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It is shown that the well-known statement of Birkhoff to the effect that any centrally-symmet
ric gravitational field in vacuum should be a static field is true only under some additional 
conditions. These conditions are equivalent to certain assumptions regarding the wave prop
erties of the Einstein field equation solutions. A general solution of the problem is presented. 

THE importance of the particular problem of de
termining the field in the case of central symmetry 
in Einstein's theory of gravitation is well known. It 
is most frequently necessary to consider a cen
trally-symmetric field in vacuum, defined by a 
Schwartzschild metric. As regards the problem 
of centrally-symmetric fields, not necessarily 
static ones, in vacuum, their existence has been 
rejected on the basis of the following statement, 
first expressed by Birkhoff[l]: every centrally
symmetric field in vacuum is static, and there
fore, with accuracy up to a coordinate transforma
tion, it is defined by the Schwartzschild metric. 

This statement is generally accepted and is in
eluded in all serious monographs on the general 
theory of relativity [2- 7] (with the exception of 
Fock' s book [B]), has previously also been accepted 
by the author of this paper, [9] is often used in rel
ativistic mechanics and cosmology as a basis for 
crucial conclusions, and is correct under certain 
conditions, but only under those conditions. 

In this paper a rigorous analysis is presented 
of the conditions under which the solution of the 
equations of the centrally-symmetric field in 
vacuum is sought: 

(1) 
a physical interpretation of these conditions is 
given, and the general solution of Eqs. (1) is de
termined which will in general be nonstatic and 
will contain a functional arbitrariness which can
not be eliminated. 

It is easy to cite a formal example of a metric 
satisfying the field equations in vacuum (1) which 
is centrally-symmetric, and nonetheless nonstatic. 
For this purpose it is sufficient to take, for in
stance, the Schwartzschild metric in polar coor
dinates 
eds2 = _r- dr 2 - r 2 (dU2 -;-- sin2 f)dcp 2) -i- r- a dt 2 (e = ± 1 ), 

a-r r 
(2) 

where a is the gravitational radius, consider it in 
the space-time region inside the "hypersphere" 
( r < a) and carry out the substitution r - t. We 
then obtain the metric 

which (for t < a) will have a Minkowski type sig
nature (- - - +), will as before obviously satisfy 
the field equations in vacuum, will as before be 
centrally-symmetric, but will be nonstatic. Be
sides, it is well known [BJ that for real objects 
studied at present the region r < a does not exist, 
since the gravitational radius turns out to be al
ways within the real body producing the centrally
symmetric gravitational field; in this case there 
appears in the field equations on the right-hand 
side an energy-momentum tensor and the problem 
is not solved in vacuum. Only in the case of the 
thus far hypothetical ultra-dense stars could one 
speak of real fields determined by the metric (3); 
we note that an attempt at a physical interpretation 
of this metric has been made in the work of Novi
kov. [lOJ 

In this article we deal not with this trivial trans
formation of the Schwartzschild metric, but with a 
more rigorous investigation of the field equations 
in vacuum for the given class of functions within 
which the solution is sought. This mathematical 
formulation has, first, a simple physical meaning, 
and second, allows one to determine the general 
form of the metric of a centrally-symmetric field 
in vacuum; at the same time we explain when such 
a solution will be static. 

1. FIELD-EQUATION SOLUTIONS THAT ADMIT 
SHOCK WAVES 

Investigation of the solutions of (1) automatically 
leads to the conclusion that the components of the 
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metric tensor gaf3(X) admit second derivatives, 
and if in addition use is made of the Bianchi iden
tities, then one must assume that the ga{3 have 
third-order derivatives. However this statement 
is not sufficiently specific, if the region in which 
the components of the metric tensor have continu
ous derivatives of a given order is not specified. 
Let us agree on the following terminology: 1) a 
function is called a function of the class cr in a 
given four-dimensional region if in this region all 
its derivatives up to orders :s r exist and are con
tinuous (in particular, we shall denote infinitely 
differentiable functions by C"" and analytical func
tions by ca ), 2) a function is called piecewise dif
ferentiable of the class cr in a given four-dimen
sional region if a) it has derivatives of orders :s r 
throughout this region except perhaps on some sur
faces, and b) its derivatives (of order :s r) uni
formly approach definite, not necessarily identical 
limits on approaching these surfaces from either 
side. In other words, these derivatives can be dis
continuous when passing through such surfaces. 

