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The motion of Regge poles at complex energies is studied for a Yukawa potential. It is found 
that the trajectories have complex (and real) branch points, due to collisions of pairs of poles. 
The position of these points is given explicitly for the case of weak coupling. For stronger 
coupling a qualitative description of the position of these branch points is given. With increas­
ing coupling constant they leave the physical sheet and thereafter the trajectory can give rise 
to the appearance of bound states. 

1. INTRODUCTION 

IN a previous paper of the authors [i] the behavior 
of Regge poles was studied for scattering by a 
Yukawa potential V(r) = ae-J.Lr /r for small a. 
The pole trajectories l = li ( k2 ) were studied as 
the energy k2 was varied along the real axis from 
- oo to + oo • In the present paper we study the 
analytic properties of these trajectories for arbi­
trary complex k2• 

We find real as well as complex branch points, 
corresponding to the collisions of pairs of poles. 
All trajectories turn out to be different branches 
of a single analytic function. The existence of the 
branch points makes it possible to explain the open 
nature of the trajectories when k2 is varied along 
the real axis from - oo to + oo. [ 1] For the same 
reason it is not possible to assign definite quantum 
numbers to the trajectories that collide on the 
physical sheet. In the case of repulsion all poles 
collide on the physical sheet. On going over to the 
case of attraction we find that the collision point 
of the right-most pole moves off to the second 
sheet of the k2 plane, and the pole becomes "nor­
mal." Its trajectory no longer has unphysical sin­
gularities, and a dispersion relation may be written 
for it over just one physical cut. As the coupling 
constant is increased the collision points (branch 
points ) for other poles successively move off to 
unphysical sheets. The corresponding trajectories 
also become normal. Only to normal trajectories 
can one assign quantum numbers distinguishing one 
trajectory from another (the radial quantum num­
ber). As the coupling constant is further increased 
the normal trajectories give rise to the appearance 
of bound states. Thus, for any value of the coupling 
constant (for attraction) we have an infinite num-

ber of trajectories that collide on the physical 
sheet, and a finite number of normal trajectories 
some of which give rise to bound states. 

It would seem that the indicated properties of 
the Regge pole trajectories are of a general char­
acter and will persist in a field theory also. 

In Sec. 2 the general picture of the pole trajec­
tories for complex k2 is given. Its justification 
is given in Sec. 3, where we also find the position 
of the branch points in the k2 plane. In Sec. 4 it 
is shown that with an appropriate choice of sheets 
it is possible to write dispersion relations for any 
of the trajectories with a certain finite number of 
additional cuts, which are not cuts for the ampli­
tude. 

The mechanism by which normal trajectories 
and bound states are produced as the coupling con­
stant is increased is described in Sec. 5. 

2. COMPLEX BRANCH POINTS. DESCRIPTION 

In [1] the motion of Regge poles was studied as 
k2 was varied along the real axis from - oo to + oo • 

The limiting values of every trajectory (with the 
exception of the right-most one for attraction) for 
k2 = ± oo turned out to be different. For large val­
ues of k2 the motion of the poles is described by 
the expression: [1] 

gJ-1 ( J-1' ) !, =- n- Tk Pn-1 I+ '2k' , n =I, 2, ... (1) 

In the notation of reference 1 the coupling con­
stant g = - am/J.L, for attraction g > 0; the num­
bering of the poles is shifted by unity. The function 
Zn(k2 ) does not have an essential singularity at in­
finity. Therefore the existence of different limits 
means that as one moves along the real axis from 
k2 = - oo to k2 = + oo and then returns to the point 
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of departure along a large semicircle one encircles 
some branch points. In what follows we shall find 
the position of these branch points explicitly for the 
case of weak coupling (g « 1 ). The noted open na­
ture of the trajectories indicates, in essence, that 
the cuts from the branch points were drawn out to 
infinity so that the points k2 = - oo and k2 = + oo 

in going around the large semicircle are located on 
different edges of these cuts. 

To clarify the entire picture we consider the 
pole trajectories as k2 varies from zero to infinity 
along a ray with some phase: k2 = K2 exp [ i( 7r- <P )], 
K2 = I k2 j. The trajectories obtained in [1] corre­
spond to <P = 0 and <P = 7r. In order not to cross 
any cuts while moving along a ray we draw the cuts 
from the branch points to infinity along straight 
lines with phases equal to the phase at the branch 
point (see Fig. 1 ). 

