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The mechanism is analyzed and a quantitative theory is developed for the high-temperature 
diffusion viscous flow of polycrystalline bodies at low stresses. The role of slip along grain 
boundaries during their motion and diffusion deformation is explained. The viscosity coef­
ficient tensor, which depends on the structural anisotropy of the substance (grain shapes and 
sizes) and on the magnitude of resistance to slip along grain boundaries, is derived. In addi­
tion to the exact value of this tensor, simple interpolation formulas are given which permit 
investigation of the general flow equations. By way of example the kinetics of the filling-up 
of a spherical pore under pressure is considered. A study was made of the effects accom­
panying the process of diffusion-viscous flow: the appearance of nonuniform stress fluctua­
tions in a single grain (stresses of the second kind), variation of the macroscopic elastic 
moduli during flow, etc. The limits of applicability of the theory are discussed. 

1. MECHANISM OF DIFFUSION-VISCOUS FLOW. 
STATEMENT OF THE PROBLEM 

IT is known that, apart from the plastic flow of 
crystals, which is a threshold effect and occurs 
under sufficiently high loads, there is also a dif­
fusion-viscous flow in solids at arbitrarily low 
stresses. The latter process is due to the dif­
fusion of vacancies and is important only at high 
temperatures when this diffusion is sufficiently in­
tensive. Strictly speaking, this process is domi­
nant only at low stresses when all the other mech­
anisms of a threshold nature (in particular the 
formation and motion of dislocations) are inactive. 

The basic idea of the mechanism of diffusion­
viscous flow was first put forward in the work of 
Nabarro [ 1] and Herring; [ 2] the latter work gives 
calculations and estimates for some typical cases 
of such flow. However, neither Nabarro nor Her­
ring allowed for some important factors. Conse­
quently there were many obscurities in their pic­
ture of the process as a whole and in the conditions 
for its appearance, their estimates were not always 
valid. In the present work this mechanism is ana­
lyzed from a somewhat different point of view and 
a derivation is given of a complete system of equa­
tions describing the process of diffusion-viscous 
flow in the general case. At the same time the 
concomitant phenomena, typical of the mechanism 
of diffusion-viscous flow, become clear. 

The first assumption in the mechanism of dif­
fusion-viscous flow is that the surfaces bounding 

structural units in a real crystalline body (separate 
grains in a polycrystal or separate blocks in a 
coarse-mosaic single crystal) are virtual sources 
and sinks for vacancies. In a perfect crystalline 
lattice a vacancy cannot be generated or annihilated 
by itself but a sufficiently defective surface repre­
sents, as it were, an "amorphous" layer which is 
capable of reversible rearrangement when some 
vacancies reach it: it becomes as it were "com­
pressed'' to its initial density and vacancies disap­
pear. 1l 

On the basis of this assumption the mechanism 
of flow is as follows: in a body subjected to a 
macroscopically uniform but anisotropic stress 
Uik• various normal stresses Uiknink (n is the 
vector normal to the surface) act on various por­
tions of crystallite surfaces. Consequently near 
these surfaces the extent of saturation with vacan­
cies varies: the chemical potential 1-1. of a vacancy 
at the surface (which is a virtual source of vacan­
cies) will, by virtue of the equilibrium between the 
annihilation and generation of vacancies, be equal 
to 

11- flo = kT In (c/c0) (1) 

( c 0 is the equilibrium concentration of vacancies 
at p = 0; 1-'o is the chemical potential for the con­
centration c0; w0 is the volume per unit vacancy); 

1lAn analysis of the conditions under which a block boun­
dary can be considered as a surface with virtual sources is 
given in Appendix 1. 
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hence the value of the vacancy excess ll.c = c - co 
is determined by the relationship 

(2) 

The resultant concentration gradients within a grain 
give rise to diffusion currents of vacancies (or equiva­
lent currents of atoms in the opposite direction). 
These currents produce a change of the grain shape 
without a change of its volume. The characteris­
tic feature of this process is the absence of macro­
scopic diffusion currents in the body as a whole 
and the presence only of complex microscopically 
nonuniform currents within each grain. 

Deformation of the whole crystalline body con­
sisting of a very large number of grains is a self­
consistent process in the sense that discontinuities 
are not produced at the grain boundaries and the 
diffusion-viscous deformation of a particular grain 
depends on the deformations of the grains which 
surround it. The analysis given below shows that 
this necessarily produces stress fluctuations within 
each grain (stresses of the second kind) in spite of 
a macroscopically uniform stress state of the whole 
sample. 

The self-consistent change in the shape of the 
grains is the result of the directional motion of 
their centers of gravity which produces macro­
scopic changes in the shape of the body (flow). 
This displacement of the centers of gravity of the 
grains in diffusion-viscous flow is similar to the 
displacement of molecules in the process of the 
viscous flow of liquids, and is necessarily accom­
panied by slip along grain boundaries. 

If we introduce an average value of the stress 
tensor Pik = a ik in a small macroscopic element 
of volume containing a large number of grains, and 
also an average value of the velocities of displace­
ment of particles in this element Vi = vi, then a 
macroscopic description of the process of flow is 
equivalent to the establishment of a relationship 
between the tensor Pik and the rate-of-deforma­
tion tensor Vik = 1/ 2 ( &V/&xk + &Vk/&xd. In the 
general case of quasi-steady-state flow such a 
relationship should have the form 

Vu = 0, (3) 

where the viscosity tensor O!iklm is governed by 
the sizes and shapes of the grains, i.e., by the 
"structural anisotropy" of the polycrystal. 