Let us now assume that the components of the 
metric tensor which are solutions of (1) are such 
that they admit gravitational waves propagating 
with the fundamental velocity; then the wave front 
will be an isot~opic three-dimensional hypersurface 
in four-dimensional space-time. At the same 
time, as has been shown by Lichnerowicz [i1J, 

Finzi [12], Pi rani [13], and by O'Brien and Synge [14], 

this hyper surface is characteristic (in the sense 
of the Hadamard characteristics for a system of 
partial differential equations ) , and it is possible 
to have on it discontinuities of the second and third 
derivatives of the components g a{3 ( x); we note 
that it is not necessary to identify these hyper
surfaces of the wave front with the Schwartzschild 
singularity hyper surfaces ( r is the gravitational 
radius ) -they have nothing in common. 

Let us consider the concept of a "shock wave" 
in the general theory of relativity. Even in New
tonian gravitation the potential and its first deriv
atives on the surface of the mass shell are con
tinuous, while the second derivatives have discon
tinuities (inside the shell Poisson's equations hold, 
outside the shell-the Laplace equations). Follow
ing the hydrodynamical analogy, we define a shock 
wave in the general theory of relativity as a three
dimensional hypersurface on which some second 
derivatives of the components of the metric ga{3 ( x) 
have discontinuities. 

The equations of the shock waves have the form 

ga,Gf,a f,~ = 0. 

It can be readily shown that in the case of the 

Einstein field equations in vacuum (1) (see [S], V, 
Sec. 7) not all second derivatives are uniquely de
termined by these equations, a fact which leads to 
the possibility of shock waves existing in vacuum. 

Thus, if we wish to seek a solution with shock 
waves for Eq. (1), then it is essential to assume 
that these solutions are being sought within the 
following class Of functions: 1) gaf3(X) of class C1 

(the g a{3 admit continuous first derivatives ) , and 
2) 8yga{3 ( = Bga{3 /Bxy) are piecewise differentiable 
classes C2 (the derivatives By0ga{3 and ByoMa{3 
exist but are not everywhere continuous). 

If instead of satisfying these conditions we seek 
solutions of the field equations of type (1) in the 
class of functions C2, C"", or ca, then it cannot 
be guaranteed that some wave solutions of a more 
general type will not result at the same time. 

We shall apply these ideas to the analysis of 
the solutions of the equations of a centrally sym
metric field in vacuum, and we shall show that the 
method used in the proof of Birkhoff's statement is 
based on the use of solutions sought at least in 
class C2, and consequently wave solutions in the 
above sense are discarded beforehand. Subse
quently we shall find solutions with the imposition 
of minimum conditions on the class of admissible 
solutions, and we shall show that they are more 
general than the Schwartz schild metric or metric 
(3). The impossibility of a rigorous proof of Birk
hoff'S statement without violating the Lichnerowicz 
conditions was first noted by Unt. [l5J 

2. ANALYSIS OF THE PROOF OF BIRKHOFF'S 
THEOREM 

As is well known, the metric of a centrally sym
metric field (generally a nonstatic field ) can be 
written [5] in the form 

eds2 = Adx1' 1- 2Bdx1dx4 -I C (dx 2' + sin2 x 2dx3') + Ddx4', 

(4) 

where A, B, C, and D are some functions of x1 

and x 4, and the metric is determined with accu
racy up to the coordinate transformations: 

x2' = x 2 + kn, 

x4' = 0 (x1 , x4 ), (5) 

where k and s are whole numbers, and f and e 
are arbitrary functions of their arguments; e = ± 1 
is the so-called "indicator" of ds 2, chosen such 
that the linear element ds be real for arbitrary 
choice of four -direction ( dx a ) . 

