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Radiation of sound due to the motion of solid bodies in statistically inhomogeneous gaseous 
media is considered. The dimension of the body is assumed small in comparison with the 
mean free path. It is shown that, in contrast with homogeneous media, sound can be radiated 
in inhomogeneous media at subsonic velocities of the body. 

As is well known, there exists a definite analogy 
between many phenomena of electrodynamics 
and acoustics. For example reference can be made 
to the Cerenkov radiation of an electric charge [1- 3] 

and sound radiation in the supersonic motion of bod
ies in gaseous media. [4-s] Furthermore, in the 
crossing by a small body of a boundary separating 
two media, radiation of sound waves takes place,C6] 
in considerable analogy to the transition radiation 
of electromagnetic waves (see, for example, [7,BJ). 
Recently, a number of works have appeared, [S-H] 

in which the radiation of electromagnetic waves is 
considered for the uniform motion of charged par
ticles in a statistically inhomogeneous medium. It 
is natural to expect that a similar phenomenon oc
curs also in acoustics. 

In the present work, the radiation of sound waves 
arising in the motion of small objects in gaseous 
media with random inhomogeneities is considered. 
An expression is found, by the m3thod of the radia
tion reaction of sound, for the intensity of the sound 
waves radiated under the condition ,\ » l, where ,\ 
is the wavelength and l is the dimension of the in
homogeneities of the medium. 

1. For the motion of small bodies in gaseous 
media, the force of frontal resistance acting on the 
moving body for the case of subsonic motion is de
termined by the relation (see [12]) 

(1) 

and for motions with velocity exceeding the velocity 
of sound, 1> 

!lin what follows, we shall use only Eq. (1) in the calcula· 
tion of the energy of the sound waves radiated per unit time. 
This case is of most interest in that the presence of inhomo
geneities in it leads to the phenomenon of radiation. In a ho
mogeneous medium, there is no radiation of sound at subsonic 
velocities, as was shown in [7]. 

(2) 

where S is the frontal cross sectional area, V0 

is the velocity of the particle, Po is the density 
of the medium, cs the velocity of sound under 
adiabatic change of the parameters of the medium, 
and r is the coefficient of resistance, which de
pends on the character of the collisions of the mol
ecules of the medium with the surface of the moving 
body. [12•13 ] Equations (1) and (2) were obtained 
under the condition that the dimension of the moving 
body L is much smaller than the mean free path 
"-f• where a state of free molecular flow past the 
bodies exists. 

In turn, the moving body will act on the gas sur
rounding it with a force F =- F*. Inasmuch as we 
are interested in sound radiation, i.e., the genera
tion of hydrodynamic pe;turbations with character
istic dimensions much larger than the length of the 
mean free path and, correspondingly, large in com
parison with the dimensions of the moving object, 
we can further neglect the dimensions of the body. 2> 
This allows us to represent the force acting on a 
unit volume of the medium in the form 

f = Fb (r- V0t), (3) 

just as was done in [7]; here F = r Sp 0cs V 0, and 
o ( r - V0t) is the spatial Dirac delta function with 
dimensionality L - 3• 

The energy of sound waves radiated per unit 
time can be determined by means of the reaction 
of the sound from the following formula: 

aw;at = Re FV, (4) 

2lof course, it is impossible to neglect the dimensions of 
the body in Eqs. (1) and (2) for the force of frontal resistance, 
since the force is proportional to the frontal cross sectional 
area S and tends to zero with decrease in S. 
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where V is the velocity of the particles of the me
dium at the point where the moving small object is 
located, and is computed from the hydrodynamic 
equations. The bar over quantities indicates sta
tistical averaging. 

2. To find V, we shall start out from the equa
tions of hydrodynamics for an inhomogeneous non
viscous medium: 

pdV!dt = -grad p + f, 
op/ot + div (pV) = o, 

dp!dt = c~ dp/dt. 

(5) 

(6) 

(7) 

Here p, V, and p are respectively the mass den
sity, velocity, and pressure in the medium, Cs is 
the sound velocity, and f is the external force act
ing on the gas from the moving body, and is given 
by Eq. (3). 

