­
ing the function n'(x)/n we obtain the equation 

X rl- i-. I :n Ult(Xo)- Wo(l + '11) 
V 2 I kz 1 u, 

X (1- Wo'r] --)])'¢- 0 
:! (w d (xo)- u>1 (xo) J - ' 

(3.11) 

If Y1 > - 1 the finite solutions can be obtained 
only when I kz IVA < ...f2+TI w0 (then the real part 
of the potential energy U ( x) is a well ) . 

From the expression for the characteristic fre-

quency corresponding to the finite solution 5> 

_ vn Wt (Xo)- Wo (1 + TJ) [ J 'r]Wo J 'l'l - - - ~--,------'-_.::_~-
2 I kz J u, 2 (w d (xo)- Wt(Xo)) ' 

(3 .12) 

we obtain the instability limits 

We now note that the smallness of k2r{ does not 
enter in the expression for the instability limit. 
This is so because the new "turning points" [the 
zeroes of the function w - w 1 ( x ) ] limit the region 
of localization of the wave only to the region of 
strong electron excitation. The maximum value 
of the temperature gradient for which it is unstable 
is reached when I kz IV A « w0 and is given by 
Y1 == 2 [ the growth rates for this case go as 
<lkz lvAwo1 >3 J. 

In cases in which I kz IV A > f2+1} w0 or 
Y/ < -1 the potential energy U ( x) is in the form 
of a hill and the finite solutions decay in time [for 
growing finite solutions, we require the opposite 
sign of the imaginary part V ( cf. the introduction)]. 

2. We now consider further the case w == w2(x). 
When Y1 > - 1 there is now a potential well in the 
region where w < w2(x), w < 0 and, as follows 
from (3.10), this wave attenuates in time. If -2 
< Y1 < -1, then w > 0 and a well is produced in 
the region between the roots of the equation 

ro - ro 2 (xi) = 0, w -rod (x2) = 0. 

It is difficult to approximate this well by an oscil­
lator and we analyze the simplest case, in which 
the frequencies w2 ( x), wd ( x) coincide [ kz VA 
== ...f2+TI kyvn ]. . 

From (3.10) we obtain the characteristic fre­
quencies 

ro=rod (x) ±Rek..LriV~!~/kz/VA 
·Vn k~v~ ( 11 lkzl vA) + t Bl_k_\'- 2 ± Rek..Lr1 -k-- , 

z ue yvn 
(3.13) 

5lA growth rate somewhat larger than that in (3.4) and (3.12) 

(v = V n(12kyunk..L r ;V Afu,) 

is obtained from (3.10) when w,(x) = wct(x) and T(x) = constJ•] 
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from which it is evident that the plasma is unstable 
in this region of TJ. If TJ < -2 the region of locali­
zation of the wave is bounded by the roots of the 
equation w = w2(x) and, as is evident from (3.10), 
an instability arises when 

- 1-V 9- 4k;V~/k~v~ < 1J < - 2. 

The instability boundary is farthest of all in the 
region T) < 0 where kz VA « kyvn ( TJlim. = -4). 
The solution of the equation 

d21jl I {. k2 ' 2 
dx2 T - y I (kzV A)4 

[ 
k2V2 2 

X (J) + ffio (~ ~ l]} ( 1 + f.) J (J)~ (1 + 11J2 ( 1 + ~ ) 

X [ 1 + i-. / n ~ (1 + 1]) (4 -i- lJ)J} 'ljJ ~ 0 V 2 I k 2 I ue 2 (2 + 1]) ~ ' 
(3.14) 

which applies in this case verifies this conclusion. 
The total region of instability in the parameter TJ 

for the last case ( w * ~ kz VA) is given by the ex­
pression -4 < TJ < 2. 6> 

Thus, when the lines of forces of the magnetic 
field are parallel I de/dx = 0 I, the plasma indeed 
exhibits a universal instability. In this case per­
turbations are excited with wavelengths of order 
A.x ~ q and phase velocities Ui < w * /kz ~ VA· 
The growth rates of the instability are given by 
(3.5) and (3.12). Perturbations with phase veloci­
ties w * /kz > VA can also be excited in an inhomo­
geneous plasma but only in the presence of a tern­
perature gradient (i.e., the instability associated 
with these perturbations is not a universal one). 

In this section we have studied the stability with 
respect to perturbations which are highly extended 
along the lines of force ( k11 « k1); it is then de­
sirable to analyze the effect of small departures 
from parallelism (of the lines of force of the mag­
netic field) that violate the condition required for 
the existence of the instability. 7) 

4. STABILITY OF AN INHOMOGENEOUS LOW­
DENSITY PLASMA IN A MAGNETIC FIELD 
IN WHICH THE LINES OF FORCE ARE NOT 
PARALLEL 

The effect due to departure from parallelism of 
the lines of force of the magnetic field, which we 
will call shear below, can be described in terms 
of two mechanisms that tend to stabilize the in­
stability. 

