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A method is given for treating systems of strongly interacting particles, in which the observ­
able quantities are expressed in terms of several constants which are introduced into the 
theory, in the way that the masses and charges of particles are introduced in the theory of 
dispersion relations. The Landau theory of the Fermi liquid is extended to the case of super­
fluidity for systems of finite size. An equation is obtained which makes it possible to find the 
probabilities of electromagnetic transitions in nuclei. 

I. INTRODUCTION 

IN all real many-particle systems the interaction 
is not small, and therefore in the derivation of 
quantitative relations one cannot proceed, as is 
often done, by combining some part of the diagrams 
of perturbation theory. 

One must single out the set of those diagrams 
which have important variations in the region of 
energies and momenta to be considered and give 
expression to their functional dependences by 
means of several constants which are not calculable 
in the theory, in the same way as one introduces 
the masses and charges of the particles in the 
theory of dispersion relations. 

For Fermi systems without the Cooper pair 
correlation, a program of this sort was carried 
through by Landau in his theory of the Fermi 
liquid.[JJ It was shown that the spectrum of one­
particle excitations near the Fermi surface is 
characterized by a single constant, the effective 
mass, and the spectrum of two-particle excitations 
(zero sound) and the reactions of the system to an 
external field are determined by a single function 
rw, the forward scattering amplitude, which de­
pends only on the spin variables and on the angle 
between the momenta of the quasi-particles. 

For systems with pairing it is well known that 
an important part is played by transitions of a 
particle to a hole and a condensate pair, which 
lead to the appearance of gaps in the spectrum of 
the one-particle excitations. In all real systems 
with pairing (superconductors, atomic nuclei) the 
gap energy is much smaller than the Fermi limit­
ing energy. Owing to this one can sort the sets of 
diagrams into two types: a set of those that change 
appreciably over the width of the gap, and those 
for which the characteristic range of variation is 
the Fermi limiting energy (or, in the case of 

superconductors, the Debye temperature). Here 
one must introduce, in addition to r w, one other 
function of the angles between the momenta of the 
quasi -particles, r ~; the spherical harmonic of 
this function is connected with the width of the 
energy gap. It is natural to expect that the func­
tions r w and r ~ depending on the angles between 
the momenta of the quasi-particles will be well de­
scribed by two or three terms of the expansion in 
Legendre polynomials. The coefficients of the 
Legendre polynomials are constants introduced 
into the theory; in real problems their calculation 
is practically impossible because of the strong in­
teraction between the particles. 

For the application of the theory to the nucleus 
it is necessary to use the smallness of the range 
of the forces in comparison with the dimensions of 
the system. The functions r w and r ~ are given 
by sets of diagrams in which the integration over 
regions far from the Fermi surface is important. 
Therefore these quantities are insensitive to fluc­
tuations in the distribution of levels near the 
Fermi surface and are the same for all nuclei 
except the light ones. It may be supposed that r w 
and r ~ are constant to the same accuracy as the 
density of particles in nuclei is constant. This re­
mark applies to all quantities which are determined 
by integrals over regions far from the Fermi sur­
face, such as the effective mass, the renormaliza­
tion of the Green's function, and the depth of the 
effective potential well. 

As for quantities determined by the behavior of 
the quasi-particles near the Fermi surface, calcu­
lations for them reduce to the determination of the 
renormalized Green's functions. 

Thus the problem of finding the spectrum of the 
one-particle excitations reduces to the determina­
tion of the renormalized one-particle Green's 
function, and, as was shown in [2] , this is equiva-
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lent to the solution of the Schrodinger equation for 
one particle with the effective mass in a potential 
well. 

The two-particle spectrum and the reaction of 
the system to an external field are determined by 
the two-particle Green's function, and it is shown 
below that the finding of these quantities reduces 
to the solution of a simple equation analogous to 
the Schrodinger equation for two interacting par­
ticles in a potential well. 

II. THE ONE-PARTICLE GREEN'S FUNCTION 

1. The Green's Function in a System with 
Pairing. The Green's function is defined, as usual, 
by the relation 

G(l,2) -c-i<T'I\J(l)'ljl+(2)) 

and represents the set of all diagrams which begin 
and end with one line. 

To find the Green's function in the strong­
interaction case it is necessary to sort out those 
diagrams which vary rapidly near the Fermi sur­
face. For systems without pairing this is accom­
plished by the Dyson equation 

G =Go + Ga~G. (1) 

A proper-energy part I: ( p) [ p = ( p, E ) ] contains 
blocks connected by three or more lines, and the 
integration over the momenta of these lines makes 
I: a slowly varying function near E = J.J. and p = p 0, 

where Po is the momentum at the Fermi surface 
and 1.t is the chemical potential. 