FIG. 1. Complex k2 plane 
for the p-th upper trajectory in 
the case of attraction. The cuts 
are drawn to infinity. The lim­
iting values (the quantity -n) 
of the trajectory for lk2 1 _, oo in 
the various sectors are indi­
cated. 

For the sake of compactness we first give with­
out proof the picture for the pole trajectory as K2 

varies from infinity to zero for various values of 
<P from zero to 71". This picture is shown in Fig. 2. 
Its justification will be given later. Figure 2a cor­
responds to the phase <P = +0, i.e., to motion in the 
k2 plane along the upper edge of the cut which goes 
in Fig. 1 from the real branch point to k2 = - oo. 

For large K2 the poles oscillate near negative in­
teger points; the corresponding segments in Fig. 
2a are shown blackened. As K2 is decreased the 
poles collide in pairs and then move off into the 
complex plane and for K2 - 0 reach the point l 
= -%. The pair of poles located for K2 = oo at the 
points l = - 2p and l = - ( 2p + 1) (p = 1, 2, ... ) 
for the case of attraction here considered collide 
to the left of the point l = - 2p and to the right of 
l = - ( 2p + 1 ) . 1 > In the case of weak coupling the 
collision point is close to l = - 2p. With our choice 

!lAs was noted in ['] for k2 _, 0 these trajectories are de­
scribed by 

1 
l = - 2 ± 2~ipj[ln (ft2fk2) + i~], p = 1, 2, 0 0 0 

The plus (minus) sign refers to the trajectories which reach 
the point l = -1/2 from the upper (lower) half-plane. In what 
follows we refer to these trajectories as "upper" and "lower" 
respectively. 

a 

FIG. 2. Pole tra­
jectory as k 2 varies 
along a ray with fixed 
phase (arg k2 = 77 - qJ) 

from oo to 0. The phase 
qJ increases from zero 
(Fig. 2a) to rr (Fig. 2e). 

of the edge of the cut the pole located at the odd 
point - 2p - 1 for K2 = oo moves after collision 
into the upper half-plane. 

e 

For a small positive value of the phase <P the 
motion of the poles in shown in Fig. 2b. The os­
cillatory segments of the trajectory near negative 
integer points are transformed into spirals, at that 
for a small value of the phase the spiral has as 
many loops as there were oscillations. With in­
creasing <P the spiral gradually straightens out. 
The larger the number n of the trajectory the 
further such a trajectory moves from the point at 
which, for <P = 0, the collision of two neighbors 
took place. Moreover, the trajectory with even 
n = 2p, which for <P = 0 collided with its left 
neighbor ( n = 2p + 1) now approaches its right 
neighbor and vice versa. In Fig. 2b this can be 
seen on the example of the trajectories with n = 5 
and n = 6 the first of which collided with n = 4 
and the second with n = 7 when <P was equal to 
zero. As the phase is further increased the tra­
jectories collide in the upper half of the l plane. 

The quantities cp and 'K2 at which the collision 
occurs are equal to the phase and modulus of the 
branch point in the k2 plane (see Fig. 1 ). As the 
phase passes through (/; we move over to the other 
side of the cut in the k2 plane. At that the trajec­
tory that previously went from the upper half-plane 
to the point - n (- 5 on Fig. 2b) now goes to the 
point -n-1 (-6 on Fig. 2b). The lower trajec­
tory, on the contrary, instead of the point - n - 1 
reaches the point - n. The corresponding situa­
tion is shown in Fig. 2c. Consequently, after col­
lision the limiting value for K2 = oo for the upper 
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trajectory is shifted to the left by unity, and for 
the lower trajectory to the right by unity. We note 
that the number of half loops of the spiral near the 
given integer point decreases by one after collision. 

Let us follow the fate of the upper trajectory 
which goes in Fig. 2a, 2b into the point l = -5, and 
in Fig. 2c into l = -6. As the phase is increased 
it approaches now the lower trajectory that goes 
to the point l = - 7. The moment of their collision 
is shown in Fig. 2d. It should be noted that the 
lower trajectory fell into the point l = - 7 as a 
result of a collision that occurred at a smaller 
phase; at cp = 0 it went to l = -8. 

As the phase is increased still further the story 
repeats itself. The spirals near the integer points 
straighten out, the trajectories collide, the upper 
trajectories are shifted after collision to the left, 
the lower to the right. 