6)In the paper of Mikhal'lovskii and Rudakov[ •] this region is 
given incorrectly: 0 < T/ < 2. 

7)This condition is also violated in short systems [length L 
< (10-lS)R], where there is no instability. 

1. In the presence of shear there are still finite 
solutions corresponding to local perturbations but 
the condition that the interaction be small between 
the perturbation waves and ions: 

k 11 (x) = kz + ky ~ 1Jx dx 

can no longer be satisfied in the entire region of 
localization of the perturbation. This means that 
the instability with respect to the excitation of 
drift waves with phase velocities Ui < w*/ku <VA 
is no longer "universal;" it does not even exist in 
the absence of a temperature gradient if 8> 

(4.1) 

Here, the integration is carried out over the region 
of localization of the perturbation. 

2. The region of localization of the perturbations 
with shear is changed in such a way that we canal­
ways neglect the interaction with the ions in this 
region. The stabilization of these perturbations 
arises from the fact that shear causes the poten­
tial well U ( x) to be contracted and when 

(4.2) 

where A.x is the wavelength of the perturbation and 
~X is the width of the well, it becomes impossible 
to localize perturbations in the well (mathematic­
ally this means the impossibility of forming finite 
solutions). 

In analyzing the effect of shear on the excitation 
of drift waves we must keep in mind that the region 
of non -potential perturbations ( w * > k11 VA) occu­
pies a narrow range ~n of the entire localization 
region ~Xn ~ (w*/kuVA)dx/de even when Rde/dx 
> J73 ri/R. 

Outside of this range the perturbations can be 
assumed to be potential so that the well U ( x) is 
determined primarily by (3 .1). The excitation of 
drift waves with frequencies in the range kiiUi 
< w* < k11ue is possible only if the following in­
equality holds in the localization region: 

kj_Vn (1 + 1]) < (J) < kjVn (2 -'t- 1]/2) 

[cf. (3.10)] and we can neglect the interaction of 
the waves with ions in this region. 

The effect of ions on the excitation of the wave 
can be introduced by means of the integral condi­
tion (1.3) and (2.8) in the frequency range k11ui 
< w*k11ue taking account of the residues in the 
integrals 

S)Stabilization of the drift instability by rotation of the 
lines of force has been proposed by RosenbluthJ71 
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containing the ion distribution function, which de­
scribe the interaction of resonance ions (vii 
= - w * /k11 ) with the drift wave 

x exp (- ~= 2 )} I 'ljJ i2 dx = 0. 
2k il u1 

(4.3) 

The last expression expresses the fact that the 
balance of energy of the wave is determined by the 
work of the electric field of the wave in its entire 
localization region. It is evident from this expres­
sion that in the absence of temperature gradients 
the interaction with ions leads to a damping of the 
wave if the phase velocity w/kz is comparable 
with ui over a distance of the order of the dimen­
sions of localization. However, if the phase veloc­
ity is much larger w * /k11 > -13 ui so that only the 
ions in the tail of the Maxwell distribution are in 
phase with the wave, this interaction excites the 
wave for sufficiently high temperature gradients 
directed against the density gradients. It follows 
from the stabilization criterion (4.1) that it is most 
difficult to stabilize perturbations with a small lo­
calization region ~- This is the case when the 
range of non -potential perturbations [ k11 ( x) 
< w*/V Al which bounds the region of localization 
on one side (Fig. 2) lies close to the turning point 
x1 (or x2 ). 

ill 

FIG. 2 

Taking account of terms of order kfl urI w2 in the 
expansion the well U ( x) assumes the form [ cf. 
(3.1)] 

2 2 [(l kl1 u~) (2+l])k_Lvn] U(x) ~ k1.r1 + - - 2 - w 
w . 

[ 
kll u~ ( l l]k J_ V n ) ] - 1 

x 1+- +--w2 w . 

and expands to dimensions ~ ~ R in the presence 
of shear: 

Rde !dx > 1/ 2 r1R- 1 V Rl ~x1 , 

~x11R = 1(2 + 'l'J) k1.vn (xA) - ro (1 + k}_rz)l/ro (4.4) 

[ this occurs because of the rapid increase of 
k11 (x )]. Under these conditions it follows from (4.1) 
that the instability is stabilized. 

Substituting everywhere from the condition (4.2) 
for the absence of finite solutions ~1 > A.x = q !IU 
the minimum ill1, given by ill1 ~ ri13R1/ 3, we ob­
tain the critical shear: 

R de!dx > (r;IR)'1' (4.5) 

(if the shear is of order (4. 5) a U ( x) well with 
~1 < r{13R1/ 3 cannot support one wavelength and 
finite solutions do not exist). 

