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The scattering of neutrons by crystals of arbitrary symmetry containing isolated impurities 
is treated. The cross sections for coherent and incoherent scattering corresponding to one­
quantum excitations of the system are found. An analysis is made of the problem of separat­
ing out the part of the incoherent cross section which is related to the scattering by the im­
purity atoms and by the disturbed regions near them. It is shown that this part of the cross 
section contains direct information about the nature of the vibration of the impurity atom, 
and, most important, information about the density distribution of the phonon frequency 
spectrum of the ideal (host) lattice. 

1. INTRODUCTION 

·r~E present paper investigates the scattering of 
neutrons by crystals containing arbitrary impurity 
nuclei. The concentration of foreign atoms in the 
host is assumed to be sufficiently small so that 
they can be considered to be isolated. 

If inelastic scattering is regarded as a method 
for obtaining information about the excitation spec­
trum in a condensed medium, it makes sense to 
seek a solution of the inverse problem only. But it 
is obvious that this requires us to find a consistent 
solution of the direct problem which gives an ex­
plicit relation between the scattering cross section 
and the spectral characteristics of the medium. 
This in turn allows an independent solution of the 
dynamical problem for the macroscopic system. 

The problem of the vibrations of a crystal con­
taining an isolated impurity was investigated in its 
general form in a widely known series of papers by 
I. Lifshitz ( cf., for example, [i]) and, for simple 
models, in papers by Montroll and coworkers. [2] 

This problem has also been studied in detail in con­
nection with studies of the Mossbauer effect. [a, 4J 
But for determining the probability of the Moss­
bauer effect it is necessary only to find the class 
of solutions to which there corresponds a nonzero 
vibration amplitude of the impurity atom itself. 
Assuming that the introduction of the impurity does 
not change the force constants, the problem is con­
siderably simplified. But in the case of scattering 
of neutrons, the role of the impurity atom is not 
limited to the peculiarities of the scattering by 
that atom alone. In fact the neutrons suffer an 
additional scattering from the whole region of 
atoms near the impurity site, whose vibrations 

are perturbed. This makes it necessary to find a 
complete solution of the problem of the vibrations 
of a lattice with isolated impurity atoms. The de­
tailed treatment of this problem is given in the 
second section of this paper. 

Thus, for low concentrations of impurity atoms 
there is an additional incoherent scattering from 
the randomly distributed perturbed regions. This 
scattering gives information about both the charac­
teristics of the impurity atom and the vibration 
spectrum of the initial ideal lattice. In the third 
section of the paper, we find the relation between 
the cross section for inelastic scattering of neu­
trons and the two types of information. We also 
find the conditions for separating the part of the 
scattering which is due to the presence of impurity 
atoms. 

We treat monatomic lattices of arbitrary sym­
metry and assume that the impurity atoms are at 
lattice sites. The problem is solved for an arbi­
trary ratio of masses of impurity and host atoms 
on the assumption that the introduction of the im­
purity does not change the force constants. 

Many of the points related to the scattering of 
neutrons by nonideal crystals have been treated 
earlier by Krivoglaz. [S] He studied the question 
of the broadening of coherent scattering peaks and 
the transformation of singularities in the energy 
spectrum of incoherent neutron scattering. These 
problems will not be considered here. 

2. VIBRATION OF A LATTICE CONTAINING AN 
IMPURITY ATOM. 

A. Consider a lattice with one atom per unit 
cell. Suppose that there is an impurity atom at 
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one of the lattice sites (the origin). We shall 
assume that inserting the impurity does not change 
the force constants coupling the other atoms to one 
another and to the foreign atom. Then the equation 
for determining the eigenfrequencies and eigenfunc­
tions (reduced displacements ) for the vibrations 
of the lattice has the form 

(J) 2Q)i (r 11 ) = .l] (mnmn·)-'1'A~k (rn- rn•) lDk (rn•), 
n' 

(2.1) 

with the usual periodicity conditions at the bound­
ary. (The notation is the same as in [3•4]; we sum 
over repeated Latin superscripts. ) 

Setting E = 0 in (2 .1), we get the equation for 
the vibrations of the ideal lattice. The complete 
system of its 3N orthonormal real solutions can 
be written in the form 

cp;cx1 (rn) = J/2/Ni (f, a) cos frn; 

cpicx-dr n) = V2/N i (f, a) sin fr n; 

3 

(2. 2') 

2.2") 

L] ei(f, a)i'(f, a)= 6u·, 
a=l 

number of vectors e in a star obviously gives the 
degree of degeneracy Jp of the corresponding fre­
quency (the factor two is due to the degeneracy 
in t ). 

For an overwhelmingly large number of the fre­
quencies this multiplicity has the same value J, 
given by the symmetry of the lattice. The excep­
tions occur when the wave vector f to which the 
frequency corresponds is distinguished by some 
symmetry element of the crystal (for example, 
is in a symmetry plane or along a symmetry axis), 
or when there is accidental degeneracy. But we 
shall be interested only in quantities which are 
obtained by summation over a macroscopic num­
ber of states. We shall therefore not use the in­
dex A. in the stars of f and e(f, a). 

In the presence of the impurity there is a partial 
lifting of the degeneracy of all the levels. The fre­
quencies which are split off fall in the interval be­
tween Wop and Wop+l· As was shown in [3], Eq. 
(2.1) can be transformed, for the frequencies which 
are split, to the following form: 

(2.4) 

e(-f, a)= e(f, a), a= 1, 2, 3. (2.3) where j is a unit vector in the direction of the dis­
placement of the impurity atom ( ~ ( 0) = ~j ) , while 

The wave vector f takes on N/2 values uniformly 
distributed over the region corresponding to half 
of the fundamental cell in the reciprocal lattice; 
the index t = ± 1 gives the parity of the solution. 

From (2.1) it follows that for E: = 0 the eigen­
values w~ are independent of l;, so that an equal 
number of solutions (2.2') and (2.2") belong to 
each frequency. 

Let {f} be a set of wave vectors which are 
connected with one another by the transformations 
of the point symmetry group of the crystal, the 
"star" of the irreducible representation. To each 
star of vectors f there correspond in general three 
stars of vectors e(f, a) (a = 1, 2, 3) and three dif­
ferent eigenvalues. We shall number the vectors of 
a star by the index A., and the different stars of 
vectors e by the index p. Then instead of the usual 
dependence of the squared frequency and polariza­
tion vector on wave vector and branch number 

(J)~ (f, a), e(f, a) 

we have 

where eigenvalues with the same A. coincide: 

'A = I, 2, ... , ftpj2. 

We shall assume that the frequencies are labelled 
by the index p in increasing order. Twice the 

Throughout the paper, summations and integrations 
extend over half the fundamental cell of the recip­
rocal lattice (this is the reason for the factor of 2 
compared to [iJ). 