The equation of continuity Vii = 0 characterizes 
the aforementioned constancy of the grain volume 
and the absence of discontinuities. In the simplest 
case of structural isotropy O!iklm reduces to a 
scalar TJ and Eq. (3) becomes 

- p = p 11 /3. (3a) 

According to Eq. (2) the variation of the vacancy 
concentration oc on the grain surface is governed 
by the non-spherical (shear) part Pik = Pik + pc5ik 
of the stress tensor: oc = c0w0p' /kT. Therefore, 
the rate of deformation related to the diffusion 
currents h = D0&c/axi should be of the order of 
magnitude of 

V;k ~D0a2c/3x;axk ~Dobc!L2 ~ p'Doe0wofL2kT 

( L is the grain size). This gives an estimate of 
the expected magnitude of the viscosity tensor 

O!iklm: 

U;ktm ~ 1J ~ kTL2/Dw 0, D = Doeo 

(Do is the vacancy diffusion coefficient and D is 
the atomic self-diffusion coefficient). We shall 
see, however, that this estimate is valid only in 
the case of free slip along grain boundaries. 

The macroscopic coordinate dependence of the 
tensors Pik and Vik is determined by the equili­
brium equation 

(4) 

which, together with Eq. (3), forms a complete sys­
tem for the determinationofthe four quantities vi 
and p0: 

apo a avt 
ax. + (fX Uikfm ax- = 0, 

' k m 
div V = 0. (4a) 

Thus our problem reduces to the derivation of 
Eq. (3) and the determination of aiklm in terms 
of the structural anisotropy of the polycrystal 
and the properties of the grain boundaries. 

2. SELF-CONSISTENT DISPLACEMENT AND 
DEFORMATION OF GRAINS. ALIGNMENT OF 
STRESSES. ROLE OF SLIP ALONG GRAIN 
BOUNDARIES. 

We shall consider a macroscopically uniform 
portion of the polycrystal (large compared with 
the grain dimensions) with given constant values 
of the average quantities Pik and Vik (Vii = 0). 
We shall select a microscopic element of volume 
(small compared with the grain dimensions) and 
follow its motion. The mass-current density, or 
in other words the average velocity v of this ele­
ment, consists of a part va, related to the motion 
of the grain as a whole, and a part related to the 
vacancy-diffusion current j = - D0\7c; since the 
current of atoms is equal to the current of vacan­
cies in the opposite direction, then 2> 

2'Hereafter we shall assume that the diffu&ion coeffi­
cient is isotropic. 
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V=v"+D0 'Vc. (5) 

From the continuity condition it follows that at 
the boundary of two grains denoted by a and {3 the 
normal components of the velocity Vn should be 
equal. According to Eq. (5) this gives the expres­
sion 

ac I ac I {l " Doarz a. -Doan ll = Vn-Vn, (6) 

which represents the conditions for self-consistent 
motion of the grains and diffusion currents. 

Since the concentration of vacancies is very 
small, only a negligibly small deformation ( ~ c0) 

can take place during the time necessary to estab­
lish a quasi-steady-state diffusion current, and con­
sequently during the whole process the distribution 
of vacancies is given by ~c == 0 (according to Eq. 
(5) this means div v == 0). 

For convenience in later treatment, instead of 
the concentration of vacancies we shall use a 
potential proportional to it 

cp = !1- !lo/Ctlo = (kT /CoCtlo) (c- Co)· (7) 

As mentioned above, the potential cp is governed 
by the equation 

Llcp = 0 (8) 

and by the boundary conditions at the surfaces of 
separation of the grains 

6 (~~)Is = ~~ /"- ~~ Ill= x (v~--, v~), x = ~:0 • (9) 

Moreover, according to the equilibrium condi­
tion of Eq. (1) the value of cp at each point on a 
grain boundary represents the normal stress at 
that surface 

cp Is= Onn• (10) 

Strictly speaking, the equilibrium condition of 
Eq. (10) in the presence of currents ~ Vcp should 
be replaced by the dynamic condition cp I s - u nn 
== A.acp/an. However, if the natural assumption is 
made that A. ~ a (a is the lattice constant), the 
term A.acp/an may be neglected. 

An important conclusion follows from the condi­
tions formulated above: since the conditions of Eqs. 
(9) and (10) cannot be satisfied independently, then 
for the quasi-steady-state flow to appear, a pre­
liminary alignment of the stresses near a grain 
boundary should occur, making Eqs. (9) and (10) 
compatible. This can easily be explained by a sim­
ple example: let us consider the diffusion-viscous 
compression of a single~crystal cube under the 
pressure p of a perfectly hard piston (Fig. 1). 
Obviously the upper face of the cube can be dis-

FIG. 1 

placed only as a whole. Initially the normal stress 
u nn at all points of this face is constant and equal 
to - p; consequently cp == - p at the upper face and 
cp == 0 at the lateral faces. This means that very 
strong diffusion currents appear near the corners 
and weak diffusion currents in the center. Since 
the rate of displacement of the boundary cannot 
match these currents at each point, elastic defor­
mations appear on the surface due to the redistri­
bution of atoms when the boundary position is fixed. 

Then ann is no longer constaht in the boundary 
and only ann== - p; in particular the pressure de­
creases near the corners, becoming zero at the 
corner. Steady-state motion of the piston is 
achieved when the pressure distribution over the 
surface is such that the diffusion current is con­
stant at all points on the upper face. 3) 

Thus the initial elastically uniform state of the 
body is destroyed in the process of establishing 
diffusion-viscous flow and is replaced by a com­
plex distribution of stresses inside each grain 
(stresses of the second kind). It is necessary to 
emphasize particularly that the stresses of the 
second kind appearing in diffusion-viscous flow 
are not identical to the stress fluctuations in poly­
crystals due to the elastic anisotropy [ 3] of the 
separate crystallites, and may even occur in the 
isotropic model. The actual distribution of these 
stresses will be considered below. 