By expanding I: in series around E = 1J. and 
p = Po. one can show that 

a 
G = e- ep-+ iae I e I+ Greg· (2) 

Here and in what follows E is measured from the 
- 1 ( - 1/ value/).,a = BG BE)E=O,p=Po•Ep=v(p-po), 

v is the velocity at the Fermi surface, given by 
v = - aaG- 1/Bpa = Pa.l m*, and m* is the effec­
tive mass: the quantity Greg is slowly varying 
near the Fermi surface. 

In the case of pairing in a system the following 
states combine: one particle with a background of 
N particles and one hole with a background of N 
+ 2 particles. In other words, a "condensate" of 
paired particles is formed, and therefore there is 
a nonvanishing amplitude for transition of a parti­
cle to a hole and a "condensate" pair, analogous 
to transitions in a Bose system. Let us represent 
the irreducible amplitude of such a transition 
graphically: 

A(f) -o-
~ = • (3) 

The block here represents the set of all diagrams 
which take a particle into a hole and do not contain 
parts joined by one line of any direction. Ana­
logously 

Al2) -o-­
LI = (4) 

The spin of the condensate pairs is zero, and 
therefore _.&en, <2 > must be antisymmetric matrices 
with respect to the spinor indices: 

(5) 

where 

A ( 0 1 ) 
g= -1 0 ' 

As will be shown below, .6 <t>, <2 > are slowly varying 
functions of p = ( p, E). 

The equation for the Green's function in a sys­
tem with pairing is of the form 

C.s := -=-+~+ ~' 

(6) 

Here - = G0, the Green's function of a free par­
ticle, 

Go=----~-----­
e- e~- ill sign e ' 

o_p2 P~. 
8 P- 2m- 2m' (7) 

- = G0, the Green's function of a free hole, which 
is obtained from the Green's function of a particle 
by replacing p by - p (and interchange of the 
spinor indices, when G0 is not diagonal in the 
spins), 

-1 
G~ = Go (- e, - P) = ------,0,---------

e + ep- ill sign e 

The quantity ~ = - C!- does not contain 
blocks connected by one line of any direction. 
Since integration over distant regions is important 
in ~. and in such regions the pairing does not 
change the Green's function much, ~ coincides 
(to accuracy ~ t:..2 I IJ.2 ) with the analogous quantity 
in the problem without pairing. Also we have ~-

=-C\- = ~( -E, -pl. 

is the complete set of all diagrams which take a 
hole into a particle. In analogy with this we intro­
duce 

F"' -

' 
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Unlike ~ , F includes the entering and emerging 
lines and contains parts connected by a single line. 
Equations of this type were first obtained by Bel­
yaev [3] in the study of a system of Bose particles 
with strong interaction, and have been applied in 
the theory of superconductivity by Gor'kov. [4] 

Let us write Eq. (6) in analytical form: 

a.= Go +Go~ G. +Go Li<1) ]::<2>, 

ft<2> = G~ ~- J::<z> + G~ Li<2>G •. 

From Eq. (6') we get 

a. = GI(I + aa-11<2> 11<1>), 

ft<2> = a-Li<2>Gs = a-11<2>G.g = p<2>g, 

ft(l> = aLi<ll a.(- p) = p(l> g, 

where G is defined by Eq. ( 1) and is given by 

a-= a(- p) = -t 
8+8~+~(-8, -p) 

From time-reversibility it follows that 

11 (2) = ( 11 (1))*. 

(61) 

(8) 

(9) 

Therefore the system of equations (8) is invariant 
under the transformations 

This allows us to regard ~ <tl as real and equal to 
~(2): 

11 (1) = 11 (2)' 

Using the formula (2) for G, we find from Eq. (8) 
that near the Fermi surface 

8 + 8p L'. 
Gs=a , F=-a , (10) 

~-~-~+ffl ~-~-~+ffl 

where a and Ep are the same as in Eq. (2). 
The expressions (10) were obtained in [2] 

' where the equations (8) were found by separating 
out the pole diagrams in ~ (here F differs by a 
factor i from the F introduced in [2] ). 

2. The Equation for D.. The equations ( 10) must 
be supplemented with the equation for ~ , which 
has been found by Gor'kov for a weak interaction 
between the particles [4] and can easily be ex­
tended to the case of an arbitrary interaction. [2] 

The graphical equations for .& <n and .& <21 are 

Jff} - -o-- n ,A(!} A Af/)-
Ll - - _Lj___ = uf = uC.1 c, , 

Aft) -o-A - -
u - - A • p111 A -•IZJ 

= Ur = Vfl £1 fls, 
_..__ _ _,___ 

(11) 

where, as before, the index "minus" means that p 
is replaced by - p. Integration over momenta d T 

= d Ed3p I ( 27T )4i and summation over the spin vari­
abies are understood here. 