An analysis of (2.4) shows that the maximum 
number of frequencies split off from each level is 
three, the actual number depending on the symme­
try of the crystal. Let us consider the various 
crystal systems. 

1. Triclinic system. There is one non-identical 
symmetry transformation, the inversion. All fre­
quencies w0 are degenerate with the same multi­
plicity J = 2. In the presence of the impurity atom, 
one frequency is split off from each degenerate 
level, corresponding to the value j ( w2 ) deter­
mined from (2.4). 

2. Monoclinic system. The degree of degeneracy 
is J = 4. The symmetric tensor nik has four in­
dependent components. In the general case, two 
frequencies are split off-one belongs to a vibra­
tion with j parallel to the two-fold axis, the other 
is determined at the same time has its j in the 
plane perpendicular to the two-fold axis. 

3. Rhombic system. The degree of degeneracy 
is J = 8. In the coordinate system with its axes 
along the two-fold symmetry axes, the tensor nik 
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V='t't/2 +I, ... , 'l't.(2.6") is in diagonal form. Then (2.4) splits into three 
independent equations. We thus get three frequen­
cies splitting off from each level, with polarization 
vectors j along the symmetry axes. 

4. Tetragonal, trigonal, and hexagonal systems. 
In all these cases, the tensor nik reduces to diag­
onal form in a coordinate system having one of its 
axes along the c axis. Two of the three equations 
which correspond to the other two axes coincide. 
Thus there is a splitting off of one frequency with 
j parallel to the c axis, and two identical frequen­
cies with mutually perpendicular vectors j lying 
in an arbitrary position in the plane perpendicular 
to the c axis. 

5. Cubic system. From each degenerate level, 
three identical frequencies split off; the system of 
three mutually perpendicular vectors j can be 
chosen arbitrarily. 

In accordance with the above considerations, we 
shall not deal in detail with cases where the direc­
tions of the vectors of the star are distinguished 
crystallographically, although the corresponding 
analysis can be done in straight-forward fashion. 
We mention only that for an initial frequency for 
which the star of vectors e lies in ·a symmetry 
plane, after introduction of the impurity atom two 
frequencies are split off; for frequencies to which 
there corresponds a star of vectors e directed 
along a symmetry axis, only one frequency splits 
off, independent of the symmetry of the crystal. 

To simplify the presentation, we shall restrict 
ourselves in what follows to crystals with symme­
try no lower than rhombic. In all these cases the 
number of frequencies split off is three. 

B. As we have already remarked, the impurity 
atom participates only in vibrations whose fre­
quencies are split off. Its displacement in all 
other vibrations with unchanged frequencies w0 

is zero. As a result, for all the unsplit frequencies 
one can easily show that (2.1) is identical with the 
equation for the vibrations of the ideal lattice. 

The complete system of orthonormal functions 
for the ideal lattice has the form (2.2). We replace 
f, a, t by the indices p, v, where 

Obviously, 

and consequently 

~=1 

~=-1. 

Then (2.2) can be rewritten as 

V= I, 2, ... , 'l't/2; (2.6') 

The total number of independent functions in (2.2) 
and (2.6) is, of course, the same and equal to 3N. 

We make an orthogonal transformation andre­
place (2.6) by a new system of functions: 

~/2 

'll~v(rn)= ~Sv5 (p)<p~5 (rn), V =I, 2 ... , 'l't/2; 
8=1 

<p~v(rn), V='l't/2+1, ... , '1't (2.7) 

and require that for v = 4, ... , J/2 

\jl~v (0) = 0 
or 

&/2 

~ Svs (p) e~5 = 0. (2.8) 
5=1 

It is easy to show that an orthogonal matrix satis­
fying the 3(J/2 - 3) (i = 1, 2, 3) conditions (2.8) 
can be constructed for any crystal with symmetry 
equal to rhombic or higher; this matrix is deter­
mined to within an orthogonal transformation which 
leaves invariant the subspaces of functions (2. 7) 
with v = 1, 2, 3 [ cf. (2.15)] and with v = 4, ... , J/2 
[and consequently also the conditions (2.8)]. For 
crystals of the triclinic and monoclinic systems 
( J /2 < 3 ) , all the possible solutions of equation 
(2.1) are exhausted by the functions (2.6") and the 
functions corresponding to the split-off frequencies 
[ cf. later in (2.17)], so that there is no need for the 
construction given here. 

Thus for each p we have determined J - 3 func­
tions ¢pv ( rn) ( v = 4, ... , J/2) and cppv( rn) 
( v = J/2 + 1, ... , J ), which are eigenfunctions of 
the vibration problem for the ideal lattice, corre­
spond to w5p. and vanish for rn = 0. 

We now find the explicit form of the functions 
¢~v'<rn) for v' = 1, 2, 3. The condition that they 
be orthogonal to the functions (2. 7) with v = 4, ... , 
J/2 gives the relation 

~/2 

2J 'll~v'(r n) 'll~v(r n) = ~ Sv'8 (p) Sv5 (p) = 0. (2. 9) 
n 8=1 

We choose Sv' 0 ( p) in the form 

Sv'5 (p) = c v•(P) e~aj~v'' (2.10) 

where Jpv' is an arbitrary unit vector. Then, if 
we use (2. 8) we see that condition (2. 9) is satis­
fied identically. 

Let v" = 1, 2, 3. Then 
W2 

2J 'll~v' (r n) 'll~v" (r n) = Cv' (p) Cv" (p) ~ e~5e~5 j~v,j;v"" (2.11) 
n 5=1 

We introduce the tensor 

(2.12) 
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We choose the vectors jpv' so that they are eigen­

vectors of the tensor Lik(p ), i.e., 

Lik(p) -k (p) .; I pv' = 1'J v' I pv' • v' = I, 2, 3. (2.13) 

Because they are mutually orthogonal, (2.11) van­
ishes for v' ~ V 0 , while the condition for normali­
zation of the functions (2. 7) to unity gives the re­
lation 

C..(p)=ll~. (2.14) 

Thus 
!if/2 

'1/J~v (rn) = ['I'J,.(P)L'.i: ~ O,eP5)cp~5 (rn), 
5~1 

'V= 1, 2, 3. (2.15) 

Starting with the rhombic system, the vectors 
Jpv = j v are along the fixed principal axes of the 
crystal. Then 

~ 

~ 'I'J,(P) =Lu(p) = ft/2. 
V=l 

In particular, in a cubic crystal 

Lik (p) =1/6 {t{)ik' 'l'}v (p) =ft/6. (2.16) 