A second important point in the characteristics 
of the stressed state is related to the role of slip 
along ''amorphous'' layers at grain boundaries. 
It follows from Eq. (10) that the potential cp and 
consequently also its tangential derivative are 
continuous at the grain boundary. This means, ac­
cording to Eq. (5), that the tangential components 
of the velocity Vt have a discontinuity at the 
boundary 6vt Is== vf - vf (here 6vt Is is the 
velocity of slip along the boundary). Thus the 
self-consistent change of the shape of blocks and 
their displacement in the process of diffusion­
viscous flow are necessarily accompanied by slip 
along boundaries. (Obviously for an arbitrary 
grain shape the vanishing values of all vf - vf 

3> An analysis of the process of stress "alignment" and 
of the concomitant phenomena will be given in a separate 
communication. 
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mean that for all grains va. = 0 and nothing can 
occur except a directional diffusion current in the 
body as a whole. ) 

An estimate of the tangential stresses rJ tn at 
the boundary due to flow can be obtained from the 
following considerations: we shall represent the 
viscosity of the "amorphous" layer at the boundary 
by a coefficient 7JS and relate it to the resistance 
to slip by the self-evident equality 

(a is the lattice constant). Obviously vf - vf 
r:::: LVik r:::: Lori nn/77°a, 17° r:::: K L2 ( L is the grain 

(11) 

size, Orinn is the variation of rinn along the bound­
ary) consequently 

(lla) 

The viscosity of the amorphous layer is clearly 
independent of the grain size and for a sufficiently 
defective boundary (at high temperatures) its 
order of magnitude is 7JS r:::: Ka2 r:::: kT/Da. This 
gives us an estimate ritn Is r:::: aOrinn/L, i.e., in 
practice rJ tn I s = 0. Thus in this case the distri­
bution of stresses is given by the condition (10) for 
the normal stresses, and by zero values of the 
tangential stresses at the surfaces of separation 
between the grains. 

However, if the surface of separation between 
the grains is insufficiently amorphous, then slip 
may be greatly impeded and the estimate 7JS r:::: K a2 

is no longer valid. If 178 is so large that 7JsL/ a77° 
~ 1, then according to Eq. (lla) the tangential 
stresses are very large: 

In this case the rate of deformation is limited 
by slip. A simple estimate of the non-spherical 
part of Pik gives 

i.e., the effective viscosity of the polycrystal 17* 
is considerably greater than the expected value 
17 = 17°. The estimate (lla) shows that in this case 
the normal stresses are practically constant at 
the boundary 

" T]o a Tla a , ~ , 
uOnn ~- - Otn ~ -- P ~ P . 

Tls L TJs L 

Therefore, the diffusion currents are much smaller 
than the estimate in the preceding case and "align" 
themselves automatically with the deformation rate 
governed by the possibility of slip. 

3. SOLUTION OF THE DIFFUSION PROBLEM. 
CALCULATION OF THE VISCOSITY TENSOR 

Let us return now to the diffusion problem. 
Equation (8) with the condition (9) corresponds to 
the electrostatic problem of the potential distribu­
tion in the presence of a network of surface charges 
with density 47Tq = - K ( vg - vg). Its solution has 
the well-known form 

\ qdS 
q> (r) = Cjlo + J R' , R'=R-r. 

where integration is carried out over the whole 
network of surfaces of separation ( R is the inte­
gration variable, and cp 0 is constant because of 
the macroscopic uniformity and is determined be­
low). 

The basis of the derivation (given below) of a 
relationship between Vik and Pik is that, by se­
lecting fixed values of Vik• we can find the average 
stresses in the medium during flow. Consequently 
before proceeding further it is necessary to relate 
the velocities of motion of individual grains to the 
macroscopic deformation-rate tensor V = Vik· 

When the deformation is completely uniform the 
velocity at the point R is V = VR, where Vi 
= VikXk, taking account of the rotation of the me­
dium as a whole; consequently if Ra. is the coordi­
nate of the center of gravity of the a-th grain, 
then 

(12) 

where ua are the random deviations of the velocity 
of motion of the a-th grain from the average value 
of the velocity of matter at this point ( ii = 0). 

Taking into account the fact that vector normals 
to the surface of each of neighboring grains have 
different signs at the surface and using Eq. (12), 
we transform the expressions for qct/3 into the 
form 

q"fl = q"- + qfl =- (x/4n) (v"na + vfln/3) 

=- (x/4n) [(v"- VR) na + (vfl- VR) ni3J. 

4nq"' = xV;k £~ n;- xufn~, ;"" = R- Ra. (13) 

Here ~a = R - Ra. are the coordinates of a point 
on the surface of separation, reckoned from the 
center of gravity of the corresponding grain. 
Therefore 

\ qdS = "(" qa dSa = ~ "{·V· \ n; ~k dSa _ \' uf nf, dSa } 
~ R' ..<::.l J R' 4n ..<::.l tk J R' .) 

a a a a. Ra 

(14) 
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where dSa is an element of area on the surface of 
the a-th grain, and &la is the volume of this 
grain. 

For an arbitrary scatter of the shape and di­
mensions of the grains, the random deviations of 
the grain velocities ua are, in general, not equal 
to zero and should be determined from the require­
ment that the total force and momentum acting on 
each grain separately should vanish. 4l In order 
to eliminate the quantity ua, we shall consider 
first a portion of the medium consisting of equiva­
lent grains ( cf. the plane model in Fig. 2). In 
spite of some elements of artificiality in this 
model, it allows us to introduce a description of 
the structural anisotropy in terms which are re­
lated to the shape and dimensions of the grains 
and the nature of the grain packing. Obviously, 
because of the equivalence of the grains, there are 
no random deviations of the velocity ( ua = 0). 

~. · m.·.·.e····. . . . . . . . . . . . . . 
a b b' c 

FIG. 2 

This means that, in particular, the discontinuity 
acp/an at the boundary between the grains a and 

{3 has the simple form 

(15) 

Raf3 = Ra - Rf3 is the distance between the centers 
of gravity of the neighboring grains. Consequently, 
according to Eq. (14), we have the following exact 
formula for the potential: 

<p (r) = IPo + xV;k 'ljl;k (r) (Vii= 0), 

1 \ a ( 1 ) (16) 
'ljl;k (r) = 4n ~ ~ Sk a~; R~ d;. 

n 

Integration in Eq. (16) is carried out over the 
volume of one grain. If the origin of coordinates 
r = 0 is taken at the center of gravity, then Ra 
represents the vector in a lattice based on centers 
of gravity of the grains. 