It is obvious that the block v does not contain 
parts joined by two vertical lines, since F is the 
complete set of diagrams with two entering (or 
emerging) lines. The number of functions :f<tl 

that are constituents of .& <n is larger by unity 
than the number of functions F <2 l. Each pair :F < 1 l 

and f<2l in the block v is integrated over a wide 
range of energies and makes a contribution 
~ ~ 2/J.L 2 • Therefore to accuracy ~2/J.L 2 the quantity 
v is equal to the irreducible four-pole diagram of 
:; system without pairing. By the Pauli principle 
v satisfies the relations 

P1.2 = q/2 ± p, Pa.4= q/2 + P1
, q = (k, (!)). 

... The interchange p1 - p2 means p - - p; thus 
Va{3yo is the sum of a term even in p and anti­
symmetric in a and {3 and a term odd in p and 
symmetric in a and {3. Instead of v013yo it is 
convenient to introduce the four-pole quantity v 
defined by the relation 

' 
Va{ly5 =- Vavyp.gv{lgSp.> ( 12) 

where g is defined in Eq. ( 5). 
If there is no spin-orbit interaction between the 

particles in the system, v can be written in the 
form 

(13) 

fo~ k « Po the quantities v1 and v2 depend on p2, 

p 1 , and the angle between p and p 1 , and v 1 is an 
even and v2 an odd function of this angle. The 
first term in Eq. (13) describes the interaction of 
two particles with zero total spin, and the second, 
that of two particles with total spin unity. The v 
in Eq. (11) is that for q = 0. 

... From Eqs. ( 5) and ( 8) we have 3..013 = ~g013, 
F 013 = Fga{3, and therefore, using Eq. ( 12), we 
can rewrite Eq. (11) in the form 

( 111) 

The formulas ( 11 1 ) involve integrations far 
from the Fermi surface. We can renormalize v 
in such a way that the integration in Eq. ( 11) will 
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be over regions near to the Fermi surface, which 
will allow us to use the expressions ( 10) for Gs 
and F. To do this we introduce a quantity r~ de­
fined by the equation 

r~~ys (p, p') = v (1 + 8; aa- r~) = v"1M (p, p') 

+ ~ Vcxf3p.v (p, PI) a {pl) a- (pl) 8 (£) r;vyS (pl, p') (~~·i ' 
(14) 

where 8 ( ~ ) = 1 for I Ep I > ~, and 8 ( ~) = 0 for 
IEp I<~. 

The quantity ~ does not appear in the final ex­
pressions, and the only condition on it is 

/).<~<eo. 

r~' like v' is of the form 

r~f3y& = rillcxf3<'>y& + ricrcx~O'sy. ( 13 ') 

Thus Eq. (12) contains only a region of integration 
far from the Fermi surface. 

Let us find the dependence of r~ on ~. To do 
this we write Eq. (12) in symbolic form in two 
different ways: 

(,' F,.' r = v (1 + aa8;·r ). 
To eliminate the distant regions we multiply the 
first of these equations by the operator 
1 + GG8 ~' r~' on the right and find 

r" = r~· + r" aa (8'-- 8,,:) r'-'. 

Since ~, e' « f.J., the integration in this equation 
goes over regions close to the Fermi surface, 
where r~ depends only on the angles and G can 
be replaced by its pole part. 

Expanding r~ and r~' in series of spherical 
functions and using Eq. (13), we find without diffi­
culty that 

r?- rr = a2pf]ln (~'/~) r?', 

where p is the density of levels at the Fermi sur­
face: 

= 2 \ d"pfy (ep- f.t) - pom' 
P ~ (2n)3 - n" • 

(15) 

We must take rl to mean the harmonic component 

of rf for even l and that of r? for odd l. This 
functional equation has the unique solution 

(16) 

where cz is a constant introduced into the theory. 
Let us now obtain an equation for D. which con­

tains integrals only over regions close to the 
Fermi surface. Multiplying Eq. ( 11) by the opera-

tor 1 + r~GG-8~ on the left, we get, on using the 
relation D. <tl =D. <2> =D./ a, 

b. = r; a (a; - a-sr.) b.. (17) 

For Eb »D. 2 the function Gs coincides with G 
(except in a narrow region E2 - Eb ~ D- 2, and also 
the region E~ < ~ 2 , E2 > ~ 2 , which give contribu­
tions of relative magnitude ~D.If.l.), and therefore 
in Eq. (17) the integration is only over a region 
close to the Fermi surface: E2, Eb < ~ 2 • Here F 
can be replaced by the simple expression (10). 
For p = p0, E = 0 we get for D. =aD. <t) 

(18) 

r~ depends only on the angle between p and p'. 
Substitution of Eq. (10) in Eq. (18) gives 

(19) 

where r~ is a spherical harmonic of r~. Com­
paring Eqs. (19) and (16), we find D. = c0/2. 