Numerous methods exist for obtaining the metric 
(4) starting from various assumptions. Here we 
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also mention that this form of the metric can be 
obtained starting from purely group invariant con
cepts, as has been shown in the work of the author 
[ 9] and of Eisland. [ls] For what follows it is im
portant to note that the reduction of the metric of 
centrally symmetric fields to the form (4) can al
ways be carried out only under the assumption that 
g0!/3( X) belongs to class C1 functions. (This can, 
for instance, be shown if it is taken into account 
that the necessary and sufficient condition for the 
existence of the three-membered group of motion 
is expressed by Killing's equations [9] in which 
only first derivatives of gaf3( x) enter. ) In exactly 
the same way one can check in a trivial manner 
that the only form of coordinate transformations 
in which the structure of (4) is retained will be 
determined by formula (5) where f and () will be 
at least of class c 1. 

Any proof of Birkhoff's statement reduces to 
the following two stages, with accuracy up to the 
choice of a coordinate system: 1) by utilizing the 
arbitrariness in the choice of the functions f and 
() of the transformations (5), the nondiagonal term 
B of metric ( 4) is caused to vanish, and the com
ponent C is reduced to the form ± x12 [or ± x42 in 
the case of metric (3)]; 2) by writing the field equa
tions in vacuum (1), one obtains a Schwartzschild
type metric [or (3)] as a solution of this system. 

This method is correct, but we shall be inter
ested in the class of functions to which the solu
tions thus obtained belong. We shall reproduce the 
course of such a proof, starting from the first 
stage. Assuming that transformation (5) is not de
generate, i.e., 

(6) 

differentiating (5), we can as a consequence of (6) 
define: 

dx1 = !l-1 (84dx1'- f4dx4'), dx2 = dx2', dx3 = dx3', 
dx4 = !l-1 (- 81dx1' + f 1dxi'), 

after which metric (4) will have the form 

(7) 

where 

A • = !l-2 (AS!- 2881 84 +D8i), 

B' = 11-2 (-A S4f4 + Bft94 + Bf4 81 -D 81/1), 

c· = C, D. = 11-2 (Af!- 2Bftf4 +Dfi), e = ±I. (8) 

Now we impose the conditions 

B* = 0, c· =- x1''. (9) 

thereby completing the first stage of the proof [in 
the case of metric (3) we must impose the condition 
C* = -x4'2; in all other respects the whole reason
in~ is literally repeated]. By virtue of (8) the first 
of these conditions is equivalent to the equation 

A84f4-B (fl84 +f481) +D61f1 =0 (10) 

and the second will as a consequence of (5) have 
the form 

f = e• Y- C, e' = ± 1, (11) 

i.e., 

Therefore, substituting for f1 and f4 in (10), we 
arrive at the unique equation 

(BC1 - AC4) 84 + (BC4 - DC1) 81 = 0. (13) 

It follows from (12) that if c1 = c4 = 0 in some 
region, then condition (6) is not fulfilled and the 
transformation will be degenerate. However, it is 
easy to verify that this case contradicts conditions 
(1) and therefore does not merit investigation. [10] 

The linear equation (13) with first-order partial 
derivatives is consistent when the known conditions 
of the existence theorem and the uniqueness of the 
ordinary equation 

dx1 j(BC4 - DC1) = dx4 j(BC1 - AC4) 

are satisfied. 
However, in view of the fact that we are not in

terested in the uniqueness of the solution, and the 
only important aspect is the existence of any solu
tion, the requirements presented in (13) can even 
be relaxed and it is sufficient to require simply 
that the coefficients of 81 and 84 in (13) be con
tinuous. [17 ] This means that the function C belongs 
to the class c1 (which still does not exclude the 
possibility of wave solutions ) . Choosing () as the 
integral of (13), we bring the metric (7) to the form 