To obtain the required relationship (3) we have 
to express the magnitude of the average stresses 
in a grain Pik in terms of the potential cp and the 

4lEach quantity ua is specified by two constant vectors 
u~ and wa: ua = u~+ [wax ~a], representing the relative ve­
locity of the center of gravity of the grain and the angular 
velocity of the grain. Thus the number of conditions for me­
chanical equilibrium is the same as the number of unknowns. 

deformation velocity Vik• taking into account the 
equalities (10) and (11). It is known that the aver­
age value Pik = CT ik is expressed in terms of sur­
face forces fi by the formula 

P;k = ~0 ~X; fk dS. 

The normal component, fn = CTnn Is, and the tan­
gential component, ft = CT tn I S• of the force are 
given by Eqs. (10) and (11), and hence 

( &l 0 is the grain volume, and Rf3 is the distance 
between the centers of gravity of adjoining grains). 

Finally, allowing for Eq. (16), we obtain 

Thus the viscosity tensor consists of two com­
ponents, one of which represents diffusional vis­
cosity in the case of zero resistance to slip, and 
the second is entirely due to this resistance. In 
order of magnitude 

We have seen that in the case of easy slip ( amor­
phous surface of separation) 7JS R:< K a2 and 17* /11° 
R:< a/L «: 1; then aiklm = a~klm. In the case of 
strong resistance to slip 17* /11° ~ 1 and aiklm 

* = aiklm· 
The expression for aiklm can be simplified by 

an approximation (averaging process) consisting 
of replacing the vector R{3, which connects the 
centers of gravity of adjoining grains to the point 
r, by double the distance to the point of contact: 
Rf3 ( r) R:< 2 r. This gives 5l 

(17a) 

Thus, for a spherical grain of radius R the tensor 
* ll!iklm reduces to the scalar 17* = 27JsR/5rra. 

Let us now analyze the diffusion component 
a~klm· In the present work we shall consider 
mainly the case of easy slip (reasonably defective 
boundary) and, therefore, subsequently, unless 

5lHere and subsequently the quantity aik!m should be 
made symmetrical for each pair of the indices i,k and l, m, 
if this symmetry is lost in the approximate formulas (17a), 
(18a), etc. 
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otherwise specified, we shall assume aiklm 
= a~klm. It follows from Eqs. (16) and (17) that in 
this case 

(18) 

It should be noted that since the coordinates x and 
~ in the integral (18) are reckoned from the center 
of gravity of a grain ( JooXdx = Jo 0 ~ d~ = 0), the 
terms of the series (18) decrease as R-5 and the 
series converges very rapidly. Therefore, in the 
majority of cases, satisfactory accuracy is ob­
tained by taking from the exact formula (18) one 
term of the series with Ra ( cf. footnote 5'): 

Cl.iklm = 4:rt~o ~ ~ X; ~m ox~~£1 I X-=- s I dxds. (18a) 
Oa Oo 

Transforming to the nondimensional coordinates 
Xi - Xi Q. 613, ~ i - ~ i Q. t/3, We Obtain 

aiklm = 1JY;kzm, 1J = kTQ'.j•!Dw 0 , 

Y;kzm= 4~~~x;~m ax:~£1 lx-=_sl dxds, (19) 
.,., 

' where the integrals Yiklm are taken over a non­
dimensional portion w of a grain of unit volume 
and represent numbers which depend only on the 
grain shape. 

An interpolation formula, which makes it possi­
ble to generalize the expression for the viscosity 
tensor to the case of an arbitrary distribution of 
grain shapes and dimensions, is obtained by aver­
aging the expression (18a) over this distribution. 
The meaning of such averaging may be obtained 
from two points of view. On the one hand, such 
averaging is exact for a packing model with grains 
varying in size and shape slowly from point to 
point (the changes being random). On the other 
hand, in the exact formula obtained from Eq. (14) 
for the general case, averaging involves neglecting 
the grain velocity fluctuations ua. Thus, for ex­
ample, if we represent the grain distribution by 
the probability W (x, ~) dxd~ that two points, 
separated by the distances x and ~ from the cen­
ter of gravity of the grain, belong to this grain, 
then the tensor aiklm can be written in the form 

CX) 

x r~ a• 
OC;klm = ~ \ W (x, S) X; ~m 0 o£ 

4:nQ • xk 1 
-oo 

CX) 

Q= ~~W(x, s)dxds. ,(20) 
-oo 

It should be noted that the tensor aiklm is 
specified, correct to terms of the type Aik<'> zm 

and <'>ikBZm• since AikVZZ disappears because of 
the condition Vzz = 0 and oik(BzmVzm> can be 
taken back to the first term in Eq. (3). Therefore 
Eq. (18a) can be written in another form: 

(18b) 

where the integral is taken over the grain surface, 
and dSk = nkdS. 

A convenient method of investigating the aniso­
tropy of aiklm is based on the Fourier represen­
tation of the integrand in Eq. (18a). Simple trans­
formations, using the equality 

give 6' 

Q = ~ eikxdx. (18c) 
g, 

Thus, for spherical grains, Q depends only on the 
modulus of k and the tensor aikZm• being isotropic, 
reduces to the scalar of Eq. (3a) . 

For very strong grain-shape anisotropy, for 
example in the case when the grains are greatly 
elongated along one direction ( C/ A>> 1, where 
C is the length of the grain and A represents its 
transverse dimensions), it is insufficient to use 
in Eq. (18) only the term with Ra = 0: it is neces­
sary also to retain the terms with Ra :>::l C in the 
transverse direction. 

On the basis of the equality V zz = 0 it can be 
easily shown that in the case of axial symmetry 
there are only three independent components of 
aiklm· If x3 is the selected axis, then 

Pas= Po + 1JsVss; Pa.3 = 1J2Vas, - P =Po++ (1Js -1]1) V33 -

(21) 

A simple analysis of the expressions in Eq. (18) 
shows that when C ~A the orders of magnitude 
are given by 7Jt ~ KA2, 7]2 ~ KAC, 7Ja ~ KC2 • 

4. EXAMPLE: THE CASE OF A PARALLELEPI­
PEDAL STRUCTURE 

In spite of the relatively compact form of Eqs. 
(18a)-(18c) for the tensor aiklm• these formulas 

6Jit should be noted that a similar representation of the 
exact formula (18) reduces to a substitution of integration over 
the space k in Eq. (18c) with summation over the points H, 
where H are vectors of the reciprocal lattice with respect to 
Ra. 
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are far too complicated for practical applications. 
Therefore, we shall consider here one case which 
can be solved exactly, giving the simplest expres­
sions for the viscosity tensor. We refer to the 
rectangular parallelepiped grain shape and pack­
ing of the type shown in Fig. 2c. 