The formula (19) connects 6 with the zeroth 
harmonic of the amplitude r~' which is also in­
volved in the two-particle spectrum of the system 
and in the polarization operator. Moreover, the 
introduction of r~ into the formula for D. is par­
ticularly important for the application to the nu­
cleus, since, as can be seen from Eq. (12), there­
gion near the Fermi surface is unimportant in r~, 
and r~ must be the same for all nuclei except the 
light ones, whereas for finite systems D., as deter­
mined from a formula of the type of Eq. ( 18), will 
change appreciably from element to element. 

III. REACTION OF THE SYSTEM TO AN 
EXTERNAL FIELD. GAUGE INVARIANCE 

1. The Vertex in an External Field. The ab­
sorption of the field in the system is determined 
by the vertex 

I 
I 

.T(p.q;=A 

p+IJI2 p-q/2 

(20) 

For frequencies of the external field which coin­
cide with frequencies of collective oscillations 
tJ ( p, q) has poles, and the residues at these poles 
give the excitation amplitudes of the oscillations. 

For the description of a system with pairing in 
an external field we must introduce, in addition to 
the normal vertex tJ for the production of a parti­
cle and a hole, the vertices for production of two 
particles and of two holes: 

' 
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I 
I 

'r/l}lp.q) =A 
p•q/2 -p•q/2 

(21) 

Our problem is to find the functional dependence of 
these vertices on the wave vector q = ( k, w ) of 
the external field, when w, kv are small in com­
parison with J.l. but can be comparable with /::;.. 

The only diagrams for which the dependence on 
q is important are those that contain parts joined 
by two lines, since they are expressed in terms of 
integrals which in the region w, kv, /::;. < E, Ep 
« f.l take the form J dEdEp/( E2 - E~) and are 
sensitive to the value of the lower limit. Diagrams 
which contain blocks joined by four lines are ex­
pressed by integrals of the type J d6E/ E4; they are 
not sensitive to the lower limit and in them we can 
set w = kv = /::;. = 0. When, as before, we separate 
out the slowly varying blocks, we get the graphical 
equation 

1 I I I 

A~ A· A·A·A·A 
(22) 

or in analytical form 

are exactly the same ( each means the vanishing 
of a particle at point 1 with spin projection a and 
the creation of a particle at point 2 with spin pro­
jection {3). It can be seen from this that the ver­
tices in the second and third terms of Eq. (22) 
differ by the interchanges 1 - 2, a - {3. When 
we go over to the momentum representation the 
corresponding interchanges are q - q, p - - p, 
0' +--+ {3. 

Let us now carry out a renormalization of the 
block U so that only an integration near the Fermi 
surface will remain in Eq. (22'). We note that the 
only distant integrations are those in the second 
term of the right member of Eq. (22') (far from 
the Fermi surface Gs F falls off like 1/ E 3, and 
therefore the two-dimensional integral over dEdEp 
converges ) . 

Let us introduce the scattering amplitude of the 
problem without pairing: 

r = u + uaar; (23) 

Up to terms of order /::;. 2 I f.l2 this U is equal to the 
quantity introduced in Eq. (22'). For the renormal­
ization of U we need the quantity introduced by 
Landau, [t] rw = r I kv«w, W«f.l• which satisfies 
the equation 

r"' = U + U (GG)"' r"' = U + r"' (GG)"' U. (24) 

GT = G/0 + UGof!Gs + uftg-- F + UGs't(l}j:(2) + Uf(l}T(2)Gs. 
QJ w ~ Multiplying Eq. (23) by the operator 1 + r"'( GG )w 

(22') on the left, we get 

The form of ffo depends on the type of field applied: ff = tr .L r"' l(GsGs _ (GG)"') :Jf + p(1) g-- p<2) + Gs TO) p<21 

for a scalar field flo = 1, for a vector field :Jf 0 = Pa, 
and for a field which acts on the spin of a particle ·~ f'(ll T<21 GsL (25) 
ci'lo = era. 

To explain the symbolic way Eq. (22') is 
written, we write the second term in the right 
member out in full: 

The irreducible four-pole quantity U does not con­
tain parts joined by two lines, and therefore is 
slowly varying, so that we can set q = 0. 

As can be seen from the diagram, :Jf- has the 
sign of p changed and the spinor indices inter­
changed: 

F~~ (p, q) = ffna. (- p, q). 

In fact, in the coordinate representation the dia­
grams 

I I 
I I 

A A (21') 

lot: ZjJ ZjJ Ia: 

where the symbol i!fw means 

(26) 

In Eq. (25) the only important region is that near 
the Fermi surface, where rw can be regarded as 
depending only on the angle between the momenta 
p and p'. 