After that, writing Eqs. (1), we obtain without 
difficulty the Schwarzschild metric, as usual. Let 
us estimate the solution and show that it is cer
tainly not a wave solution. In fact, as has been 
shown in Sec. 1, in order for the metric (14) not 
to exclude wave solutions upon integration of Eqs. 
(1), it is necessary that in any case the coefficients 
A* and D* be functions of the class C1, i.e., that 
they admit continuous first partial derivatives. 
However, when we substitute for f1o f4, and 84 

with the aid of (12) and (13) it follows from Eqs. 
(8) that, for example, 



CENTRALLY-SYMMETRIC GRAVITATIONAL FIELDS 1029 

D* = (BC1 - AC4) 2/Ci (DCi- 2BC1C4 + AC!) 6i. 

In order for the function D* to be of class C1 it 
is necessary that c11, c14• and c44 exist and be 
continuous, i.e., returning to the metric (4) one 
can state that some of the functions A, B, C, and 
D are assumed to belong to class C2• 

Thus the method of proving Birkhoff's statement 
is essentially based on the assumption that some 
components of the metric (4) belong to the class 
C2, i.e., generally speaking, they may not admit 
wave solutions. Under this assumption the method 
is entirely correct, but only with this stipulation. 

In order to find a metric which does not exclude 
wave solutions (in the sense of Sec. 1) it is nec
essary to impose instead of conditions (9) other 
conditions which would be satisfied for the func
tions A, B, C, and D of class C1 and Ai, Bi, Ci. 
and Di -piecewise differentiable functions of 
class c 2• 

3. CENTRALLY SYMMETRIC FIELD IN VACUUM, 
ADMITTING SHOCK WAVES 

We consider the metric (4), and carrying out no 
coordinate transformations for the time being, we 
take C outside the brackets; after this, the metric 
can be written in the form 

eds2 = C (xi, x4) [I (xi, x4) +II (x2 , x3)], (15) 

where each of the quadratic binary forms 

I (xl, x4 ) = { [Adx1'+2Bdx1dx4+Ddx4'], 

II (x2 , x3) = -dx2' -sin2 x2dx3' (16) 

depends only on two variables, different for each 
form, and has respectively signatures of the form 
(- +) and (-- ). 

A*= (A6~- 286164 + D6i)/C/',. 2 , 

B* = - (A64f4- B64f1- 861/4 + Detf1)/C/',.2 , 

D* = (Af!- 2Bf,ft + Dfi)fC/',.2• 

Consequently, to reduce form (18) to (17) it is 
necessary and sufficient to satisfy the conditions 

The first of these equations, homogeneous with 
respect to the derivatives of 8 and f, allows one 
to determine explicitly the value of t = f4 /f1 (or 
1/t). The second equation is a quadratic polyno
mial in t. Consequently, excluding t, we arrive 
at one first-order partial differential equation in 
81 and 84, (which reduces to a linear equation). 

The conditions for the existence of a solution of 
this equation lead to the continuity condition for 
A, B, C, and D. Choosing the sign of a, we ob
tain a real solution. Consequently, such a trans
formation is possible and can be carried out if 
the metric (4) belong to the class C1: the possibil
ity of the appearance of wave solutions is not ex
cluded beforehand. The radical difference between 
the reduction of metric (4) to (14) and to the metric 
(17) consists in the fact that in the first instance a 
functional and not a differential requirement 
( -x1'2 = C) enters into the coordinate transforma
tion; this requirement introduces after differentia
tion an assumption about the second derivatives of 
C, whereas in the second instance this is not re
quired. 

Thus, in the class of functions c 1 one can reduce 
the metric (4) of a centrally symmetric field to the 
form 

Such metrics can be called conformally-reduc- where 
ible and, using transformation (4), the first of these 
forms can be written in the form 

Ci=±1. (17) 

It is extremely important to note that unlike in 
the case of transformations (9), the writing of I in 
the form (17) does not lead to the requirement of 
increasing the class of differentiability of the com
ponents A, B, C, and D. 