As the phase changes from zero to 7r each of 
the upper trajectories collides in succession with 
each of the lower trajectories whose limiting points 
for cp = 0 were to the left of it. The number of 
such trajectories is infinite. Since at each colli­
sion the limiting value changes by unity, for cp 
- 7r the limiting value of all upper trajectories 
goes to - oo. 

The lower trajectories collide with all their right 
upper neighbors. If for cp = 0 the limiting value 
of the lower trajectory was l = - 2p, then the num­
ber of such neighbors was p - 1. Therefore for 
cp = 7r the limiting value is l = - 2p + ( p - 1 ) = - p 
- 1. The picture arising for cp = 7r is shown in 
Fig. 2e. This is precisely the picture that we have 
arrived at previously [1] when considering positive 
k2• For negative k2 the motion of the poles corre­
sponded to the picture in Fig. 2a. The open nature 
of the trajectories noted in [i] corresponds to the 
shift of the limiting values ( K2 = oo ) as cp var­
ies from zero to 7r. 

Up to now we have varied the phase from + 0 to 
7r. This corresponded to the upper half of the k2 

plane [ k2 = K2 exp { i ( 7r - cp ) } ]. In the lower half 
plane cp varies from - 0 to - 7r. It is easy to 
understand that in that case the motion of the poles 
is described in precisely the same way as for pos­
itive cp if in the preceding discussion one inter­
changes everywhere the words "upper" and 
"lower" (trajectory, half-plane). 

As was already remarked above, the values of 
k2 at which pole collision takes place are deter­
mined by the positions of branch points in the k2 

plane. If one considers the upper trajectory which 
has the limiting value l = - 2p- 1 for K 2 = oo, cp 
= + 0, one concludes from the above discussion 
that it has one real branch point, an infinite num-

her of branch points in the upper half-plane (cor­
responding to the infinite number of collisions for 
0 < cp < 7r) and p - 1 branch points in the lower 
half-plane of k2• The latter is connected with the 
fact that an "upper" trajectory behaves in the 
lower half-plane in the same way as the "lower" 
trajectory in the upper half-plane of k2• The in­
dicated branch points and cuts for the upper tra­
jectory, as well as the limiting values of the tra­
jectory (at K2 = oo) in the various sectors, are 
shown in Fig. 1. There is also shown in Fig. 1 
the physical cut running from k2 = 0 along the 
positive semi-axis. The corresponding picture 
for a lower trajectory may be obtained from Fig. 1 
by interchanging the upper and lower half-planes, 
i.e., by the operation of complex conjugation. 

Let us note that in the case of repulsion the 
picture of the singularities is the same as in Fig. 1, 
except that the limiting values are shifted by unity 
(see [1J). 

3. COMPLEX BRANCH POINTS. JUSTIFICATION 

a) Spirals. 
Near negative integer points the motion of the 

poles is described by Eq. (1). For a fixed value 
of the phase 0 < cp < 7r [ k2 = K2 exp { i ( 7r - cp ) } ] and 
for K2 varying from infinity to K2 « JJ. 2 the Le­
gendre polynomial Pn-1 continuously changes its 
phase from zero to - (7r- cp )(n -1 ). At that the 
modulus I k-1 Pn -t< 1 + JJ.2 I 2k2 ) I increases from 
zero up to a finite value. It therefore follows that 
in the neighborhood of the integer point the trajec­
tory is described by a spiral with the number of 
halfloopsequalto (n-1)(1-cp/71"). As cp-1!" 
the spiral straightens out. For 0 > cp > - 7r the 
polynomial Pn-i has in the region K2 « JJ.2 the 
phase + ( 7r + cp ) ( n - 1 ) . Consequently on passing 
into the lower half-plane the spiral changes its 
direction and for cp ,_ - 7r straightens out, as 
before. 

b) With increasing cp upper trajectories go left, 
lower go right. 

For sufficiently small K2 Eq. (1) ceases to be 
valid. In that region, as was shown in [1], one must 
use the equation 

( k2 -in)!+'!, - . - "VJ!r (-1- t;.) st [12 e - - s1n lJt, st - g r (-!) . (2) 

As k2 varies along the negative semi-axis Eq. 
(2) gives rise to motion of poles in the upper and 
lower half-planes along curves close to circular 
arcs. [1] This is obtained if one ignores the l de­
pendence of ln ~l and takes into account in sin l-rr 
only the growing exponential. It is not hard to see 
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that under the same assumptions but for k2 vary­
ing along a ray with a given phase the equation for 
the trajectory in the upper half-plane has the form 

(Re (z + +) +Pn~cpr + (Iml- 2 (n~ cp)lnnt r 
p = 1,2, ... (3) 

The meaning of the number p here, as in the 
rest of this Section, is explained in the first foot­
note. 