Let us write the graphical equations for T <t) 
and T<2): · 

1 I I I 

; ~· .. ~·· A. A 
t'(l) = = . + /~ + ~ + ~ 

(27) 

In analytical form we have 
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The integrals over d~ of the quantities 
Gs(P +q/2)Gg(p- q/2) 
= Gs ( p + q/2) Gs ( q/2 - p) and 
Gs ( p + q/2) Gs ( p - q/2) are equal, and the 
integrals of GsF and FGs differ only in sign 
( cf. Eq. (33) below], and therefore we get from 
Eq. (28) 

(28) 

(29) 

From Eqs. (28) and (29) and the formula (12) for v 
we get 

Here v is the same irreducible four-pole quantity 
as in the equation (14) for r~; the operator P is 
defined by the relation 

Pti = - P,f!-[! = +- ti (- p), (31) 

where the minus sign corresponds to vertices 
- u and the plus sign to vertices which do not 
change the spinor indices. 

Repeating the operation used in the replacement 
of U by rw, we find from Eqs. (12), (25), and (30) 

ff = r'- {[OsG~- oo-o~ + F FJ If- lGf - FG~ PJ ti}. 
(32) 

In the equations (32) the integration is only near 
the Fermi surface, and the function r~, and also 
rw, can be regarded as depending only on the angle 
between p and p'. Therefore in Eq. (32) we can 
perform the integrations over dw and d Ep, leaving 
only the integration over the angle. The integrals 
used in this have been calculated by the Feynman 
method in the appendix to a paper by Vaks and 
others. [5] We have: 

ff = ti"' + r"' (Xff + .Jtit), 

Here 

c (' de deP w , 
X= p J ~ lGsGs- (GO) - FFPI 

- pa2 l_k_v- (1- g (x)) - g (x) 1 + P J - l w -kv 2 ' 

a = 2 ~· de dep. G F = _ 2 \ de dep FG 
Jf~ p J 2:rti s p j 2:rti s 

2 w + kv 
= pa ------u- g (x), 

(32') 

(' 2e deP _ _ _ 2 2£ 
.ff=P~~[GsGs-GGB~+FF )-a plnT 

0 = - C de der !G F- Fa- PI 
p J 2:rti s s 

_ _ 2 ( w + kv + w - kv PA ) • 
- pa M M ' 

g (x) = arcsh xlxJ(l + x2 , x2 = l(kv) 2 - w2 l/41l2 (33)* 

with a determined from Eq. (2) and p given by 
Eq. (15). 

The dependence of the amplitudes rw and r~ 
on the spin variables is given (if the spin-orbit 
interaction is small) by a spin-exchange term 

a2pf"' = f"'(nn') + g"' (nn') (aa'), (34) 

a2pf~ = f~ (nn') + l (nn') (aa'). 

Replacing the inhomogeneous term in Eq. (22') 
by ua, we obtain equations analogous to Eq. (32) 
for the spinor vertex tJ sa (which corresponds to 
an interaction with the external field of the form 
uaHa ) . If the total spin of the system is con­
served, it can be shown [sJ that 

ti~rx = crrx + Spa·cr~f"' (GG)"' = arx ao-1/oe. 

In the equations (32) for the spherical harmonic 
the term containing ln ( 2~ I 6. ) cancels with the left 
member by the relation (19). It follows from this 
same relation that the quantity a2pr~ is logarith­
mically small. It is natural to expect that the fur­
ther harmonics of r~ will be smaller than the 
zeroth harmonic because of the effect of the centri­
fugal potential. It is easy to see that the criterion 
for negligibility of further harmonics of If is that 
the quantity a 2prl be small for all l ,.; 0. The 

zeroth harmonic of ff cannot be neglected, on the 
other hand, even when a2pr~ « 1, because of the 

0 

cancellation we have mentioned. Therefore the 
second of the equations (32) becomes, to logarith­
mic accuracy, 

it;=- vff;fN, (35) 

where the bar means averaging over the angle. 
2. The Change of the Green's Function in an 

External Field. The change of the Green's function 
in an external field can be found from the graphical 
equation 

' I 

c: =./\ +A+ .A .. + .. /\ 
or the same equation in analytical form 

*arcsh = sinh_, 

(36) 

' 



1152 A. I. LARKIN and A. B. MIGDAL 

A may be a field of any type. Proceeding just as 
in the derivation of Eq. (30), we get 

a: = {(a.G.- FFP) $' + (a.F- FG.) 5'}A. (38) 

The expression (38) will be used below in the cal­
culation of the polarization operator. 