At low values of {3 stabilization of these pertur­
bations is afforded by a less stringent condition 
than that in (4.5). This is due to the fact that the 
potential barrier II (Fig. 2) is contracted and be­
comes transparent. Then the localization region 
for the perturbations is not limited to the narrow 
well Ia close to the turning point x1 but also en­
compasses the well I, where the stabilizing effect 
of ion damping is large. Thus, the stabilization 
condition is essentially that the barrier II be 
transparent. 

From the transparency condition (Fig. 2) 

XA 

f. ~ V U(x) dx < 1 
l • x, 

we find, taking account of the fact that 

w-(2+ l]) k_Lvn ( w2 -k_Lvn(1-l-l])w) 
U(K)= w I- k2(x)V2 ' 

II A 

where XA,e represents the boundaries of the bar­
rier and is of order 

XA ,__ (r;l/j3/R) dxjd6, Xe~Vmelmi~XA), 

that a sufficient condition for stabilization is 

Rde!dx d: V ~x11RJI3i3 (In (2xA!xe)- 1). (4.6) 

The maximum possible width ~1 of the well Ia 
for a given shear, for which the ion damping is 
smallest, is determined by the inverse condition 
to (4.4), i.e., when ...j illtfR < riR-2 dx/de and 
(ri/R) 2 < {3 < (ri/R) 2/ 3 stabilization occurs ear­
lier because of the transparency of the barrier 
when 

Rde!dx > (r;IR)'1• (3~)'1• [In 2V m~~fme -ll'1'. (4.7) 

On the other hand, for large {3 ~ 1 the wall II 
is not very steep and the well Ia is smaller so that 
for a large well width ~ < ri/vU ~ riR/ ~x there 
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are no finite solutions and the stabilization crite­
rion is given in order-of-magnitude terms by 

R.d8/dx > (rt!R.)'1•. (4.8) 

Thus, the magnitude of the shear that stabilizes 
the potential perturbations is essentially a function 
of {3 = 81rn0 T /H2• This dependence is shown in 
Fig. 3. 

<' R d8/d.z 
f!i) J ----
!!! I 

!i_ 
II 

I 
I 

FIG. 3 

-.. 

ljJ 

In the presence of shear the phase velocity en­
compasses essentially the entire range from ui 
to oo and this leads to the formation of additional 
potential wells for w * /ue < k11 ( x) < w */VA and 
ktt(x) < w*/ue. If the non-potential range (kll 
< w */VA) lies in the range w > ( 2 + 1J ) k 1 v n then a 
well U(x) is produced for w*/ue < k11 < w*IVA 
and, in the general case, is described by an inte­
gral differential equation; when kri « 1 this equa­
tion becomes a second-order differential equation 
(3.1) and when kq » 1 it becomes the equation 

[ w - k j_ v n (1 + 'I]) ]2 - k}_ v~ 

2k}_ v~ (dfJjdx)Zx2 

X 1-L - '1jJ _ , l ·yrr (w-. 'l']kj_vn)'[ w-(2+'1']/2)kj_vnl]} _ 0 
8 w:- k}_ v;, I k 11 1 ue 

(4.9) 

where we have assumed a linear dependence ktt 
= xk1 de/dx. 

From the integral condition (1.3) we obtain the 
growth rate v in the form (3.10) for (3.1) and 

for (4.9). In both cases the instability boundary is 
given by 

l] < -2 [w -kj_V" (2 + lJ) + k:1 v~0ll!k1_v" < 0, (4.10) 

since the point xCP) in (1.6) lies in the region of 
localization of If! ( x) where w > ( 2 + 1J )k 1 vn [ cf. 
Eq. (4.9)]; we note that in accordance with foot­
note 4 k1vn > 0. 

We can always neglect ion Landau damping in 
the region of localization of the perturbation so 
that stabilization of the instability occurs only by 
virtue of the "squeezing out" of the levels caused 
by strong compression of the well. The expressions 
in (3.1) and (4.9) assume the form 

(4.11) 
where 

can be assumed constant for the large shear we 
have assumed. 

The expression in (4.11) has the formal solu­
tion: 

'ljl= 'ljl(o) Vx K1v (kj_x), v = V x2 - 1/4, 

where Kiv(k1x) is the Macdonald function of im­
aginary order. When v2 > 0 the number of zeroes 
of this solution close to x = 0 is infinite and a so­
lution that vanishes at infinity can be joined to any 
solution close to x = 0. When v2 < 0 this situation 
does not hold. The condition for the absence of fi­
nite solutions K2 < % and the condition for the in­
stability (4.10) give us the magnitude of the shear 
that stabilizes the instability for a given tempera­
ture gradient 17: 

R.d8/dx > }/lfiTil, 'I]<- (2rtiR.)'1', (4.12) 

where the boundary of the instability region is de­
termined by the minimum value of the difference 
[ w - ( 2 + 1J ) k 1 v n I w ] in the region of the well; this 
is reached when the point x2 at which this differ­
ence vanishes is the turning point (in this case the 
point x2 enters region II in Fig. 4 ). 