The functions (2. 7) and (2.6°) form a complete 
system of eigenfunctions for the problem of vibra­
tion of an ideal lattice. In the presence of the im­
purity atom, the system of eigenfunctions changes. 
It is now formed by the functions (2.6") and the 
functions (2.7) for y = 4, ... ,J/2 (taking (2.8) into 
account), while new functions corresponding to the 
split-off frequencies appear in place of (2.15). 
These functions, which are actually superpositions 
of the functions (2.15) with different p and v, were 
found in [3] and can be written, taking account of 
normalization, in the following form: 

(
dlnw2 )'/, r i k <l>i (r ) = __ pv ·k ~ "V l (1)2 e (f, ct) e (f, ct) 

pv n de lv N .LJ 8 pv 2 - 2 (f ) 
fa: (JJP-J (1)0 , ct 

1 ~r- ik] +3 (r I-e-I)b cos frn. v= I, 2, 3; (2.17) 

dIn (l)~v - {2e2w~v "V Ov e (f, ct))2 - 8}-1 
de - N .LJ [w2 - w2 (f ct)] 2 

fa. pv 0 ' 

(2.18) 

Thus if we use .P~v(rn) to denote the complete 
system of orthonormal functions for the problem 
of the vibration of the lattice in the presence of 
the impurity atom, then for v = 1, 2, 3, these func­
tions coincide with (2.17) (the corresponding eigen­
values are w~v ), for v = 4, ... , J/2 they coincide 
with (2. 7)-(2.8), and for v = J/2 + 1, ... , J, with 
(2.6") ( w~v = wijp for 4 s v s J ). 

C. We shall again limit ourselves to crystals 
with symmetry no lower than rhombic. Then, from 
(2.4) and (2.5), in a coordinate system whose axes 
are along the principal symmetry axes of the crys-

tal, we have three independent equations for deter­
mining the shifted frequencies: 

2ew~v "V [e" (f,a.)]2 
.LJ --::-'-..:...:....:'-'--- = 1 ' 

N !a w~v- w~(f ,ct) 
v= I, 2, 3. (2.19) 

These equations, in addition to the quasicontinuous 
spectrum 0 < w~v < w~max (womax is the limit­
ing frequency of the quasicontinuous spectrum of 
the regular lattice), can have solutions in the form 
of discrete frequencies w~v > w~ max· 

For w2 > w~max the denominator in (2.19) does 
not vanish, and we can change from summation 
over f to integration. As a result, to determine 
the discrete frequencies, if they exist, we have an 
equation analogous to the one found by I. Lifshitz [i]: 

'V= 1, 2, 3, (2. 20) 

where 

g<v) (ro2) = ~ ~ (' [ev (f, a.)]2 dQ! 
o (2n)2 .) 1 Vw~ (f, ct) I 

a "'~ (f, a)~oo~ 

(2.21) 

( v 0 is the volume of the unit cell). The integration 
in (2.21) extends over those portions of the surface 
wij(f, a) = wij which are located within the region 
chosen initially-half the fundamental cell of the 
reciprocal lattice. 

The quantity 

( 2) _ .!_ ~ (v) (ro2) = ~ "V (' dQf 
g roo - 3 .LJ g o 3 (2n)" .LJ J 1 Vw2 (f, a.) 1 

v=l a 2 2 0 
"'o (f. a)~"'o 

(2.22) 

is a function of the density of the squared frequen­
cies for the initial ideal lattice. From the very 
definitions (2.21) and (2.22) it follows that the func­
tions g< V) ( wij) and g( wij) satisfy the normalization 

00~ max w~ max 

~ g<v) (ro~) dro~ = 1, ~ g (ro~) dro~ = 1. (2.23) 
0 

All the considerations about the degeneracy of 
the split-off frequencies obviously remain valid 
for the discrete frequencies. Thus in a cubic 
crystal g< v) ( wij) = g( wij), and we arrive at the 
single equation (2.20) for determining the three­
fold degenerate frequency. 

It is easy to show that each of the equations 
(2. 20) has a unique solution if and only if 

2 

["'orx g<v) (wg) dw~ J-1 . 
8 > J 2 2 o 1 - wofwomax 

(2.24) 

This inequality is the condition which the spectrum 
of the system must satisfy in order to have discrete 
frequencies. Their number can vary up to three, 
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depending on the values of v for which (2.24) is 
valid. 

Because the right side of (2.24) is positive, dis­
crete frequencies appear only when the impurity 
atoms are lighter than the host atoms, and for the 
usual vibration spectra m 0/m must be consider­
ably less than unity. (For example, in a simple 
cubic lattice, with nearest neighbor interactions, 
and with equal central and noncentral force con­
stants, the discrete frequency appears only when 
m0/m < 0.670.) 

D. In the quasicontinuous spectrum, as in [1, 3J, 
we represent w~v in the form 

(l)~v = (!)~p + ~(l)~v' 
6ffi~P = ffi~r+r - ffi~P' 

~(l)~v = Zpv6ffi~P' 
0 <; Zpv <; 1. (2.25) 

Taking a quasiequidistant distribution of the 
squared frequencies wijp, we find the value of 
Zpv from Eq. (2.19) by the usual method ( cf. [1, 3] ). 

Going to the limit owijp - 0, N - oo, so that wijp 
= w2 is unshifted, we finally get 

( - "'~ max (v) ( 2) d 2 ) 

Zv ( ffi2) = .!_arc tg ~ 1 - 8ffi2 C g roo roo 1 ~ 
Jt \ 3 ro2 - ro~ Jtero2g(v) ( ro•) J · 

(2.26)* 

This result can be used immediately for com­
puting quantities having the form of sums over the 
shifted frequencies of the quasicontinuous spectrum 
with weights d ln Wfw I dE. Using the relation 

d ln (!)~v l)ro~p azpv 
_d_8_ = (!)~p --ae, 

which follows from (2.25), we quickly get 

(oo2 .,2 

Jim 
N-->00 

0 max) d l 2 o max 

2J ::pv ( ... ) = ~ dffi2 fv {ffi2) ( .•. }, (2.27) 
p 0 

(oo'=O) 

where 

1 az (ro2) 

f ((!)2) == __ v_ 
v ro• ac 

f- "'~ r~nax g<v) (ro~) dro~- 2 ) -1 

= g<v>(ffi2)1 1- effi2 + [Jt8(!)2g(v) (ffi2)]2 ~ 
\ o ro•- ro~ J 

(2.28 
(assuming, of course, that the integral in (2.27) 
exists). 