The presence of inhomogeneities can be taken 
into account in the following way. We shall assume 
that the gas is at constant pressure, while the fluc
tuations in the sound velocity and density are de
termined by temperature fluctuations. In this case, 
it is seen (see [14]) that 

l'lcs!cso = - 11, 

l'lpoiPoo = 211, Po - Poo = l'lPo· 

(8) 

(9) 

After linearization of Eqs. (5), (6), and (7), we get 

Poo (1 + 211) oV!ot =-grad p + f, (5') 

op/ot + Poo (1 + 211) div V + 2p00 (V grad 11) = 0, (6') 

op!ot = c; [()plot + 2p00 (V grad 11)1. (7') 

We differentiate Eq. (5') with respect to time 3> 

Poo (1 + 211) o2VIot2 =-grad (op/ot) + of!ot. (10) 

Applying the operator 'i1 to Eq. (7') and also using 
the relations (6') and (8) we can rewrite Eq. (10) in 
the form 

-- ~ (1 + 11) _2_1_' 
- i:Jt cso Poo 

(11) 

Here we have neglected all quantities whose order 

3lWe assume that the distribution of the quantity ll depends 
only on the coordinates and not on the time. This assumption 
is valid if it is taken into account that the small thermal con
ductivity of the gas leads only to a very slow change in the 
fluctuations with time in comparison both with the period T of 
the sound wave and with the other characteristic times of the 
problem, for example l/V0 • 

exceeds ,.}, assuming the quantity !-' to be small 
(/-' « 1). 

The velocity V we write in the form 

V = V +V1
, (12) 

where V is the velocity averaged over the en
semble of inhomogeneities, and V' is its fluctuat
ing part, proportional to 1-'· Here Eq. (4) is written 
in the following way: 

(4') 

After averaging Eq. (11) and neglecting terms of 
the order /-'3, we have 

grad dl·v-V _ (1 + 3f.t2) i:J2V 2 (J2V' 1 i:Jf0 
2 ~--2-11 a/2 =- -2--dt. 
~ ~ ~Poo 

(13) 

Equation (13) is obtained under the assumption that 
/-'2 does not depend on the coordinates. Subtracting 
Eq. (13) from (ll), and neglecting the terms 

we obtain the following equation for the determina
tion of V': 

grad div VI- + a:v,2' = - at" _!1_ + ~ a2v (14) 
cso v i:Jt c;o Poo c;o i:Jt2 • 

3. To solve Eq. (14) we extend the left and right 
side in Fourier integrals in w and k. Here it is 
convenient to represent the right side by means of 
the 6 -function 6 ( r - r' ) in the form of an integral 
over the volume. As a result, we get the relation 

' 0 ' 2k~ (' -
- k (kV "'· k) -1· k0V "'• k = - (Zn)3 J e- ikr'll (r 1

) V"' (r 1
) d3r1 

+ iwF 0Zo ~ { 'k 1 f- · W 1} (0 0 1) d 1 4 2 exp - t zZ - IV Z /l. , , Z Z. 
(2n) V 0 c50p00 o 

(15) 
Here z 0 is a unit vector along the z axis which is 
chosen in the direction of the moving body, k0 

= w/cso· 
The scalar product ( k • V~, k) can be found by 

multiplying both sides of Eq. (15) scalarly by k. 
As a result we get the following expression for 

v~ k: 
' 

V' - 2 \' -ikr' ( 1 ) v- ( 1 ) d3 ' 
"'· k -- - (~n J"i J e 11 r w r r 

+ iwFozo ~ { · (k w ) 1} (0 0 1 ) d 1 
. 4 ? o ex p - 1 z - v z ft , , z z 

(2n) Voc;oPooko 0 

- e-ikr'k (k V w (r 1 )) d3r 1 ') ~ 
(2n)3 (kg- k2) 

+ iwf0k (kzo) (' { · (k W ) 1l 
(2n)4V c2 k2(k2-k2)p JeXp -l I z- v; z J 

osoo 0 oo 

X ft (0, 0, Z 1
) dz'. (16) 
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We can calculate V~(r) by taking the inverse 
Fourier transform of (16): 

v~ (r) = ~ v~. keikr dk. (17) 