In fact, since the only admissible transforma
tion will as before be (4), we can repeat the entire 
reasoning of the preceding section and reduce the 
form I( xi, x4 ) to 

I (x1 ', x4') = c; (A*dx1'' + 2B*dx1'dx4' + D*dx4''), (18) 

where 

Ci=±1, 

and the signature of the metric for arbitrary value 
of a will be ( - - - +). 

Since any centrally symmetric field is confor
mally reducible, one can make use of the results 
obtaining for such fields in the case of empty space. 
Such a problem has been solved for arbitrary Ein
stein spaces (for n = 4 and a Minkowski-type sig
nature). The formulation of the problem, the 
method of solution, and investigations of some of 
the possible cases are given by the author in [9] 
Sec. 46 and [18]. A generalization for field equa
tions Raf3 = Kgaf3 ( K "' 0 ), and an investigation of 
cases that have not been considered is given in [19]. 

For an arbitrary conformally reducible gravita-
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tiona! field in vacuum the following statements ob
tain. 

1) If the metric of a conformally reducible field 

eds2 =IX [±(y2dxl'-dx4')-(dx2'+ ~2dx3')], 

:x =IX (xl, x2 , x 3 , x4), y = y (xi, x4), ~ = ~ (x2, x3 ) (21) 

satisfies the Einstein levels in vacuum (1), then 

(22) 

2) Depending on the form of the functions cp, 1/J, 
{3, and y, several different possible cases are dis
tinguished. In order to determine which of these 
cases is possible for a centrally symmetric field 
in vacuum we shall note the specific features that 
distinguish metric (20) from (21). 

From (20) and· (22) we see that the metric (20) 
has the following singularities: 

<p = const, 

These two conditions determine the type of pos
sible solution uniquely (see [9 J, p. 3 7 3 ) • We thus 
have the following result: if the components of a 
metric tensor of a centrally symmetric field in 
vacuum are functions of class C1, and their first 
derivatives-piecewise differentiable functions of 
class C2, then the general form of the metric of 
such a field, in the special coordinate system, can 
be written in the form 

eds2 = \jl-2 [J (y2dx1'- dx4')- dx2'- sin2 x 2dx3'], 

G = ±J, (23) 

where the functions lf! and y depend only on the 
variables x1 and x4 and are defined by the equa
tions: 

'Pr = vy, t4'P4- l'll44 = v', 

where v(x1 ) is an arbitrary function of x1, C1 

= const, and a = ± 1. Equations (24) cannot, in 
general, be integrated in terms of elementary 
functions, and lead to known solutions only for 
certain lf! and y ( cf. Sec. 4). 

(24) 

We note that the process of integration of the 
field equations (1) for the metric (20) is based 
solely on the assumption that the gaf3(X) have 
second derivatives, but does not require their 
continuity in the whole investigated region, since 
the order of the class of functions gaf3(X) is not 
increased. 

From the definition of the wave solutions given 
in Sec. 1 it follows that the metric (23) can admit 
wave solutions of the shock-wave type. 

4. INVESTIGATION OF THE SOLUTION WITH 
SHOCK WAVES 

First we note that, depending on the sign of a 
(a = ± 1), the role of the coordinate time in (23) 
will be taken on by the variable x1 or x4 [ in anal
ogy with the Schwarzschild metric and the non
static metric (3) in the case of solutions of class 
c2 ]. One can also readily verify by direct calcu
lation that the metric (23) turns the field equations 
in vacuum (1) into an identity if conditions (24) and 
their differential consequences are used: 

\jl44 = f C1\jl2 + G\jl, t4'1l4 = v' +I'll (-f C1\jl -l- a), 

\jl11 = v'r + vyl, 1'44 = r (3Cl\jl --!-· a). (25) 

One can readily check that the metric (23) can 
for lf! = const be reduced to the Minkowski metric. 
If the constant C1 equals zero, then as a conse
quence of (24) and (25) all the components of the 
curvature tensor vanish: there is no gravitational 
field. Consequently, the constant C1 "" 0 indeed 
characterizes the mass producing the field. 