One can get an important normalization relation 
for the quantity fv( w2 ). To derive it, we set rn 
= rn'• i = i' (no summation!) in the relation 

(2. 29) 
f)V 

which follows from the completeness of the ortho-

*tg = tan. 

normal function system <flbv<rn). Remembering 
that 

cl>pv (0} = {Vl=B (dIn ffi~v / d8)'1• L• V = 1, 2, 3 (2.30) 
0 V=4, ... ,{)o 

[ cf. (2.17) and (2.4)], and also that ji = oiv, we get 

(I- 8)2Jd Jnffi~v/d8= 1. (2.31) 
p 

Changing from summation to integration over 
the quasicontinuous spectrum, we get the required 
relation 

00~ max 

(1-8) ~ fv(ffi2)dm2 + (l-8)dlnffi'bvfd8 =I. (2.32) 
0 

The second term comes from the discrete fre­
quency. As expected, for E = 0 (2.32) goes over 
into the first of the conditions (2.23). 

If we know the partial density function for the 
squared frequencies g< v) ( wij), the quantity 
d ln wbv/dE as a function of wbv is given by 

d ln robv ( "'~ m~ax g<v) (ro~) dro~ \-
1 

--- = ~ 82(1)2 - 8 ( 
de 1 Dv (ro2 _ ro2)2 J ' 

\ 0 Dv 0 

(2.33) 

which follows immediately from (2.18) when we 
change to integration. 

The numerical value of d ln wbv/dE as a func­
tion of E alone can be found in principle from (2.32) 
as an integral of fv( w2 ), or by determining wbv 

2 = wnv< E) from Eq. (2.20). 
E. Let us write the displacement of an arbitrary 

atom as an expansion in normal vibrations: 

(2.34) 
pv 

It is not difficult to show that 

(2.35) 

where qpv is a dimensionless real normal coor­
dinate, corresponding to the vibration with fre­
quency Wpv· 

3. SCATTERING OF SLOW NEUTRONS; DISCRETE 
FREQUENCIES ABSENT 

Let us consider the scattering of neutrons by 
crystals with impurity atoms. We assume that the 
concentration of impurities is so low that the scat­
tering occurs independently from the isolated re­
gions of disturbance around the impurity atoms. 
We can then restrict the treatment to neutron scat­
tering by a crystal with a single impurity nucleus, 
and make use of the results obtained above. 

The general expression for the interaction of a 
neutron with an arbitrary crystal lattice can be 
written as follows (cf. [6]): 
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(3.1) 
n 

Here S is the neutron spin operator; Kn is the 
spin operator for the nucleus at the n-th lattice 
site; An and Bn are nuclear parameters; Rn 
= rn + u(rn). 

Let us consider the matrix element of (3.1) cor­
responding to a transfer of momentum tik 
= n(k1 - k2 ) to the lattice with a simultaneous 
change in occupation numbers of rpv = nlw- npv· 
Remembering (2.35), after averaging over the 
initial equilibrium state of the crystal and av­
eraging over the initial and summing over the 
final states for the projection of the neutron and 
nuclear spins, we find for the square modulus of 
the matrix element 

M ({r pv}, k) 

expression in the explicit form of the functions 
<I>h<rn) and the spectrum of frequencies w~. 

In this section we assume that there are no 
localized vibrations with discrete frequencies, 
i.e., there is only a quasicontinuous spectrum. 
Remembering that the amplitudes of the atomic 
displacements in each normal vibration belonging 
to the quasicontinuous spectrum "' N-112, we 
should restrict ourselves to cases where all the 
I rpv I :::: 1. Then 

exp {±~~} l±1 [<xy)'1• sh (li~IZT)J = (xy)'!o(n + +± +). 
(3.4) 

In addition suppose that the regular lattice con­
sists of quite heavy nuclei. Then at not too high 
temperatures we can neglect the contribution of 
multiquantum transitions and treat only scatter­
ing processes which are accompanied by the cre­
ation or absorption of one quantum of the vibration 
p, v. For such a process, using (3.4), Eq. (3.2) 
takes the form 

IT ( rpvliwpv) [li(k«llpv(rn))(k«llp.,(rn,)) -11iwP"] {I An -wn/2 ikrn 12 
X exp -T- l,P" '' sh ~ Mpv = ~ -v- e e (k<Dr., (rn)) 

pv . 2 y mnmn,wpv ."-l 
n mn 

+ I ~ B2K (L' I) -wniT ('pvliwP·') I 4 .L.J n n I\ n + e eX P ~ r pv 
n pv 

[ li (k«llp., (r nl)2 _ 1 liwP" J 
x 2 sh ---.vr , 

mnwpv k 
(3. 2) * 

(3.3) 

We have used the relationC4J 

(n + r I exp [i Jl2xqJ[ n) 

( e-xf2 (i Vx( V n! 1 (n + r)! L~ (x), r > 0 

= l e-x/2 (i Yx)\rl "V (n + r)! In! L~~r (x), r '(: 0 

and the summation formula [7] 

00 

(I - z) ~ (n ~ r)! L~ (x)L~ (y) zn 
n=O 

Here LK is a generalized Laguerre polynomial, 
Ir is the Bessel function of r-th order and pure 
imaginary argument, T is the crystal tempera­
ture in energy units. 

We note that the expressions (3.2)-(3.3) are 
valid for the scattering of a neutron by an arbi­
trary system of harmonically interacting particles. 
The particular properties of the system find their 

*sh =sinh. 

x 2:rv(npv+ ~J±7)· (3.5) 

(From here on the upper sign refers to creation, 
the lower to absorption by the neutron of a vibra­
tion quantum.) 

Let us make some remarks about the quantity 
e-wn in (3.3), the Debye-Waller factor. At suffi­
ciently high temperatures, when 

T;?; fiwo max~ fJ (3.6) 

( ® is the Debye temperature), the relation 

2npv + I = li~v [I + 6 ( nwf" r] . (3. 7) 

holds. We then have for wn, 

Wn = 2T Rn ;. ~ + (x<l>pv (r n)) 2 + :; L; (x<l>pv (r nW. 
pv (jjpv pv (3, 8) 

Here Rn is the recoil energy of atom n: 

Because of (2.29), the last term in (3.8) is sim­
ply equal to Rn/6T. To calculate the first term in 
(3.8), in complete analogy with the procedure in [4J, 
we multiply both sides of (2.1) (for the p, v vibra­
tion) by 
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([A01(rz-rn)]ik is the matrix inverse to 

Aik<rz-rn)) and sum over rn, i, p, v. Using 

(2.29), we get 

L; (J);~<D~v (rt) <D~. (rt) = m1 [A~1 (O)lik. (3.10) 
P'' 

A similar relation holds for the original ideal lat­
tice: 

~ w~2 (f, a) cpt,~(r1) cp:"'l:(rt) 
fa!; 

= ~ ~ (!)~2 (f, a) el (f, a) ek (f, a)= m [A~1 (O)lik 
foc (3.11) 

Comparing (3.8), (3.10), and (3.11) we finally get 

Wn = 4RT f.~~ w~2 (f, a) (xe (f, a))2 + :; . (3.12) 
lot 

In the case of a cubic crystal, the quantity Wn be­
comes isotropic and takes the form 

(w~2) = 3~ ~ w~2 (f, a). 