3. Gauge Invariance. To obtain the conditions 
imposed by the requirement of gauge invariance, 
let us find the change of G under the action of a 
fictitious vector field Ai = 8f/8xi 
= ( 8f/8xa, IH/8t). The quantized operators 1/J (x) 
involved in the definition of G then acquire factors 
eif(x), and when we go to the momentum represen­
tation this gives ( cf. the analogous derivation of 
Ward's identity in quantum electrodynamics): 

a' = [G (p- q/2) -a (p + q/2)1 f. (39) 

Comparing this with Eq. (38), with $'A = gr iAi 
= $' iqif, we get the condition of gauge invariance: 

a. (p- q/2) -a. (p + q/2) = (a.a. - FFP) 5',q, 

+ (a.F - Fa.) it,q,. (40) 

For w, kv » D.. the condition (40) goes over into 
the condition of gauge invariance for a system 
without pairing: 

a (p- q/2)- a (p + q/2) = a (p + q/2) a (p- q/2) $'1q1 

or in another form 

poles of the vertex 5'. The residues at the poles 
give the amplitudes for excitation of these oscilla­
tions by an external field. Thus to find the spec­
trum and the excitation amplitudes it is necessary 
to solve the system of equations (32). 

We shall confine ourselves to the determination 
of the acoustical branch of the excitations for w, 
kv « D... The investigation of more complicated 
cases can be carried out just as in the paper by 
Vaks and others,[sJ where the calculations were 
made for a weak interaction between the particles. 

Let us find the solution of the equations (32) for 
w, kv «D... Assuming x2 « 1, g = 1 in Eq. (32), we 
get 

$' = $'"' _ a2pr"' [ 1 ~ p' 5' _ w ~~ kv it J , 

it=a2pra[(ln ~ -x2)it- 4~ [(w+kv)+(w-kv)PJ$'. 

(44) 

Let us first consider the case of a scalar ex­
ternal field. We shall look for the solution for $' 
in the form 

$' =A + B(kv). 

From the second of the equations ( 44) we get for 
the spherical harmonic, using Eq. ( 19), 

(w2 -k2v2/3) it= L\ {[w + (kv) + (w- kv) Pl 9'}0 

= 2L\ (wA + k2v2B/3). 

The remaining harmonics of If are smaller by 

(45Y 

a-1 (p + q/2) - a-1 (p - q/2) = 5',q,. 

From Eq. (41) we find for f.l » w, kv »D.. 

(41) factors ( w /D.. )2, ( kv /D.. )2• Therefore the expres­
sion (45) can be substituted for it in the first of 
the equations (44). After simple but lengthy calcu-

(42) lations we get 

These conditions were first obtained by Pitaev­
skil [TJ ( cf. also [sJ ). 

Substituting Eq. (10) in Eq. (40) and equating 
the functions of E: and E: p in the left and right 
members, we can easily get the gauge condition in 
a system with pairing: 

(43) 

The conditions (43) are very useful for checking 
the correctness of expressions one has derived. 
By some not very cumbersome algebra one can 
verify that the equations (32) satisfy the conditions 
(43). 

IV. THE SPECTRUM OF TWO-PARTICLE 
(COLLECTIVE) EXCITATIONS 

As has already been mentioned, the spectrum 
of two-particle excitations is determined by the 

aa-1 w2- c~k2 + ft (!) (kv)/3 

$' = -------aE w2 - c2k 2 
(46) 

where 

c~ = v2 (l + f/3)/3, c2 = v2 (l + fo) (l + f/3)/3, 
(47) 

and f0 and f1 are determined by the relation 

1 ~ (pp') 2 Spa2pr"' = L ... dtPt fJ2 · (48) 

The pole of the expression (46) determines the 
spectrum of the long-wave acoustical oscillations. 

As Landau has shown, 1 + f1/3 = m*/m, and 
the expression (47) for c2 coincides with the usual 
thermodynamic formula for the speed of sound: 

c2 = m-1n dfJ-/dn. 

The expression for the vector vertex can be ob­
tained in a similar way. Assuming for $' 0! the 
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expression 

ffa. = A1pa. + A2ka. + (B1ka -i-- B2 Pa) kv, 

we can find 

G/ - aa-1 { m'v1ka. [tow+ 1/3 kv (1 + fo)] t (49) 
:;; a.- ----ae- Pa. + ---;l (w2- c2k2) f . 

Here we have used a relation derived by Pitaev­
skil [T]: 

(50) 

V. THE POLARIZATION OPERATOR 

The flux of particles which arises in the system 
under the action of a weak external field Ai is 
given by the relation < ji > = .'f'ikAk, where 
< h > is the mean value of the current density 
h = (on, jQI ); on is the change of density of the 
particles in the field, and fJ' ik is the polarization 
operator. 