If v = 0, then it is readily seen that the field 
equations can be integrated in terms of elementary 
functions* 

\jJ = L [th2 (A- ~·)- I], 

\jJ = ~1 [tg2 (A + ; ) + I], 

where A.= A.(x1 ). 

if j =I, 

if G =-I, 

In addition, it is easy to check that in this case 
gaf3(x) is reduced for certain transformations of 
the class C2 to a form in which continuous second 
derivatives of gaf3(x) are admitted; but this means 
that the metric can be reduced either to the 
Schwarzschild metric (a = 1) or to the quasistatic 
metric (3). 

Thus, solutions with shock waves are possible 
only in the case when C1 and v are different from 
zero. But in this case the third of Eqs. (24) be
comes an identity as a consequence of the first two 
equations of this system and of their differential 
consequences (25) which assume the existence but 
not the continuity of the second derivatives. Then, 
if it is assumed that 

G=±l, 

the second of Eqs. (24) is reduced to the form 

~! = 4 ~ 3 - g, ~ - g3, 

where 

*th = tanh; tg = tan. 

(26) 

(27) 
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(28) 

Equation (27) means that ( cf. [20 ]) ~ is an el
liptical Weierstrass function: ~ (x4 +A.), where A. 
= A.(x1 ), and g2 and g3 are the so-called invari
ants of the function ~. The first equation of (24) 
serves as the definition of the function y. 

Summarizing, one can state that the general 
form of the metric of a centrally-symmetric field 
in vacuum admitting shock waves in a special sys
tem of coordinates can be written down in the form 
(23), where 1/J and y depend only on x 1 and x4 and 
are expressed in terms of the Weierstrass ellipti
cal function ~ ( x 4 + A.) (27) with the invariants (28). 

It is obvious how one can express 'If in terms of 
other elliptical functions. We note that all these 
results are obtained in a particularly simple fash
ion if one uses the method of the Lie group theory 
of motion in Riemann spaces but in the class c1 of 
functions. 

The equation of the hypersurface on which dis
continuities of the second derivatives of the metric 
tensor, i.e., of the components of the curvature 
tensor determining the gravitational field, are pos
sible, will at the same time be the equation of the 
shock wave and will for the metric (23) be written 
in the form 

--;.- (D1w)2 - (D 2w) 2 - ~ (D3w) 2 - o (D4w) 2 = 0. T @ll X 

It is thus not excluded that centrally-symmetric 
pulsations of the gravitating masses can produce 
gravitational shock waves-a conclusion which is 
interesting not only for cosmological problems. 

Let us note that the function 1/J is in a certain 
sense an analog of the "radius vector" r for the 
Schwartzschild metric. When 1/J- oo, the curva
ture of space-time differs by an arbitrarily small 
amount from zero (the curvature tensor tends to 
zero). 

It is also easy to verify that any solution (23) of 
the field equations in vacuum belongs to gravita
tional fields of the type I, following the classifica
tion proposed by the author. 

It follows directly from (23) that such a field 
admits in vacuum a four-membered group of mo
tions with the operators 

where* 

*ctg = cot. 

Xsf=saaa{, (a,s= 1, ... ,4), 
s 

£a = o~ cos x 3 - o~ sin x 3 ctg x2 , 

1 

sa= o~sinx3 --'-- b~cosx3 ctgx2 , 
2 

<-a 'IJ4 -"a I _.a £ = -- u1 -r vu. 
4 T 

and it is not permissible to reduce in the class of 
functions c2 the fourth operator to the form o? 
(or 6~) which is characteristic of static and quasi
static metrics. 
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