"' (3.12') 

Thus, neglecting the second term in (3.12) 
(which is already small for T"' nwomax), we see 
that the Debye-Waller factor is independent of n 
when (3.6) is satisfied. 

On the other hand, when T < nw0 max• for a lat-

tice consisting of sufficiently heavy atoms, such as 
we are considering, wn is itself small, and in this 
case there is a small error if we neglect its de­
pendence on n. In accordance with this, we assume 
throughout the constancy of wn for all n. 

We average (3.5) over the isotopic composition 
of the host lattice, using the standard method ( cf., 
for example, [SJ). Denoting quantities referring to 
the impurity nucleus by the subscript 0, we get 

Mpv = e-w {* A2
1 ~ (k<l>pv (rn))eikrn \' + * C ~(k<l>pv (rn))2 

n#O n 

+ [!o (A~+ T B~Ko (Ko+ I)) 

-* C J (k<l>pv (0))2} 1i (npv 2!::• ± lfz) ' (3.13) 

(3.14) 

First let us consider the third and fourth terms 
in (3.13). They differ from zero only for v = 1, 2, 3, 
since only for these values is q,pv( 0) "' 0. Substi­
tuting (2.17) and (2.30) in the third and fourth terms 
in (3.13), after simple transformations we arrive at 
the expression 

.!_din ffi~,. { 2AA (' k) [effi2 ~ (ke(k, ct))(i.e(k, ct)) -]· k] + (' k}2 [A2+ 1/ 82/( (!( + 1)- (1- e)Cl} 
m de o l. pv L.J 2 _ 2 (k ) v lv o 4 o o o , 

a. wPIJ roo ' ct. 

V=1, 2, 3. (3.15) 

For the first and second terms in (3.13), using (2.6)-(2.8) and (2.17), we find respectively 

dIn ffi2 [ 2 "'1 (ke(k,ct)) (J.e (k, ct)) _. k]2 
-d- 8(!) L.J 2 2 (f ) ]v , \1=1,2,3, 

e a w - wo , ex 
(3.16a) 

N 8!2 

2 ~ [S.a (p)]2 (kepa)2 (l'hpa· k + f>tpa· -k), v = 4, ... , {}f2, (3.16b) 

~ (kepv)2 (blpv• k + 61pv• -k), \1 = {}j2 + 1, ... , {}; (3.16c) 

(dIn ffi2 [2e2ffi4 "'1 (ke) (i.e) (ke') (J.e') - (' k)2] = I 2 3 

I de N L.J (ffi" _ ffi2) (ffi• _ ffi'2) 8 lv • v • • • 
fa<>' 0 0 

~ (k(l)pv (r n))2 = { 8/2 
n I 5~1 [Sv& (p)] 2 (kep&)2 , v = 4, ... , fr /2, 

(3.17a) 

(3.17b) 

t(kepv}2 , v=fr/2+I .... ,fr. (3.17c) 

We have used the abbreviated notation 
p V=l e = e (f, a}, e' = e (f, a'), ffi~ = ffi~ (f, a), 

(!)~2 = ffi~ (f, a'). 

We go from (3.13) to the differential scattering 
cross section: 

Here f.1. is the mass of the neutron, k1 and k2 are 
the wave vectors of the neutron before and after 
scattering, 

(3.19) 
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In measuring the differential cross section 
(3.18) there is an unavoidable averaging over a 
small energy interval which nevertheless contains 
a macroscopic number of frequencies; the weighting 
function y(t.E -t.E') is determined by the experi­
mental resolution <J y(t.E -t.E') dt.E' = 1 ). We 
see that in this case y(t.E =t= liwpv) appears in the 
expression (3.18) for the cross section in place of 
the 6 function. In particular the transition from 
summation over the quasicontinuous spectrum to 
integration is done immediately. 

In order to solve the inverse problem, it is nec­
essary to separate out the part of the scattering 
cross section which is related to the scattering 
by the impurity nucleus and by the disturbed re­
gion in its vicinity. We look at the sum over v 
from 4 to J./2 in (3.18). Only the terms (3.16b) 
and (3.17b) contribute to it. Remembering that 
for an orthogonal matrix 

fl./2 

~ [Svo (p)J2 = I, (3.20) 
'J=l 

and also relations (2.10) and (2.14), we have 

&/2 fJ./2 

~ ~ ~ lSvo(p)l2 (kepo)2 (0tP8,k+cltP8.-k) 
V=4 0=1 

&/2 

= ~ ~ (kepo)2 (<'ltP5,k + 6tp5.-k) 
0=1 

&/2 3 

- ~ ~ {keps)2 ~ T]~1 (p) Ovep5) 2 (6tP5,k + 6tp5.-k); (3.21) 
0=1 V=1 

fl./2 &/2 .&/2 

~ ~ [S.s (p)] 2 (keps)2 = ~ (keps)2 

•=45=1 8=1 

&/2 3 

- ~ (keps)2 ~ T]~1 (p)(j_epo)2• (3.22) 
0=1 V=1 

The first term in (3. 21) and (3.16c) leads to the 
usual expression for the coherent scattering cross 
section 

d"a(O) (k 1'1£) 2-2 -w 
coh ' = f1 A Rk,e N ""· ( (k ))2 
dE dQ 4:rrNi4kt ~ xe ' CJ. 

"' 
1 

X hwo (k, ct) 6 (1'1.£ =f nroo (k, Cl.)}, (3.23) 

while the first term in (3.22) and (3.17 c) gives the 
usual expression for the incoherent scattering 
cross section 

X hwo (f, ct) 6 (1'1.£ =f nro0 (f, Cl.)) (3.24) 

of the original ideal lattice. (In deriving (3.23) one 
must consider that of the two vectors k and - k 
only one can belong to the region of summation over 
f, corresponding to half the fundamental cell of the 
reciprocal lattice.) 

Now we separate the coherent and incoherent 
scattering. To do this we use the idea developed 
in [8]: we assume that the differential cross sec­
tion (3.21) is measured as a function of t.E for 
fixed momentum transfer k = 27rb (where b is a 
vector of the reciprocal lattice). Then for t.E ~ 0 
the quantity d2a~0Jh(k = 27rb, t.E )/dEdQ is zero 
since w0( 27rb, a) = 0. At the same time the con­
tribution to the cross section of the second term 
in (3.21) vanishes. 

