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The probability of the occurrence if isomerism of a nuclear level is estimated on the basis of 
the statistical model of the nucleus. It is shown that the probability of isomerism is relatively 
large for states with angular momenta which are close to the maximal possible values for a 
given excitation. The nature of such states and the conditions under which it might be possible 
to observe them are analyzed. 

THE statistical model of the nucleus predicts a 
monotonic increase of the average value of the an
gular momentum of a nucleus with the increase of 
its excitation energy ( cf. e.g. [tJ ). From the view
point of the statistical model, nuclear isomerism 
is a consequence of the fluctuations of the distribu
tion of angular momenta. It is easy to estimate the 
probability of such a fluctuation. 

Let PE ( j ) D.j denote the probability that the 
value of the angular momentum of a level corre
sponding to an excitation energy E lies between 
the limits j and j + D.j. In order that a level with 
angular momentum j be isomeric it is necessary 
that the angular momenta of all levels with lower 
energy be outside the interval j - D.j, j + D.j, where 
D.j must be sufficiently large ( ~ 4). The proba
bility for this to occur is 

qtJ.i(E, j) = TI (I -- 2PE'(j) llj), (1) 
E'<E 

where the product runs over all nuclear levels be
low the one under consideration. 

Eq. (1) can also be written in the form 

E 

qAi (E, j) = exp{~ dE'pt(E') In {l-2P£·{j) llj)}, 
0 

where Pt ( E') is the average level density of the 
nucleus around the energy E '. It is interesting to 
consider the case when 

2P E'(j) llj ~ I. 

In this case 
E 

qtJ.i (E, j) = exp {- 2/lj ~ dE'pt(E') P E' {j')}, 
0 

which can also be represented in the form 

qtJ.i(E, j) = exp {-2N(E, j) llj}. (2) 

In Eq. (2) N ( E, j) D.j is the average number of 
nuclear levels with the angular momentum inside 

the interval j, j + D.j and with excitation energy 
E' < E. The quantity N ( E, j ) D.j is computed 
from the statistical model. The level density of a 
nucleus with spin j and excitation energy E is 
proportional to 

exp { S[£ - {li2j 2/2J)]}, (3) 

where S denotes the entropy and J is the moment 
of inertia. In general the function N ( E, j) con
tains the exponentially large factor (3). Under the 
condition that the ''rotation energy'' 

(4) 

is small compared with the total excitation energy 
E, the probability for the spin of a given level to 
be inside the interval j, j + D.j is proportional to 

exp (- 1i2Ff2JT), (5) 

where T is the temperature of the nucleus. 
From Eqs. (2) and (3) one can see that the prob

ability for the occurrence of isomerism is in gen
eral extraordinarily small. For T > 0 isomerism 
is possible only if the exponential (5) is very small, 
i.e. for 

(6) 

where the mean square of the angular momentum 
is 

(7) 

However, for a given excitation the angular mo
mentum of a nucleus cannot be infinitely large. Its 
maximal value can be estimated from the condition 
that the argument of the function S in (3) vanish, 
i.e., from the vanishing of the "thermal energy": 

j = jmax = 1i2JS. (8) 

Evidently, in this case S R: 1. There are relatively 
few states for which the condition (8) is satisfied, 
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therefore for these states the probability of iso
merism is relatively large. 

One can get a rough idea of the nature of these 
states in the following manner. The mean square 
angular momentum of the nucleus, for an excitation 
energy E, is 

(9) 

where n is the average number of excited particles 
(generally, in several elementary excitations ) and 
kFR is the average angular momentum of a parti
cle near the Fermi limit (kF is the wave number 
of the particle and R the radius of the nucleus ) . 
For a nearly degenerate Fermi system 

n;::::: EfT zgFT, (10) 

where the nuclear temperature T is taken as a 
measure of the average excitation energy for one 
particle and gF is the density of the one-particle 
states. Substituting (10) into (9) one obtains (up to 
a numerical factor) the expression (7), where J is 
the rigid moment of inertia, which is the usual esti
mate of this quantity. The states for which j 2 

~ < j 2 > are the most likely ones for a given exci
tation energy. 

Similarly, the maximal value of the mean square 
angular momentum for a given excitation equals 

where nmax is the maximal number of excited 
particles: 

(11) 

(12) 

The equalities (11) and (12) are equivalent to (8) if 
gF in (12) is taken to mean the total density of one
particle states. In this case 

(13) 

The states with angular momenta close to the 
limiting value (11) could be called "aligned," 
since the angular momenta of all excited particles 
point in the mean to the same direction. The num
ber of such states is relatively small and from the 
thermodynamic point of view they are nonequili
brium states, in distinction from the states with 
j 2 ~ < j 2 >, which would correspond to an equi
librium state within a heat reservoir. For a more 
rigorous estimate of <j2 >max in (12) one should 
replace gF by the density of one-particle states 
with maximal angular momentum 

(14) 

Then 
(15) 

Comparing (4) and (15) one can say that such states 
correspond to the rotation of a part of the nucleons 
in the nucleus. For these the effective moment of 
inertia is kFR times smaller (as an order of 
magnitude only) than the rigid-body value, and for 
a given angular momentum the angular velocity 
( rotation frequency) is k FR times larger .1) The 
estimates (9) - (15) remain valid near the ground 
state of a nucleus for which isomerism is encoun
tered relatively often. In this case 

n;::::: nmax z I, 

From the equality (8) or (15) and Eq. (2) one 
obtains for "aligned" states 

q!!.i (E, j) = exp (- 2t.j). (16) 

Although the number of "aligned" states is 
relatively low, they are obtained with large prob
abilities in reactions with heavy ions or in other 
reactions where the angular momentum transfer to 
the nucleus is large. The large initial value of the 
angular momentum does not change much in the 
course of emission of light particles. Therefore, 
if the angular momentum was large at the begin
ning, sooner or later the equality (8) will become 
true at the end of the cascade. The energy of the 
final "aligned" state can be estimated from the 
equalities (8) or (15). For heavy nuclei and j ~ 30 
one obtains in this manner an energy of the order 
of several MeV. The angular momentum must de
crease via the emission of a relatively large num
ber of photons. Their average energy is of the 
order of the rotation frequency (angular velocity), 
i.e., approximately kFR ~ A113 times the rotation 
frequency of the nucleus as a whole. 

The average number of quanta is m 1' ~ j, 
therefore the average probability of the formation 
of an isomer per capture in very large angular 
momentum reactions will be of the order 

(17) 

The "isomeric" quanta must be strongly anisot
ropic with respect to the beam particles, owing to 
the orientation of the angular momentum of the 
nucleus. For 6j > 2 the maximum of the radiation 
intensity will be at an angle e = 90° with respect 
to the beam ( cf. also [2 J ) • 

1lWe deal here with the average properties of a group of 
nuclear levels ("microstates"). The collective rotation ap
pears here as a result of such an averaging and has little in 
common with the collective "microstates" which are de
scribed by the wave function. An example of states of the 
latter kind are the rotational states of deformed nuclei. 
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The general method described above apparently 
agrees qualitatively with the presently known ex
perimental data on the emission of photons by nu
clei with large angular momenta [3]. 
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