If the edges of the parallepiped are of lengths 
2A1, 2A2 , 2A3, then, according to Eq. (15), the dis­
continuity of the derivative 8cp/8n at the grain 
boundaries is given by 

i = I, 2, 3 (22) 

where N is an integer. 
It is easily seen that the periodic harmonic 

function satisfying the conditions of Eq. (22) (in 
each grain the coordinates Xi are reckoned from 
its center of gravity) is 

<p (r) = <p0 + f- x (V 11Xi + V 22X~ + V aax;), 

For Pik the formula (17) gives 

P,k = P/Jtk + + x 6,kvkk At 

-P=P1113=Po + 6, 

Vu= 0. (23) 

Po = <p0+ 6/2, 
(24) 

and, therefore, the nonspherical part of the stress 
tensor Pik = Pik + p6ik is 

P~1 =Pu+P=-txe++xVIiA~, =I, 2, 3, 

Vu = p;, + ~ P~k Ak:2 / ~ Ak:2 • (24a) 
k k 

The relationships in Eq. (24) express the re­
lationship being sought between the stresses and 
the deformation rate Vik· We shall consider 
especially the case A1 = A2 = A, A3 = C: 

Paa =Po+ ; Vaa C2, 

Then 
' X 2C2 + A2 

P 33 = Paa + P = 3 Vaa 3 , 

, , , X 2C2 + A2 

Pu + P22 =- P33 =- 3Vaa --3 - • (24b) 

For C =A all the axes are equivalent and Pli 
= (1/3)KA2Vii (i = 1, 2, 3). Finally, in the planar 
case ( V33 = 0, V11 = - V22 ) p11 =Po+ ( 1/3) KA2V11 , 

P22 =Po - ( 1/3) KB2V11 , or 

Pu + P =- P22- P = T x V11 (A 2 + 8 2), 

It is clear from Eq. (24) that in the case con­
sidered the nondiagonal components Pik vanish. 
This is related to some degeneracy, due to the 
model of grain packing which has been assumed: 

on this model, corresponding to Fig. 2c, the points 
of contact.between the grains are degenerate (the 
general nondegenerate case of contact is shown in 
Figs. 2a and 2b). A simple analysis shows that 
in this case there is instability with respect to any 
nondiagonal component of Pik· Figure 3 shows, by 
way of example, the deformations for this model 
under the action of forces applied along the diago­
nals of the squares. Consequently the model gives 
reasonable results only in the case when the load 
conditions are such that the nondiagonal compo­
nents of Pik are absent. 

a b 

FIG. 3 

Another characteristic of this model is related 
to the fact that the diagonal components of the de­
formation velocities V11 , V22 , V33 produce no slip 
along grain boundaries, while the nondiagonal com­
ponents produce slip only, without the need for dif­
fusion currents. When forced slip is allowed, the 
formulas (24a) -(24c) for the diagonal components 
of Pik remain unaltered, while for the nondiagonal 
components the general formula (17) gives a simple 
equality Pik = 1JS (Ai + Ak) Vik/a, i ¢ k. 

We shall now deal with the problem of the stress 
distribution in the case considered. According to 
Eq. (10) the stresses are strongly inhomogeneous 
at the boundary: 

O'nn [x,=±A, = <p0 +t xA~ V11 + tx (x~ V22 + x; V33). (25) 

For simplicity we shall consider only the 
planar case ( V33 = 0 ). Expressing cp 0 and V11 

= - V22 in Eq. (25) in terms of average stresses 
p11 and P22 , we shall write the boundary conditions 
in the form 

.<Jxx lx=±A = - p + (82/3- y2)M, 

a!vlv=±B =- p + (x2 - A 2/3) M, 

O'xy lx=±A = O'xg]v=±B = 0, M = ~ (pn- Pzz)/(A 2 + 8 2). 

(26) 

From the theory developed above it is clear 
that the results obtained so far are completely 
unrelated to the elastic properties of the medium; 
in particular the distribution of stresses at a 
grain boundary, given by Eqs. (25) and (26), is in­
dependent of these properties. However, in general, 
the stress distribution in the interior of a grain 



916 I. M. LIFSHITZ 

depends strongly on the elastic moduli. In our ex­
ample the elastic moduli disappear from the final 
formulas only in the case of an elastically iso­
tropic medium. In that case it can easily be shown 
that axx, ayy and axy have, over the whole volume 
of the grain, the same distribution as at the bound­
ary: 

Pn- P221- 3 (x/A)2 
Oxx = Pu + --4- 1 + (B/A)2 • 

, P22- Pn 1 - 3 (y/B)2 (2 7) 
Oyy = Pzz ·T --4- 1 + (A/B)2 • 

Oxy = 0, 

where v is Poisson's ratio. 
This result is naturally affected by the pres­

ence of elastic anisotropy. It should be noted that 
the appearance of inhomogeneous stresses as are­
sult of alignment and the distribution of these 
stresses should be one of the more important 
criteria in an experimental verification of the 
theory of the flow process given here. Obviously 
in the limiting case of a single crystal the equiva­
lent boundary conditions can be modeled by a sys­
tem of rigid pistons at the faces of the crystal. 

5. ELASTIC ENERGY AND MACROSCOPIC ELAS­
TIC MODULI OF A POLYCRYSTAL IN THE 
PROCESS OF DIFFUSION-VISCOUS FLOW 

We shall consider the macroscopic elastic prop­
erties of a polycrystal during the process of dif­
fusion-viscous flow. 