After substituting k = 27rb, the expressions 
(3.15) and (3.16a) give 

(3.25) 

D =[A (I- e) -A 0 l2 + 1/4 B~Ko (K0 + 1)- (1- e) C. 
(3.26) 

It is easy to see that if we neglect the anisotropy 
of the Debye-Waller factor, the cross section (3.18) 
for k = 27rb can be represented in the following 
form ( t.E "' 0): 

d2a (k d 2n:b, 1'1.£) I dE dQ = R·.,l·,lT1' (1'1.£), (3.27) 

where Tik(t.E) is a tensor with the symmetry of 
the crystal. By measuring the cross section in the 
general case for three values k = 27rb ( cf. [8]) 

which are not coplanar, we can find the principal 
values of the tensor Tik( t.E ) and consequently 
Sp T(t.E). 

For the case of uniaxial crystals it is sufficient 
to measure the cross section for just two different 
values k = 27rb, while for the cubic crystal only one 
value is needed. 

If the coherent scattering is small (A ~ 0 ), the 
need for fixing k = 27rb disappears. Measurement 
of the total cross section for three orientations of 
the single crystal which differ by cyclic permuta­
tion of the axes ( cf. [8, 9]) or for a polycrystal, 
again gives the value of Sp T ( t.E). 

Thus we shall assume that the value of Sp T ( t.E) 
is known and, on this basis we shall treat the con­
tribution to the cross section of the remaining 
terms (3.17a) and the second term in (3.22). Con­
sidering (2.12), (2.13), and (2.18), to within a mul­
tiplicative factor the contribution of these terms 
to the cross section (3.18) is given by the expres­
sion (including the average over a small energy 
interval) 
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3 -( J+lJ +t; ...., "l n (J)pv 2- 2 
Li LJ (J) r (6£ =F liwpv) 

0 v~l pv 

(3.28) 

We note that for the special case of a cubic crystal 
the three frequencies Wpv• v = 1, 2, 3, coincide. 
Keeping this in mind and also the relation (2.16), 
we immediately arrive at an expression of the type 
(3.28) after summation of (3.17a) over v. 

Using (2.25), the transformation (3.28) gives 

Changing from summation over p to an integration, 
and then integrating by parts, we finally get the 
expression 

3 

- 2J ~ dw2 az~~2 ) ; (w) + ~· :t 112 y (~E =F nw). (3.29) 
V=l 

Suppose that the relative concentration of im­
purity atoms is TJ. Then going to the cross section 
and taking it as usual per atom of the crystal, if we 
assume good resolution we get an expression of the 
form (3.27) with the following value of Sp T(~E) 
[cf. (3.25) and (3.29)]: 

SpT(~£) = SpT0(~£) + TJ SpT1(~£), (3.30) 

where Sp T0 (~E) is determined in an obvious way 
from (3.24), while 

(3.31) 

The last expression is obviously entirely due to the 
scattering from impurity atoms. [In deriving (3.31) 
we have used the relation (2.27).] 

In the case of a cubic crystal there is no need 
for three independent measurements, and we get 
directly 

d2~(l) (k = 2nb, /':,.E) = !i_ S T (!1£) 
dE dn 3 11 P 1 

- Rf12k2e-w [ 2 az (w2)][- 1 I J I 
- 2rr}n6kt T] Df (w) -C ()(;)2 n (w) + ~ ± ~ w=IUiflt. 

(3.31') 

As already mentioned, if the coherent scattering 
is small (3.31) and (3.31') hold for arbitrary k. Let 
E = 0. Then 

D =(A -A 0) 2 + 1/ 4 B~Ko (K0 +I) -·C; 
az. (w2) I aw2 = 0, f. (w2) = g(•> ( w2). (3.32) 

If the selected atom belongs to the isotopic mixture 

of the regular lattice, we find, by averaging (3.32), 
that D = 0 and expression (3.31) vanishes. 

If C « D, the need for calculating the contribu­
tion to (3.18) from (3.17a) and the second term in 
(3.22) disappears; the same remark applies to the 
averaging of the polarization vectors which is done 
only to simplify the final formulas. In this case we 
find from (3.25) and (3.26) that the cross section 
due to the impurity atoms is 

dJ(l) (k = 2nb, /':,.E) = R l kTlk ( "£) 
dE dQ T]X X 1 L\ ' 

(3.33) 

3 

T~k(~E) = ~2~~~~:~[~ j~j~f.(w2)][n(w)+ f±f]J , 
•=1 w=fLIEifll 

(3.34) 
D = [A (I- e) -A 0 J2 + 114B~ Ko (K0 + 1). (3.35) 

We see that the tensor Tik(~E) has a very 
simple form, directly accessible to analysis, while 
its principal values, which are again found by mak­
ing the required number of independent measure­
ments (three, two, or one, depending on the sym­
metry of the crystal), are equal to 

r•• (~£) f12k2e-wD f 2 r- 1 ± 111 
1 = 2n21i6k v (w ) n (w) + 2 2 . (3.36) 

1 . oo=ILIEI/11 

This case is of the greatest interest for the analy­
sis of the vibration spectrum of the crystal. 

4. SCATTERING OF SLOW NEUTRONS WHEN 
DISCRETE FREQUENCIES ARE PRESENT 

When condition (2.24) is satisfied, there are dis­
crete frequencies in addition to the quasicontinuous 
spectrum. Although the number of such frequencies 
is small, their relative importance for the scatter­
ing cross section corresponding to the impurity 
atoms is considerable, while in some cases they 
may play a decisive role. This is related to the 
fact that, because of their spatial localization, the 
discrete frequencies correspond to larger displace­
ment amplitudes of the impurity atom, comparable 
with or exceeding the total amplitude of its vibra­
tion in all the frequencies of the quasicontinuous 
spectrum. 

Formula (3.12), which was derived using only 
Eq. (2.1) and the orthogonality and completeness 
of its solutions, and all the remarks concerning 
the Debye-Waller factor which were made in the 
preceding section, are also valid here. The change 
is the appearance of a factor in the form of a Bessel 
function, since the displacement amplitude in a lo­
calized vibration does not have the factor """ N-112• 

It should be mentioned that when there are lo­
calized normal modes the question of strict degen­
eracy of such discrete frequencies plays a special 
role ( cf. [ 4]). In calculating the differential cross 



934 SCATTERING OF NEUTRONS BY CRYSTALS WITH IMPURITY NUCLEI 

section we are faced with the necessity of summing 
over all final states with a fixed energy, corre­
sponding to different occupation numbers of the 
localized normal oscillators, i.e., we must con­
sider multiquantum processes for such oscillators. 