To find ff'ik· we express the current density in 
terms of the Green's function. It follows from the 
definition of the Green's function that 

\ d4p ~ 
(6n) ~~ j (2n)• i (G- G), 

(ja) = ~ <2~;. i (Pa.- +A a.) G = ~ <2~; i Pa. G- + nAa., 
(51) 

where G is the Green's function in the external 
field. We shall confine ourselves to the approxi­
mation linear in the field; we then get 

j; = (6n, ia. + c-1Aa.n) = (p,G') = fJ';kAk, 

where G' is determined from Eq. (38). The pa­
rentheses denote the integral over 
dT := d'\>/( 2n) 4i. 

Using Eqs. (32) and (38), we find 

ff';k = Pt(2:Jfk+ Jtt:Jfk) I- (pt(GG)"':Jfk). (52) 

As before the bar indicates averaging over the an­
gular and spin variables. In the last term this 
formula contains an integration over regions far 
from the Fermi surface. 

We now transform this expression to a form 
where the only integration is over the Fermi sur­
face. Using the first of the equations (32), we get 

(pt(GG)"' :JJ k) = (pt(GG)"' $'~) + Pt (GG)"' f"' [2/JJk + Jttf/k ]. 

By using the formulas ( 42) and (50) for :Jfw and 
ff~ we can write the first term in the form 
( PiPk BG/ BE), so that it gives zero when integrated 
over E. In the second term we use Eq. (26) to 
make the substitution Pi ( GG )w rw = Pi8G1 /o E 

- Pi. The result is 

ff';k = (p,ao-1 1 a e) (2/JJ k + .;uifk). (53) 

Let us verify the gauge invariance of .Uf>ik· Mul­
tiplying Eq. (53) by qk and using the relation (43), 
we get 

from which and Eq. (33) we have 

or .Uf"ikqk = 0. 
For the case w, kv « !\, by using Eqs. (46) and 

(49) one easily gets 
nk2 nwka. 

/!fo oo = <tl2 _ k2ci: ' .r]J ao = ~Gfooa == 0>2 _ k2ct. ' 

nc2ka.k~ , 
.'!Pa.fl = w2 _ k2c2 T n/3"-0• (54) 

where c is the speed of sound given by Eq. (47). 
The expressions (54) show that the London dia­

magnetic anomaly can be expressed in terms of 
the density for an arbitrary interaction between 
the particles. 

In addition to the polarization operator ff'ik we 
can introduce the analogous quantity fJ' ~p, which 
enables us to find the mean spin density m a mag­
netic field: 

If the total spin of the system is conserved, it can 
be shown [s] that 

From Eqs. (38) and (55) we get an expression 
analogous to Eq. (53): 

(55) 

fJ'~ 13 = o"-aG-1/De (:t:JJ, 13 + Jttff,fJ). (56) 

In the limiting case of long waves and low frequen­
cies we get from Eq. (56), by using Eq. (33), 

ffs(l = 0, 

VI. SYSTEMS OF FINITE DIMENSIONS 
(THE NUCLEUS) 

Since the dimensions of the nucleus are large in 
comparison with the distance between particles 
(R/r0 ~ A1f 3 ), many results obtained for the in­
finite system are also valid for nuclei. The only 
exceptions are phenomena which are due to the 
pole parts of the one-particle and two-particle 
Green's functions. The nonpole parts of the 
Green's functions are constant for all nuclei to the 
same accuracy that the density of nuclei is con­
stant. 

For the same reason the entire program of re­
duction of distant integrations to integrations near 

\ 
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the Fermi surface, i.e., the program of renormali­
zations, can be carried out also for finite systems. 
Therefore in going over from the formulas for the 
infinite system to the analogous expressions for 
the finite system we can use the equations in al­
ready renormalized form. For example, to obtain 
the equation for the vertex in the nucleus, which 
determines the probabilities of transitions, we are 
to use not Eq. (22'), but the renormalized equation 
(3 2). In this equation the integration is near the 
Fermi surface. 

For finite systems the widths of the regions 
near the Fermi surface that are important in Eq. 
(32) are of the order o E ~ v /R, and therefore, as 
in the infinite system, the quantities r"' and r~ 
can be regarded as depending only on the angle be­
tween the momentum operators. 

The quantity 9 w is determined from the same 
considerations as in the infinite system. For 
example, for scalar and vector vertices tr"' is 
determined from gauge invariance. In the case of 
finite systems it is convenient to study the equation 
for tJ not in the momentum representation, but in 
the representation in which the Green's function is 
diagonal. As was shown in [2], this representation 
is the representation of the eigenfunctions of the 
one-particle Hamiltonian operator 

Hfj!). = (p 212Mert + u.lf (r)) fj!). = B).fj!)., 

where the effective mass and the potential Ueff are 
expressed in terms of the proper-energy part 
~ ( r, p) in the mixed representation. Thus the 
functions cpA are the eigenfunctions of a one­
particle problem with a potential which is chosen 
by comparison with experiment. 