The elastic energy of a macroscopic element 
of volume consists of two parts: E0, related to the 
average stresses Pik• and a fluctuation part E*, 
related to the deviations aik = a ik - Pik from 
these average values. In particular if the crystal­
lites forming the system are elastically isotropic, 
the elastic energy per macroscopic unit of volume 
is 

(28) 

where K is the hydrostatic bulk modulus and p. 
is the shear modulus. As shown above, uik is 
linearly related to Vik and consequently to the 
nonspherical part of the stress tensor Pfk" Thus 
the fluctuation part of the elastic energy has the 
form 

(29) 

where the numerical values of ~'iklm are deter­
mined by the structural anisotropy of the crystal. 

Thus, for example, in the planar flow considered 
at the end of the preceding section this energy is 

E* = 1 + v2 ( Pn- P22 ) 2 
5f1 4 

where v is Poisson's ratio. 
Thus the elastic energy for given stresses Pik 

acquires an additional term during flow which is of 
the same order as the main part of the energy re­
lated to uniform homogeneous stresses. (The ex­
pression "of the same order" implies the absence 
of a small physical parameter, although the numeri­
cal value of the ratio of the energies may be quite 
small for grains of near-spherical shape.) 

The relationship between the macroscopic 
(average) values of the elastic deformation Eik 
and the stresses PZm is obtained by differentia­
ting the elastic energy E with respect to the 
stresses Pik: 

Fik ~ Cik/m Ptm' 

a2£o 
c0z"lm- ~---,----~ apik aplm ' 

C;ktm = C~klm -+ c;klm' 

• a•E* 
ciklm = apik aplm • 

(30) 

The above equation shows that the tensor ciklm 
is anisotropic. This means that during flow the 
anisotropy of the macroscopic moduli changes and 
even a medium consisting initially of elastically 
isotropic crystallites becomes, in general, elas­
tically anisotropic. 

There is another important point as follows. 
Because of the positive quadratic form of E* ( Pik) 
the eigenvalues of the matrix ciklm• arranged in 
increasing order, are larger than the eigenvalues 
of the matrix c~klm· The reciprocals of these 
eigenvalues are the basic elastic moduli of the 
polycrystal. This means that as a result of dif­
fusional flow the elastic moduli of a polycrystal 
become smaller. For an elastically isotropic 
medium this means a reduction of the Lame coef­
ficients. 

6. VARIATION OF THE GRAIN SHAPE AND OF 
THE VISCOSITY TENSOR DURING FLOW 

The flow changes the grain shape and the struc­
tural anisotropy. This alters the viscosity tensor 
aiklm· A microscopic deformation of a single 
grain is described by the velocity of displacement 
of the points xS on its boundary due to the dif­
fusion current: 

dx8 1 
(it= -;zVcpls' 

where cp is given by Eq. (16). However, qualita­
tively or "on the average," we may assume that 
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the grain shape varies as if it were deformed uni­
formly together with the whole medium. This 
means that 

(31) 

Correspondingly the derivative daiklm/dt is 
determined by varying aiklm with the shape of the 
surface. Using the general formula for the change 
in an integral when the integration region is varied 

{) ~ 'I'd X = ~ '1'6xJ dS;, 
Oo S 

we can easily obtain the detailed microscopic for­
mulas by means of equalities (18) and (31). These 
formulas are, however, complicated and of little 
interest, and it is more helpful to use the approxi­
mate approach developed below. 

If the final deformation of the medium at a time 
t is represented by the matrix A. = "-ik• in the sense 
that any small vector with initial coordinates x~ 
transforms into the vector xi = "-ikX~, it follows 
from Eq. (31) that 

di..!dt = vt (32) 

In view of the condition Vii = 0 (conservation 
of volume) the determinant D ("-ik) = 1. Vik is 
taken at the point of location of the grain at the 
time t and, in general, depends on time and coordi­
nates. Initially Aik (O) = 1. If the "average" shape 
of the grains is initially spherical [(x0x 0 ) = 1], then 
the value of ,\ik ( t) is given by the ellipsoid ( A_-1x, 
~-1x) = 1 with semiaxes "-i ( "-i are the principal 
values of ~; A.1 ~A.3 = 1 ). Therefore, it is natural 
to represent the structural anisotropy by the el­
lipsoid "-ik· If the initial anisotropy is given by 
the matrix ~0 , and the deformation at time t is 
~ ( t), then the anisotropy at the time t is ~ ( t) ~ 0 

[obviously D(M0 ) =D(~)D(~0 ) =1]. Thus, for 
example, if V is independent of the coordinates 
and of time, we obtain from Eq. (32) 

i_ = etv i_o. 

If, on the contrary, V = V ( s) depends on the 
point s on the trajectory of the grain, and v ( s) 
= ds/dt is the grain velocity, then d~/ds 
= V ( s) ~/v ( s). If V ( s) remains diagonal along 
the trajectory, then 

s 
d'J.... 
__:= V· (s) A!v (s) Js u l , 

\ ds 
At (s) = exp .\ Vu (s) V(S) . 

So 

To obtain a complete solution of the problem of 
flow it remains to select a reasonable approxima­
tion for O!iklm in a medium with structural aniso­
tropy given by the ellipsoid ,\ik· For this purpose 

we can use the formulas (18) and (18a), where the 
region of integration n 0 is the ellipsoid ~ or the 
approximate estimates given in formulas of the 
type of (21) or (24). It follows from these formu­
las that good interpolation is obtained on the as­
sumption 7) 

(33) 

or, for the nonspherical part, 

P;k = P;k- Pu6tkl3 = P;k + p6ik' 

P;k === T)A,.'J..kVik - T)i'lik ~ M Vu/3, 
l 

V A-lo-1 ' " o-2"n-'2 ' '11:1 -2 
T) ik = i "-k Ptk - Ufk "-i L.J "-1 p II I L.J At ' (33a) 

"t l 

where ry r:::; KUV3 = kTnV3/Dc0w0 is the isotropic 
viscosity when "-i = 1. 