In the case of scattering with I ~E I :S tiw0 max• 
i.e., when only phonons of the quasicontinuous spec­
trum are excited, we arrive at an expression for 
the square modulus of the matrix element which 
differs from (3.5) by the substitution 

3 3 

A nAn·~ AnAn• IT lo (X~hJ·), B~ ~ B~ Jr I o (X~~-J), 
1.=1 1.=1 (4.1) 

where for brevity we•have introduced the notation 

(I.) ""n (kCIIDI. (rn)) (kciiDI. (rn•)) h_1 nroDI. 
Xnn' = k,J S "'i'f'. 

(I.) 2rovl. V mnmn' 
(4.2) 

The symbol IT denotes a product over the vari­
A. 

ous discrete frequencies, ~ is a summation over 
(A.) 

all the normal vibrations corresponding to a given 
discrete frequency WDA.· In deriving (4.1)-(4.2), 
we have used the following summation formula for 
Bessel functions: 

co 00 s s 

~ · · · ~ II I n1 (Xt) = I m ( ~ Xt) , 
n1=--oo n5=-oo i=l i=l 

s 
~ nl=m 
1=1 

Similarly by using {3.2) we can write an expres­
sion corresponding to creation or absorption of a 
quantum of the discrete frequency WDv { I ~E I ) 
= tiwnv= 

Mv(·•) = ~ ~AnAn• exp {ik (rn- rn•)} 
n n' 

( wn + Wn') ( nwDv) (v) II' (1.) 
X exp - 2 exp ± 2T 11 (Xnn•) I 0 (Xnn'; 

l..;ov 

+ ~ ~B~Kn(Kn + l)e-wnexp ( ± n;;v) 
n 

X l1 (X~vJ) n lo (X~hJ). {4.3) 
A"'V 

But it is easy to see that for T « tiw 0 max the 
arguments of the Bessel functions in {4.2) are much 
less than unity, and consequently it is again mean­
ingful to expand as in {3.4); also 

lo= 1. 

On the other hand assuming that R' /tiw0 max < 1, 
these expansions can be used over the whole tem­
perature range in which the one-quantum approxi­
mation is valid. Considering this region, we find 
that all the results of the preceding section for the 

case of excitation of quanta of the quasicontinuous 
spectrum {I ~E I) :S tiw 0 max) also remain valid in 
the presence of discrete frequencies. 

We note that in the limiting case of m 0/m « 1, 
which corresponds to a marked localization of the 
normal vibrations for the discrete frequencies, it 
is useful to keep the true value for w0• In other 
words, in this case when using the formulas of the 
preceding section it is sensible to make the re­
placement 

3 3 

A~-w~ A~-w, II /0 {X~~)), B~e-w ~ B~-w, II I 0 (X~~\ 
V=l V=l 

{4.4) 

leaving the other terms unchanged [including those 
linear in A -cf. (4.1)-{4.2)]. Obviously because 
of {2.30) and {4.2), 

(4.5) 

Now we determine the cross section for scatter­
ing with excitation of a discrete frequency. In view 
of the above remarks, the derivation is analogous 
to that in the previous section for the quasicontinu­
ous spectrum. The difference is that the only con­
tributions to the cross section {3.18) in this case 
come from {3.15), {3.16), and {3.17a), where w2 

= wbv· The result is 

""(~e (k, et)) Ove (k, et))) _A (. :~e)] 2 + [_!_ B2 v (K + I) 
X "-! 2 2 (k ) o 1v 4 0'\o o 

a C.ODv- roo 'a 

Expression {4.6) actually determines the total 
0ross section for scattering of neutrons by the 
lattice {I ~E I > tiw 0 max), excluding the multi­
quantum background, which we are neglecting { cf. 
below). There is therefore no need for additional 
conditions { k = 21rb ) for eliminating the coherent 
scattering. Nevertheless, to simplify (4.2) we shall 
fix k = 27Th, or assume that k is arbitrary, but suf­
ficiently small so that 

{4. 7) 

As a result we get 

(4.8) 
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for the case of a crystal of arbitrary symmetry, 
and 

(4.9) 

for the case of cubic symmetry. The value of the 
quantity d ln wbv/dE is determined by (2.32) or 
by the expression (2.33), using (2.20). 

The procedure for obtaining (4.8) is the same 
as in the preceding section-one uses a polycrystal 
[with A ~ 0 and arbitrary k, or with arbitrary A 
and k satisfying (4.7)], or measures the cross sec­
tion for the appropriate number of independent val­
ues of k (equal to 2rrb or satisfying (4. 7)) using a 
single crystal. 

The excited states of the discrete normal oscil­
lator exist for a finite time even when T = 0. In­
troducing a width for the excited state rnv. and 
approximating the instrument resolution curve 
y (~E -~E') (cf. the preceding section) by a 
function of Lorentz type with characteristic pa­
rameter r, we get expressions which differ from 
(4.6), (4.8)-(4.9) by the replacement 

As direct calculations show, the ratio rn/tiwn 
for T « @ is of order 10-2, while it is even much 
less for w0 > 2w0 max· Thus for sufficiently good 
resolution, when ~E = tiwnv one should see sharp 
peaks. Obviously from the area under the peaks 
one can determine the corresponding values of 
d ln wbv/dE. 

When ~E > liwomax• in addition to one-phonon 
scattering corresponding to the discrete levels, 
one will also see two-phonon scattering. The pos­
sibility of observing neutron scattering with exci­
tation of discrete levels is obviously essentially 
connected with the assumption that the two-phonon 
scattering is small. Let us estimate the cross 
section for such a process. 

Let the one-phonon scattering from the ideal 
host be primarily coherent. Then, computing the 
cross section for the two-phonon process for k 
= 2rrb, we find 

d'cr.(k = 2:rtb, liE) _ [L2A;k2 -w (!i_ 12, 1, (liE) r- (·liE)+ 1] 
dE dQ :rt21i5k, e liE) "' li n li • 

6.£> 0, (4.11) 

where 1/J( w) is the normalized distribution function 
for the frequencies in the phonon spectrum. 

Analysis of (4.11) shows that the cross section 
for two-phonon scattering, compared toR times 
(4.8), (4.10) [or (4.9), (4.10)] contains the small 
parameter R/ ~E. while for sufficiently good reso­
lution it contains another small parameter 
rnv/liwomax· Thus by suitably choosing the 
parameters of the impurity nucleus and limiting 
the temperature one can comparatively easily 
guarantee conditions in which one will observe 
sharp peaks in the cross section corresponding 
to discrete levels, with a low concentration of 
impurity atoms. 

We note that for a large mass difference 
(m0/m « 1) the values of the cross section for 
two-quantum excitations of localized oscillators 
also become significant. Thus in addition to the 
maxima in the scattering cross section for ~E 
= liwDv• satellites should appear at ~E = 2tiwnv• 
etc. (~E > 0 ). 