The forms in this representation for the pole 
parts of the functions Gs and F, which were intro­
duced earlier, are [2] 

One can also obtain an expression for D.A which 
expresses this quantity in terms of the one constant 
r~. 

Transition Probabilities 

The vertex tJ in the representation of the cpA 
is closely connected with the amplitude for the 
transition of the nucleus under the action of the 
field, i.e., with the intensity of electromagnetic 
transitions. For simplicity let us consider a sys-

tern without pairing. In the coordinate representa­
tion the equation (32) (with F = 0) takes the form 

tf(r, r', £) = ti"'(r, r', £) + ~f"'(r,r', rl>r2)G(r1.ra,e+;) 

x G (r2 ,r4,e-~)5(r3,r4 ,£)dr1 dr2 dr3 dr4 ::r (58) 

Here there remains a Fourier transformation with 
respect to the fourth variables. As in Eq. (32), 
we are to take G to be the pole part of the Green's 
function. The external field of frequency w is ap­
plied at the point ~. 

In the momentum representation rw depended 
only on the angles between the momenta 

r"' = ~9"(pp'/p~) r1. 
I 

In the coordinate representation the form of rw is 

r"'(r, r', '1• r2) = r~o(r-r') 6(r1- r2) 6 (r- rl) 

r "' " ( ') " ( ) " (' + r'- r,- r2 ) - 1 vu r- r vu r1 - r2 u 2 + ... 
Similarly, the quantity tr"' is written in the co­

ordinate representation as 

5"' (r, r', £) = 6 ( r- £) ti"' 6 (r' - £). 

For a scalar field f)w = 1/a, and for a vector field 
5"' = ( -i/a)V'. 

In Eq. (58) it is convenient to go over to the 
representation in which the Green's functions are 
diagonal 

tfn, (£)= ffrA'(£) + ~~ rrn,I.,G)..O).,ff A1 "h 2 (£) ::i' (59) 
/. 1A2 

rrl.'l.,"h, = f~ ~ <j)). (r) f1!X' (r) fj!). 1 (r) f{!x, (r) dr 

+f1 ~in'(r)j,_,,,(r)dr. (60) 

Let us verify that in Eq. (59) the summation and 
integration are over regions near the Fermi sur­
face. First we note that in the sum of Eq. (59) the 
energies E A 1 and E~ cannot be very different, 
since when the difference of the numbers of nodes 
of the functions cpA 1 and cpA 2 is large the integrals 
(60) are small. Therefore GAtG~ has a sharp 
maximum for E ~ EA 1 ~ EA 2. Since the functions 
r"-, trw, and consequently also tr, depend weakly 
on E, rw and .tf can be taken at the point E = EA. 
There remains the integral 

(61) 

where nA are occupation numbers: 



THEORY OF SUPERFLUID FERMI LIQUID 1155 

Thus E t.. 1 and E t.. 2 lie on opposite sides of the 
Fermi surface, and consequently are close to EO· 

The amplitude for the transition of the nucleus 
from state A. to state A.' under the action of the 
field A is connected with the vertex part by the 
relation 

M u· = a~ fT ).)i (s) A(£) d£. 

The field A can be either the electromagnetic 
field or the i)-decay field. 

(62) 

Let us multiply Eq. (59) by A ( ~) and integrate 
over ~. Using Eq. (61), we get the equation for 
the transition amplitude 

'-' n, - n, 
M n· = M~x + a2 ..::.J f"' (A, A', A1 , A2) f _:_f. + w M ,,).,, 

).,!-, .,, '),, ( 63) 

where M0 is the matrix element calculated with 
A.A.' 

the one-particle model. The kernel of the integral 
equation (63) can be simplified if we use the quasi­
classical approximation for the functions CfJA.. 

Thus we find the transition amplitude if we know 
the one-particle levels EA., the wave functions CfJA., 
and the renormalized interaction constants rr. 
It can be supposed that the r[ fall off rapidly with 
increasing l, so that to good accuracy one can use 
only the first one or two of the harmonics. It is 
important that these constants are not only the 
same for the various transitions of one nucleus, 
but are also the same for all nuclei to the same 
accuracy as the particle density is the same. 

Equation (59) is similar to the Schrodinger 
equation for two interacting particles which are in 
an external field. Independently of how many par­
ticles there are in the last shell, the residual in­
teractions of three or more particles, as well as 
the interaction with the core, lead only to a renor­
malization of the two-particle interaction and are 
included in rW. A detailed study of the equations 
of the type of Eq. ( 63) for various transitions in 
actual nuclei, i.e., with the pair correlation and 
the interaction between neutrons and protons in­
cluded, will be made in a subsequent paper. 
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