The result of the calculation yields 

A further simplification of Eq. (20) lies in the 
assumption of the isotropic character of the field 
of random fluctuations of the quantity JA.. In this 
case, the correlation coefficient depends only on 
the modulus of the vector p: 

w (p) = w (I r !). (21) 
V~ (r) = - 2f.tV .,(r) + iw;_oZo 2 o (x) o (y) eiooz;v,f.t (0, 0, z) 

2nVo soPooko Then Eq. (20) is written in the following way: 
r - ik,Jr-r'l 

- 2 grad divr j!l (r') V"' (r') 1 r _ r'l d3r' 

+ iffi:o 2 graddiv.~Z0ft(O,O,z') 
2nV 0c50p00k0 • 

exp {ik0 V x2 + y 2 + (z- z')2+iffiZ'/V0 } d , X z. 
V x2 + y2 + (z- z')2 

(18) 

Substituting Eq. (18) in Eq. (13), we get 

= iffifozo 0 (x) 0 (y) eiooz!V, (1 _ 2~w (x, y, O)) 
2nV0c~0p00 

exp {i (ko V x2+Y2 + (z-z')2+ffiz'/Vo)} d-' X ~, 

V x2 + y2 + (z - z')2 
(19) 

where w( r- r') is the correlation coefficient of 
fluctuations of the quantity ~-t(r). We assume that 
the field of random fluctuations of the quantity 
JA.( r) is homogeneous. 

The integra-differential equation (19) is mate
rially simplified and reduces to a differential equa
tion if one assumes that the distance R ~ V 0 I w 
over which the quantity Yw(r) changes signifi
cantly is much greater than the correlation ra
dius of the fluctuations of JA.. In this case, Eq. (19) 
takes the form 

- 2 - - 2- o- \ a•w (P) d3p 
grad div Yoo + ko (1 - f.t2) Yoo - 4kof.t2 ei v ooi (r) .\ ap;aPj TPT 

+ 2k~it2 e) Voo;(r) ~ ~2Pw ~P)· I PI d3p 
• t I 

. 2 ks2 o-v ( ) \ a•w (P) I 12 da + t 3 of.t ei ooi r .\ apiapi P P 

iffiF ozo 0 (x) 0 (y) eiwz/V, (I _ 2it2) 
2nV0 c~0p00 

iffiF~fi} eiooz;v, f o (x- x 1) o (y- y1) e-ioo~JV.w(r1) 
nV ocsoPoo .\ 

(20) 

where ej is the unit vector in the direction of the 
j-th axis and r1 = {xi, Y1• n. 

d a exp {iko 1 r1 i} da 
X gra r, a[ I , 1 I r 1· (22) 

Here the following notation has been introduced: 

e eff = 1 - 50 + 2it2k~l2 + if ~k~?, (23) 

l2 = r a•w <It ll I PI dap, ? = f a•w o: ll I P I• dap. (24) 
.\ api .l ap; 

Expanding the left and right sides of Eq. (22) in 
a Fourier inte~ral over k, we get the following ex
pression for V wk: 

a ik,lr,J 
X grad a[ - 1-r1-1- d3r1 

+ iffiF 0k (kz0) 0 ( ~ _ kz) (1 _ 2it2) 
(2n)aVoc~oPook~eeff (k~Beff - k2) 

(25) 

For calculation of the energy of the sound waves 
emitted by the moving body, it is necessary only to 
know the z-component of the velocity. It can be 
found from Eq. (25) by Fourier inversion: 

V ooz (r) = ~ V wz (k) eikr dk. (26) 

Substituting (18), (25), and (26) in Eq. (4'), and neg-
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lecting all terms proportional to ( J.42) 2, we find the 
following for the spectral energy density: 

xdx 

X max 

x Re ~ xdx 

0 

xdx 

Here K 0(x) is the MacDonald function of zero or
der. The following relations exist: 

2:rt 
Xmax=l' 

As a result of integration of (27), we get the fol
lowing expression for the spectral density of the 
radiation of sound waves: 