5. DISCUSSION OF RESULTS 

The results obtained in the preceding sections 
allow us to analyze what information concerning 
the vibration spectrum can be gotten from meas­
urements of the cross section for scattering of 
slow neutrons by crystals containing isolated im­
purity atoms. 

The decisive point for the inverse problem is 
the possibility of separating out the actual cross 
section for scattering by the impurity atom and 
the disturbed region which is produced around it. 
The problem is solved most simply if one can use 
impurity nuclei whose scattering is anomalously 
large in the energy region of interest. Several 
isotopes with low-lying resonance levels are known 
at present. But the energies of all these levels are 
of the order of one eV, so that the use of these iso­
topes requires the development of a special experi­
mental technique. 

If, however, the total scattering from the im­
purity nuclei does not predominate, the problem 
of separating out d2a<1) I dE dQ is more complicated. 
To isolate the coherent scattering one must meas­
ure the scattering cross section of single crystals 
as a function of ~E for fixed momentum transfer 
k = 2rrb. If the coherent scattering is negligibly 
small, the measurement can be made on a poly­
crystal, where a complete averaging of the polari­
zation occurs ( cf. [B] and also Sec. 3 ). Thus in 
both cases we at least get the quantity (3.30), and 
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if d2u<1>/dEdQ is comparable to d2crf~c/dEdQ, 
the quantity 7J Sp T1(.6.E), which is what we want, 
can be separated out. 

But the most interesting question is whether, 
from experiments on scattering of neutrons by 
crystals with low impurity concentrations, one 
can establish the distribution function for the 
squared frequencies of the initial ideal lattice, 
(2.22). 

The possibility of separating d2cr<1>jdEdQ when 
7J « 1 definitely assumes that 

D ';';i> C. (5.1) 

In this case, as shown in Sec. 3, measuring the 
cross section for three noncoplanar values of k 
= 27rb (for uniaxial crystals two independent meas­
urements are sufficient, for a cubic crystal, one) 
for a fixed value AE ""- 0, one can find the princi­
pal values of the tensor Tik(AE) of (3.36) and 
consequently the quantities fv( w2 ). The existence 
of the functional relation (2.28) between fv( w2 ) 

and g< V) ( w2 ) then allows us to get g< V) ( w2), and 
thus we can affirm that it is possible to determine 
g ( w2 ) • (To calculate the integral appearing in 
(3.28) in first approximation one can use some 
simple model, and then use the method of succes­
sive approximations. ) 

One should remember that the whole theory is 
based on the assumption that the force constants 
are unchanged by the introduction of the foreign 
atom. But when the masses m 0 and m are mark­
edly different, one can apparently neglect changes 
in the force constants ( cf, also [ 4J), so that this 
assumption becomes completely reasonable. 

A very important point is the possibility of de­
tecting from experiments on scattering the presence 

of discrete frequencies and to determine their 
magnitude as well as the quantity d ln wbv/dE. 
Agreement between the experimental values of 
wnv and those which are computed from the solu­
tion of (2.20), or, for a cubic crystal, are given by 
the equation 

(5.2) 

would serve as a good confirmation of the correct­
ness of the initial assumption of unchanged values 
of the force constants. In solving (2.20) we can 
again choose g< v) ( w2) from some crude model. 
If WDv is sufficiently high, to find it (as shown 
in [3,4]) it is sufficient to know only the first mo­
ments of the function g< V) ( w2 ), which can be de­
termined to good accuracy by an independent 
method. In particular, in the case of a cubic crys-

tal the first moment ( w2 ) can be found from the 
deviation of the specific heat from its classical 
limit at high temperatures. 

We remark that there is particular interest in 
determining g(w2 ) for a host with very weak one­
phonon incoherent scattering. 

If Eq. (5.1) is not satisfied, we must use for D 
the general expression in the form (3.26). From 
the form of this expression it follows that one can 
get a marked increase in d2cr<1>jdE dQ by using 
heavy impurity atoms ( m 0 /m » 1 ) , or by using_ 
atoms for which A0 has the opposite sign from A. 

As shown in earlier papers of the authors, [a, 4] 

when m 0 /m » 1 the quantity fv (2.28) has a strong 
resonant character: 

where 
ro• 

X=-2--' 
ffiomax 

(5.3) 

nd. 
Av = 'I . I s!'l• <x-l)v' 

(5.4) 

The symbol ( ... )v denotes an average with weight 
g<v) (2.21), so that 

dv is a constant determined from the low frequency 
limit (x « 1) of the function g(V)(x), which has 
the form 

g(•) (x) = d. Vx · 
Because of this, the cross section for one­

quantum excitations (3.33)-(3.34) will be localized 
in a narrow energy interval around 

nroomax 
!:lE = 'I 'I ' I sl '(r'>v' 

(5.5) 

while the intensity at the maximum will be ~ 1/A.v 
times the usual scattering cross section from the 
impurity centers. Apparently this case is very 
favorable for detecting the one-quantum scattering 
of neutrons from impurity atoms when their con­
centration is low. 

We remark that in the case considered the two­
quantum ( multiquantum ) excitations may become 
important, which will correspond to peaks in the 
neutron scattering cross section for 

1 I. M. Lifshitz, JETP 17, 1017, 1076 (1947); 18, 



Yu. KAGAN and Ya. IOSILEVSKii 937 

293 (1948); Usp. Mat. Nauk 7, 171 (1952); Nuovo 
cimento 3, Suppl. #4, 716 (1956). 

2 E. W. Montroll and R. B. Potts, Phys. Rev. 
100, 525 (1955). E. W. Montroll, Proc. of the Third 
Berkeley Symposium on Math. Statistics and Prob­
ability, Univ. of California Press, 1956. Maradudin, 
Mazur, Montroll, and Weiss, Revs. Modern Phys. 
30, 175 (1958). 

3 Yu. Kagan and Ya. A. Iosilevskil, JETP 42, 259 
(1962), Soviet Phys. JETP 15, 182 (1962). 

4 Yu. Kagan and Ya. A. Iosilevskii, JETP 44, 284 
(1963), Soviet Phys. JETP 17, 195 (1963). 

5 M. A. Krivoglaz, JETP 40, 567 (1961), Soviet 
Phys. JETP 13, 397 (1961). 

6 A. Akhiezer and I. Pomeranchuk, Nekotorye 
Voprosy Teorii Yadra (Some Problems of Nuclear 
Theory) Gostekhizdat, 1950. 

7 G. Szego, Orthogonal Polynomials, American 
Math. Society, New York, 1959. 

8 Yu. Kagan, JETP 42, 1375 (1962), Soviet Phys. 
JETP 15, 954 (1962). 

9 Yu. Kagan, JETP 40, 312 (1960), Soviet Phys. 
JETP 13, 211 (1961). 

Translated by M. Hamermesh 
219 