Thus, for example, for the axially symmetric 
structure A.3 = A., A.1 = A.2 = A.-112, taking into account 
the equality V11 + V12 = - V33 we obtain 

a,~= 1,2. (34) 

If we use the relationships (33) and (32), then 
the equilibrium conditions of Eq. (4) lead to a non­
linear s ys tern 

div V = 0, 
(35) 

As an example of such a calculation, the filling­
up of an isolated spherical pore under the action of 
hydrostatic pressure is considered in Appendix 2. 

The whole analysis in this section is based on 
the assumption that the diffusion-viscous mecha­
nism is the only cause of the displacement of grain 
boundaries and the change of their shape. However, 
the presence of inhomogeneous stresses inside the 
grains and the related fluctuation energy E* in­
crease the probability of processes of boundary 
displacement by recrystallization. Such processes 
may be particularly important in the case of strong 
structural anisotropy ( for example, greatly elon­
gated grains), when the fluctuation energy and the 

7lJn the invariant matrix form the relationships (33) and 
(33a) have the form 

d = r~ + 7J lH. p' = TJ~V £- TJ/3 (SpN'), 

7JV = £-r;;• £-r_ ~ -• (Sp£-•p' /Sp~ -•). 
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excess surface energy are relatively large. Since, 
however, the characteristic velocities of the pro­
cess of recrystallization are governed by quite 
different parameters, there is one region where 
practically the only process is the diffusion-vis­
cous flow, and another where the change in the 
shape and dimensions of the grains is governed by 
recrystallization processes. In the latter region 
the variation of the viscosity tensor aiklm with 
time is naturally independent of that in the former 
region, although the basic equations (3) and (4a) 
are retained. 

In some cases the diffusion of vacancies along 
grain boundaries, where the diffusion coefficient 
Ds is considerably greater, may be important in 
the mechanism of diffusion-viscous flow. This 
type of vacancy diffusion is a small effect if 
Dsa/L ~ Ds ( w 0/il 0 )113 ~ D (a is the atomic 
spacing and L represents the grain dimensions). 
In the opposite limit when Dsa/L ~ D the whole 
process is governed by surface and not by volume 
diffusion. This obviously may occur in sufficiently 
small grains. Finally, on increase of Pik the low­
threshold processes of diffusion-viscous flow (for 
example, the generation and motion of dislocations) 
may be important. An analysis of some of these 
processes will be given in a separate paper. 

APPENDIX 1 

BOUNDARY CONDITIONS ON THE SURF ACES OF 
BLOCKS IN A MOSAIC CRYSTAL 

An analysis of the conditions under which 
mosaic block boundaries are capable of absorbing 
and emitting vacancies has been given by Herring 
[ 2], but not all the arguments and results of his 
analysis seem to be justified. Here we shall inves­
tigate the behavior of such boundaries from 
another point of view. 

A boundary between blocks with a low tilt angle 
(} can be considered as an array of dislocations 
lying in the plane of this boundary separated by a 
mean distance d, so that (} ~ a/d, where a is the 
atomic spacing. The absorption or emission of 
~n vacancies, uniformly distributed between dis­
locations in an element of area of the boundary 
(dimensions ~ L ~ d), produces motion of the 
dislocation network to the right or left, and this 
involves performing an amount of work ± Unnw~n. 

Therefore, if we consider uniform "consistent" 
average motion of dislocations along the boundary 
then in such motion each dislocation represents a 
virtual source or sink of vacancies. 

From this point of view the absence of complete 
freedom of arbitrary displacement of a single dis-

location when the other dislocations are fixed is 
not very important and does not alter the condition 
(2) for equilibrium vacancy concentration at a 
single dislocation. 

In the electrostatic analogy each dislocation is 
represented by a wire of radius a (a is the atomic 
spacing) at a potential cp 0 =ann· The problem 
consequently reduces first to the question of under 
what conditions a grid of such wires, separated by 
a distance d from each another, can be considered 
as a uniform plane with a potential cp = cp 0• For 
this to be so it is obviously necessary for the po­
tential dip between the wires, ocp ~ e Zn (d/a), 
where e is the "charge," to be considerably 
smaller than the change in the potential along the 
surface ocp ~ p' (p' is the nonspherical part of 
the stress tensor). The average density of 
"charge" on the surface (i.e., the discontinuity 
8cp/8n) is obviously q* ~ p' /L ( L is the grain 
dimension), i.e., the charge is e ~ q*d ~ p'd/L. 
Thus the condition ocp << ocp0 ~ p' gives 

(d/L) In (d/a) < I or 6/Ine ~aiL. 

However, much more important is the second 
limitation. As shown at the end of Sec. 2, for the 
flow mechanism described to be realized it is 
necessary to have the possibility of slip along the 
grain boundaries. The estimate of the tangential 
stresses at the boundary, given in Sec. 2, leads to 
an additional condition for the effective viscosity 
7JS of the boundary layer (the surface of separa­
tion between blocks): atniP' ~ 7JS/KaL<< 1. For 
sufficiently large tilt angles (} a reasonable esti­
mate of 7JS is 7JS ~ Kd2 • This gives d2 /aL ~ 1, 
and hence we have a restriction on the magnitude 
of the tilt angle: a2 >> a/L. However, if (} is suf­
ficiently small then the crystal between disloca­
tions is in general perfect, and diffusional slip 
along the boundary is excluded practically com­
pletely. Therefore, for sufficiently small (} the 
mechanism described could apply only in those 
exceptional cases when, due to the symmetry of 
the block structure and the applied stress, flow 
occurs without slip at the boundaries (for example 
as in the case of rectangular parallelepipeds along 
the direction of the applied forces, discussed in 
Sec. 4). 

APPENDIX 2 

KINETICS OF THE FILLING-UP OF A SPHERICAL 
PORE UNDER PRESSURE 

The problem of the kinetics of the filling-up of 
an isolated spherical pore in a polycrystalline 
body at various stages of this process has been 
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considered in C4J. Here we shall consider the in­
fluence of the change in the grain shape on this 
process. 