W =w ,,po~pf.l ~+In x-2 !'l__(J-a~2 ) 4f2 <'2 r< • J3 { I { l- 2 J 2 

w 9n2V~ w'V o 21' max V~ 

+ (i [12kgl3 rr·l + tan --t [ 2~2 ~~:~.] 2f11 ~g l" } . (28) 

Here y is a coefficient whose magnitude is of the 
order of unity, a= 1-5jli + 2jli-k6ZZ. Upon satisfac
tion of the condition 

(1 - a~2) ~ T [12~2k~l3 
Equation (28) simplifies and takes the form 

(29) 

W = w•r•s•Poo~fi"i" { r -L 2 l I ~ V~ I + ~} 
w 2 zv-2 · 1 D V X 1 C<Z • 9:rt2V 0 W 0 12 o max - P 

(30) 
The principal feature of the radiation of sound 

waves by an object moving in a medium with in
homogeneities is the sharp growth of radiation as 
one approaches the Cerenkov threshold of radiation 
of sound waves according to the law 1/ ( 1 - {32 ) • Of 
course, it is impossible to use the formula (30) at 
the threshold itself ( {3 ~ 1/ a). In this case, the 
inequality (29) is transformed into its inverse: 

(31) 

Taking this fact into account, and leaving in (2.8) 
only a single term which can be shown to be larger 
than all the other terms entering into (28) we get 
for the spectral intensity of the sound radiation: 

W w = wl '2S 2PooCs0/4:rt. (32) 

As is seen from (32), the energy radiated by the 
sound waves in this case does not depend on the 
fluctuations in the index of refractioiY of the me
dium. Estimates also show that the method of 
small perturbations is not violated here; this 
method was used in the calculation of the mean 
intensity of the scattered radiation of the sound 
waves. Thus one can confirm the fact that the ex
pression (32) is actually valid at the threshold 
( {3 ~ 1/ a) for these conditions where one can neg
lect the viscosity of the medium, inasmuch as the 
sound absorption in the gas was not into account 
in the derivation of all the formulas. The condition 
for neglect of absorption in the expressions (28), 
(30), and (32) is clearly described in the following 
manner: 

(33) 

where v is the damping decrement of the sound 
waves in time due to the presence of viscosity. 

One can similarly obtain formulas for the ra
diation of electromagnetic waves by charged par
ticles moving in a medium with inhomogeneities. 
The energy losses of the charge per unit path length 
are determined by the equation 

W = Re eEVo/ I Vo I, 
where V0 is the speed of the moving charged par
ticle and E is the electric field created by the 
charge at the point where this charge was located 
and computed from the Maxwell equation under 
averaging over the ensemble of inhomogeneities of 
the dielectric constant. 

However, we shall make use of already well
known formulas (see, for example, the work of 
Silin and Rukhadze[tsJ), setting in them 

r;,l (w, k) = Etr (w, k) = Eeff (w). (34) 

Then the formula for the loss of energy by the 
charged particle is described in the form 

2we2 ~ (1 - eeff ~2) xdx 
Ww=--v2 Im . 

:rt o eeff [x' + w•Vo 2 (1- eeff ~2)] 
(35) 

The expression for Eeff( w) under the condition 
k0l « 1 has the form (see, for example, the work 
of Bass et al [is]) 

r (A )2 (l 2 -kaza •;,) Eeff' = E0 - 3 u.E - t 0 Eo . (36) 

Substituting (36) in (35) and computing the integral, 
we get 

(37) 

Thus we obtain an expression for the energy 
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loss by the method of the radiation reaction of a 
charge in a randomly inhomogeneous medium; this 
expression is identical with the formula obtained 
by KapitzaC9] by calculation of the flux of the scat
tered radiation. 

It is interesting to note that one can also con
sider the radiation of a charge by a similar method, 
for example in an inhomogeneous magnetoactive 
plasma and in an inhomogeneous medium with spa
tial dispersion. For this, it is necessary to know 
only the corresponding tensor of the effective di
electric constant for the media. 

The authors express their gratitude to Professor 
V. L. Ginzburg and N. G. Denisov for valuable dis
cussion of the results of the research. 
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