For cp = 0 this equation coincides with Eq. (11) 
of [1] and describes the upper trajectory which 
reaches the real axis between the points l = - 2p 
and l = - 2p- 1 (see Fig. 2a). As cp increases 
the radius of the circle increases and the point of 
intersection of the circle with the real axis moves 
to the left. Although in the immediate neighbor­
hood of the real axis Eq. (3) is not correct it does 
describe the major part of the trajectory and there­
fore correctly reflects the nature of its shift. As 
cp - 1r the point at which the upper trajectory 
reaches the real axis moves to - oo and the circle 
is transformed into the straight line described 
in [1]. 

As cp varies from zero to - 1r ( k2 in the lower 
half-plane) the radius of the circle and the posi­
tion of the point at which it intersects the real 
axis are decreased by a factor two. 

It is not hard to deduce from Eq. (2) that the 
equation for the ''lower trajectory is obtained 
from Eq. (3) by the replacements cp - -cp and 
Im z - - Im Z. This means that the "lower" tra­
jectories behave as t<2 varies in the upper half­
plane analogously to the upper trajectories when 
k2 varies in the lower half-plane. As cp increases 
from zero to 1r they are shifted to the right. 

c) Collision of trajectories. 
The position of the points of collision of two 

poles may be determined by solving simultane­
ously Eq. (2) and the equation obtained from Eq. 
(2) by differentiation with respect to l. Let us 
take logarithms of Eq. (2) choosing the phase to 
correspond to the upper p-th trajectory (- 27rip). 
If we now differentiate the resultant equation with 
respect to l and eliminate from both equations k2 

we obtain the following equation for the collision 
points of the upper p-th trajectory in the l plane: 

In~ 1 + Jt (l + -+) ctg ln =In cos (l + 4-)n- 2nip. (4)* 

Values of k2 at which collisions occur are de­
fined by the equation 

*ctg =cot. 

(5) 

We solve Eq. (4) under the assumption that 
ln ~l is a large number. It is obvious that in that 
case l must be near an integer so that cot l1r and 
ln cos ( l + Y2 )1r will be large. Setting 

I =- N- 6, (6) 

and throwing away terms of order unity we find 

In £1 ++ (N- +) = In 6 + in (N- 2p). (7) 

The term i1rN in Eq. (7) represents the phase 
of cos (l + % )7r. For l = -% the phase is chosen 
to be zero; as the pole moves in the upper half­
plane to the point to the left of l =- - N the term 
cos ( l + % )1r acquires the phase N1r. It is seen 
from Eqs. (4) and (7) that two upper trajectories 
with different numbers p and p' cannot collide 
with each other and, consequently, an upper tra­
jectory can only collide with a lower one. 

The equation for the collision points of a lower 
p-th trajectory is obtained from Eq. (4) by the re­
placement p - - p. It is not hard to see that in 
that case the phase of cos ( l + % )7r at l = - N - o 
is equal to - N1r. Therefore the equation for the 
collision of a lower trajectory of number p' dif­
fers from Eq. (7) in the neighborhood of the in­
teger point - N in the last term, which in the 
present case is given by - i1r(N- 2p' ). It is there­
fore clear that the collision between the p-th upper 
and p'-th lower trajectories occurs in the neigh­
borhood of the point - N = - ( p + p' ) . This point 
lies nearly halfway between the limiting points 
(- 2p - 1) and (- 2p') to which the corresponding 
poles go as k2 - - oo • Consequently the equation 
for the collision of the p-th upper and p' -th lower 
trajectories in the l plane is given by 

In £1 + -i- (P + p'- ~) = In 6 + in (p'- p). (8) 

From here one has with logarithmic accuracy 
(o ln o « 1): 

' ' P+~-~ 
l = - (p + P ) - {J = - (p + P ) - In (1/l;z) +in (p'- p) · 

(9) 
Substituting Eq. (9) into Eq. (5) we find the value 
of k2 at which the collision takes place, i.e., the 
position of the branch point: 

.!!:__ = ~ e1 (n-<p) = exp{ In ~ 1 + i (n 
f12 f-12 p' + p- 1/2 

p'- p )} 
p' + p- 1/2 Jt . 