Initially an infinite sample contains a spherical 
pore of radius R0 ~ L, where L is the dimension 
of the grains. An external hydrostatic pressure 
Po produces a diffusion-viscous flow toward the 
center of the pore. The equation of equilibrium in 
spherical coordinates has the form 

(p =-Pu/3). (2.1) 

From the equation of continuity it follows that 

r2Vr = R.2/R, (2 .2) 

where R = R ( t) is the radius of the pore at a 
time t. Hence 

oVr 2Vr RS 
Vrr = ----gr =- -,- = 7 V RR• 

2k 
V RR = Vrr lr=R =- /{ .. (2.3) 

From the symmetry of the problem it is clear 
that the structural anisotropy due to flow has, at 
each point, axial symmetry connected to the elon­
gation of the grains in the radial direction. Ac­
cording to Eq. (35) this leads to a relationship be­
tween ( Prr + p) and V rr: 

Prr + P = TJ (A.) Vrr, TJ (A.)= -i TJ (2A.2 + 1/A.), (2.4) 

v !!:... 011 (A.) + op = o. (2 5) RR r3 or or • 

The grain deformation parameter ~ (the major 
semi axis of the deformation ellipsoid) and also 
the pressure are functions of r and t [or of r 
and R ( t)]. 

The boundary conditions for Eq. (2.5) (taking 
into account that Prr I r=k = 2y/R, where y is the 
surface tension) are 

or 

P lr=oo =Po, 

From Eqs. (2.3), (2.5) and (2.6) we find 

r 
-Po-7[ 

()() 

R 
r { (' \ R3• , dt.. } Po+ R = V RR TJ "'R) +.) 7 TJ (A.) dr dr 

()() 

).R 

= TJ V RR {I + + ~ (I + ~ ) ( 4A. - :. ) dA.}. 
1 

(2 .6) 

If a grain with an initial coordinate r 0 is at r 

= r ( t, r 0 ) at a time t, it follows from the conser­
vation of volume that ~ = ( r 0/r)2; on the other 
hand from Eq. (2.2) we have r 3 - R3 = rt - Rt. 

Eliminating r 0 from these two equations we ob­
tain a relationship between r, R and ~: 

Hence 

Ra t..'l•-1 
f3 = t..'f, 1 ' R-

2T] k!R. = (po + r/R.)/[1 + f (R.JR.)J, 

z 

2('[ x3 1]( 1 f (z) = 3 ~ I + z" = 1 4x2 - X4) xdx. · 
I 

In the initial stage R ~ R0, and f ( 1 ) = 0, and 
we obtain the formula given in C4J: Po+ y/R 
= - 27]R/R. The velocity R/R then decreases due 
to grain growth in the radial direction. However, 
due to fluctuations of the initial shape and dimen­
sions of the grains the formulas cease to be valid 
when the transverse grain dimensions at the bound­
ary of the pore become of the order of the scatter 
of the initial dimensions, i.e., when ~R ~ (L/6L)2• 

The axial symmetry in the neighborhood of the 
pore is then lost and the transverse dimensions of 
the grains at the pore boundary cease to decrease: 
the grains "drift" on top of each other until the 
whole pore is found within the limits of one or two 
grains. According to[(] this gives a dependence 
of R/R on R of the type shown in Fig. 4. 

FIG. 4 

APPENDIX 3 

THE CASE OF INTENSE SURFACE DIFFUSION 
ALONG GRAIN BOUNDARIES 

If the process of surface diffusion along grain 
boundaries is intense, it may govern the mecha­
nism of diffusion-viscous flow. Variation of cp 
= ann along the grain boundary gives rise to a 
volume diffusion current, as well as surface cur­
rents 

is= (DswoafkT) V' scp 

where Ds is the surface self-diffusion coefficient 
referring to a monatomic layer, V'8cp is the sur-
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face gradient of the potential qJ, and a is the 
atomic spacing. On allowing for these currents 
the conditions (6) and (9), which relate the velocity 

of the relative motion of the grains ovn = v~- vg 
to the diffusional inflow of additional matter to a 
given part of the boundary, are altered: together 
with the volume term 

there are sources on the surface due to the sur­
face diffusion: 

qs = div js = ~ ~s<:p, xs 
Xs = kT /Dswo. 

Thus the condition replacing Eq. (9) becomes 

(3 .1) 

If the surface self-diffusion coefficient is so 
large that Ds/D >> L/ a, then surface diffusion plays 
the dominant role and the main contribution to the 
right-hand part of Eq. (3.1) is given by the term 
~ D..scp, i.e., 

~s<:p = xs (v~- v~)ja. (3 .2) 

Equation (3 .2) replaces Eqs. (8) and (9) and its 
solution determines the quasi-steady-state distri­
bution of the normal stresses ann= cp; the tangen­
tial stresses are, as before, governed by the resis­
tance to slip and are expressed by the conditions 
(11). 

The order of magnitude of the variation of ann 
along the grain surface follows from Eq. (3.2): 

{)c;nn ~ [2xs (v~- v~)ja ~ [3xSVik/a. 

For free slip the nonspherical part of the stress 
tensor is 

p' ~ 60nn ~ PxsV;k/a ~ YioVikLDjaDs, 

i.e., the effective viscosity 1) becomes 

Yl ~ Pxsfa = YioLDjaDs (LDjaD5~ 1). (3.3) 

We shall give concrete expressions for the ten­
sor aiklm in the case of surface diffusion only 

for the parallelepiped packing model considered in 
Sec. 2, para. 4. In that case Eq. (3.2) becomes 

A. 
~sm lx·=+A· =-2xs_!_ Vu, '~' t - z a i = I, 2, 3. 

It can easily be shown that the solution of the above 
equations, continuous at all lines of contact ( paral­
lelepiped edges), can be represented by values of 
the function 

A.= 2 A;V;i - 'V, AtVu_ 
t a ~ a 

l 

on the surfaces xi=± Ai: 

Consequently, as before [ Eqs. (17), (23), (24)], 
we obtain the relationship sought between Pik and 

vik: 

i.e., 

In the case of cubic packing ( A1 = A2 = A3 = A): 

In the planar case ( V33 = 0): 
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