FIG. 4 

Finally, we consider briefly high-frequency per­
turbations in the well III of Fig. 2 which arise 
close to the point x0 [ktt(x0 ) = 0] when 2k1vn(x0 ) X 

( 1 +1)) > w. These perturbations are described by 
(3.8) both when kri « 1 and when kq » 1 (if {3 
» me /mi). From the latter, using (1. 3) we obtain 
the growth rate 

Using the instability condition that follows from 
this and the condition for the absence of finite 
solutions ( ~ < A.x ) , and proceeding completely 
analogously with the preceding case, we obtain the 
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value of the stabilizing shear: 

Rdeldx > Vf3Tlll, 
_ 1 < TJ <- (mel~mt)'1• (r;!R)'1'. (4.13) 

In concluding this section we wish to consider 
the effect of gravitational forces on stabilization 
of the instability [the role of this effective gravi­
tational force in magnetic traps is, as is well 
known, played by the centrifugal inertial force 
arising by virtue of the motion of the particles 
along the curved line of force of the magnetic field, 
that is to say, geff = Vfl I r ( r is the radius of 
curvature of the lines of force)]. We limit our­
selves to the most interesting case, in which the 
particle drift due to the inhomogeneity in density 
and temperature is much greater than the drift 
in the gravitational field ( geff « u{ /R). 

The gravitational field has no effect on the non­
potential perturbations ( w * » kz VA) because for 
these (2. 8) separates into equations for the flute 
and drift instabilities. For potential perturbations, 
with frequency w of order k1vn we can neglect the 
term 

compared with 

(dN dx2 - kj_} r~'ljl, 

and the equation for the perturbations in the fre­
quency region k11 ui < w* < k11 VA assumes the form 

2 d21jJ { 2 2 ( _ gn'fn ) I _ <2 + TJ) k _l_ vn 
r, dx'- kj_r, I OJ'-kj_vn(i+TJ)w + OJ 

- i "I / n ~ [I - (2 + T]/2) k j_ v n ]} 'ljJ = 0. 
V 2 1 k 11 1 ue OJ 

This equation contains only one small term 
~ k}.r·gn'/w2n « 1 as compared with (3.2). A qual­
itativ~ idea of the effect of this term can be obtained 
by expanding n'(x)/n. Then the problem proceeds 
in exactly the same way as that considered in sec­
tion 3A; in particular, when de/dx = 0 the fre­
quency spectrum of the perturbations is of the form 

iiT]OJo (2 ) k2 2 (1 I i ) 
(J)(P) = (2 + T]) ffio + - 2-- + T] ffio j_(i T j 

_ k}_ r7gn' (xo)/n (I+ i )- 2r i (P + _;__) (2 + Yj) + OJ- OJo (1 + TJ) I R 2 

{ k}_ r7gn' (xo)/n i r I __L __f__J}';,(1 + i ). 
Xffio I+ [OJ-OJo(l+TJ)]'- r L I 4+2TJ I 

It is thus evident that a weak gravitational field 
can broaden the instability boundary 

TJ< 4k!r7 + 4riR- 1 (p + 1/ 2) -ffi;2k}_r7gn'(xo)ln, 

if gn'/n < 0; however, this effect on the stability 
due to the gravitational field is expressed through 
a change in the characteristic frequencies of the 
plasma oscillations whereas the nature of the 
growth rate is, as before, determined by the in­
teraction of the wave with electrons and ions. Thus 
it is clear that the increase in ion damping associ­
ated with the reduction in the phase velocity along 
the lines of magnetic force of the field w/k11 again 
leads to a stabilization of this instability for the 
condition in (4.5), that is to say, introduction of a 
weak gravitational force does not affect the stabil­
ization provided by the curved lines of force. 

Thus, the universal instability with respect to 
potential perturbations kzui < w* < kz VA is stabi­
lized when Rde/dx > (q/R) 2/ 3 while the instability 
with respect to non-potential perturbations, which 
arise only in the presence of a temperature gradi­
ent [ d ln T/d ln n < 0] is stabilized when Rde/dx 
>#. 
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mician M. A. Leontovich for his interest in the 
work and for discussion at a seminar which stimu­
lated the writing of this paper and R. Z. Sagdeev 
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