(10) 
It is seen from Eq. (10) that the upper trajectory 

of number p collides with all lower trajectories, 
located to the left of it ( p' > p), in the upper half 
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of the k2 plane ( cp > 0). The collision with ( p - 1 ) 
right lower neighbors ( 0 < p' < p) occurs in the 
lower half of the k2 plane. The collision with the 
lower trajectory of the same number p' = p occurs 
on the real axis, as was already noted in [1]. These 
considerations also make clear what the situation 
is for the lower trajectories. 

In the case of repulsion all equations remain 
valid with ~Z replaced by -~z and p by p- Y2• 

d) Position of branch points. 
The following properties of the branch points 

of the p-th upper trajectory (Fig. 1) can be seen 
from Eq. (10). In the weak coupling approximation 
the branch points lie at K 2 « J}. As p' increases 
K 2 increases and for K 2 "' p} Eq. (10), derived 
under the assumption K21JJ-2 « 1, ceases to be cor­
rect. Consequently we are unable to directly deter­
mine the position of the infinite number of branch 
points corresponding to collisions with very distant 
trajectories [ p' ~ ln ( 11 ~l ) ]. The magnitude of the 
phase cp = ( p' - p )1r I ( p' + p - %) also increases 
with increasing p' and approaches 7T still within 
the region of applicability of the theory for p' » p. 
This means that although both the real and imagi­
nary parts of the position of the branch point in­
crease with increasing p', the imaginary part in­
creases somewhat slower so that an accumulation 
of such points occurs at cp = 7T. Let us note that 
although, as has been already remarked, we ar!3 
not able to determine the modulus of k2 for very 
large values of p' it can be asserted that for cp 
- 7T the branch points do not accumulate at a fi­
nite point on the real axis. The latter would indi­
cate the existence of a singularity for real k2 I JJ-2 

"' 1, which was not found in [1]. Let us also note 
that the branch points cannot accumulate at k2 = 0 
either, since in the neighborhood of that point Eq. 
(10) is applicable and it shows no such accumula­
tion. Consequently the branch points move off to 
infinity with a phase equal to 7T. 

4. DISPERSION RELATION FOR REGGE TRA­
JECTORIES 

In the previous Section it was shown that the 
trajectories of Regge poles have an infinite num­
ber of branch points at which the poles collide in 
pairs. This means that all the trajectories form 
a single analytic function, of which they are differ­
ent branches. The choice of the branch of the ana­
lytic function is fixed by introduction of cuts from 
the branch points. Up to now we have drawn all 
cuts in the k2 plane out to infinity. At that on each 
sheet, determining a separate trajectory, one had 
an infinite number of complex branch points and 

cuts. The representation of the function on this 
sheet in the form of a sum of dispersion integrals 
over an infinite number of cuts is most inconven­
ient. In particular, such a sum would have to, ap­
parently, converge nonuniformly in order to assure 
the existence of different limits of the trajectory 
for k2 - oo along different directions. For this 
reason it makes sense to choose the sheets in a 
different way, namely to draw the cuts in such a 
way that on any finite sheet there remain only a 
finite number of branch points. 

In this section we show that this aim can be 
achieved by drawing all the cuts in the k2 plane 
from the branch points to zero. When the cuts 
were drawn out to infinity the behavior of the 
poles in the neighborhood of k2 = 0 was given by 
the equation 

valid when the point zero is approached from any 
direction. It was therefore convenient to label the 
trajectory by the number p, which determines its 
behavior as k2 - 0, and follow the variation of its 
limiting value at infinity as a function of the phase 
cp. Now, when the cuts are drawn towards zero, the 
situation is reversed. At infinity there remains 
only the physical cut and the limiting values of each 
trajectory are the same in any direction. 

The behavior of the trajectory in the neighbor­
hood of infinity is described by Eq. (1). In accord­
ance with this formula it is convenient to label the 
trajectory by the number n, which determines its 
limiting behavior at infinity l = - n. It is easy to 
see that the behavior in the neighborhood of zero 
now depends on the phase of k2• Indeed, as can be 
seen from the results in Sec. 1, to a given limiting 
point l = - n as the phase of k2 is varied there ar­
rive alternately upper and lower trajectories with 
different values of p. In the case of attraction, as 
cp varies from + 0 to 7T, there arrive at the even 
point n in succession the following trajectories: 
a lower with p = nl2, an upper with p = nl2 -1, 
a lower with p = nl2 + 1, an upper with p = nl2- 2, 
etc., down to a lower with p = n -1. To the point 
with odd n there arrive in succession: an upper 
with p = (n-1)12, a lower with p = (n -1 )12 + 1, 
an upper with p = (n -1 )12 -1, etc., down to a 
lower trajectory with p = n- 1. As cp varies 
from - 0 to - 7T one must interchange in the 
above description the words "upper" and "lower." 

If one fixes the character of the trajectory at 
infinity, i.e., the number n, then the trajectory 
that departs from this point is described in the 
neighborhood of the point zero by an expression 
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of the form 

where the ± sign refers to the upper and lower 
trajectories respectively, and p changes with 
varying cp in the manner described above. The 
change in the sign and magnitude of p takes place 
in a jump as the phase goes through the value cor­
responding to the branch point. This means that 
on going through such a phase we pass to the other 
side of the cut drawn from the branch point to 
zero. Since for a given value of n the quantity p 
takes on a finite number of values there can be on 
the sheet under consideration only a finite number 
of branch points. The position of these branch 
points is determined by Eq. (10). At that the quan­
tity r = p' - p is, in effect, equal to the number of 
the branch point: for a trajectory with a given value 
of n the quantity r = 0, ± 1, ... ± (n- 2 ). The quan­
tity p' + p is even or odd, according as r is even 
or odd and equal to n or n -1. Thus the trajec-

' . 2 tory with the number n has m the k plane one 
real and ( n - 2) complex conjugate pairs of branch 
points. 

Since the distance of the branch point from the 
origin in the k2 plane is determined by the quan­
tity p' + p it follows that all the branch points for 
a given trajectory now lie on the circumference of 
two circles whose radii increase with increasing 
trajectory number n. The branch points due to 
the collisions with the right neighbor of number 
n - 1 lie on one of these circumferences ( p + p' 
= n -1 ), and those due to collisions with the left 
neighbor of number n + 1 lie on the other ( P + p' 
= n). 

The position of these points and cuts is shown 
schematically in Fig. 3. Also shown are the val­
ues ±p that determine the behavior of the trajec­
tory near k2 = 0 in the various sectors. The tra­
jectories which for cp = 1r went to infinity in Fig. 
2e correspond to n = oo and cannot be pictured 
in a figure of the type of Fig. 3. 

The passage from the cuts shown in Fig. 3 to 
those in Fig. 1 is, of course, connected with the 
passage to other sheets. Each of the cuts in Fig. 3 
should at that be deformed as follows. From the 
point k2 = 0 the cut now goes along the positive 
real axis to infinity and then from infinity in to 
the branch point along a ray with a phase equal 
to the phase of the branch point. It is not hard 
to understand that when the cuts are so deformed 
an infinite number of branch points is uncovered, 
which accumulate in phase to cp = 7r and which 
previously lay on more distant sheets. 

FIG. 3. Complex k2 plane for the trajectory with n = 6. 
The cuts are drawn to zero. In the various sectors.the values 
±p, determining the behavior of the trajectory for k2 ~ 0, are 
indicated [l(k2) = -1/2 ± 2iprr/[ln(l//k2) + irrJ, the ± sign 
corresponding to upper or lower trajectory]. The number of 
the trajectory responsible for the branch point as a result of 
collision is shown encircled. 

It may be noted that the new way of drawing 
the cuts makes it possible to establish a connec­
tion between the trajectories for a Yukawa poten­
tial and the Coulomb trajectories which are ob­
tained by letting fJ.- 0. In this limit Eq. (1) goes 
over into the exact Coulomb formula, and the 
branch points together with the cuts collapse to 
zero according to Eq. (10). The same limit with 
the cuts drawn as in Fig. 1 results in the complex 
k2 plane being cut into an infinite number of un­
connected sectors. 

The choice of the sheet described in this section 
allows one to write a dispersion relation for any 
Regge trajectory in terms of a sum of dispersion 
integrals over the complex cuts shown in Fig. 3. 

The branch points of Regge trajectories, cor­
responding to collisions of poles, do not, of course, 
constitute singularities of the partial wave ampli­
tudes. Therefore the choice of the sheet for the 
study of the analytic properties of an individual 
trajectory has no effect on the properties of the 
amplitude. 

A study of the case of repulsion leads to analo­
gous conclusions. The position of the branch points 
is determined, as before, by Eq. (10) with the re­
placements p- p- %. p'- p' - 1/2 and ~Z- - ~l· 
For a trajectory with a given number n the quan­
tity r = p' - p takes on the values r = 0, ± 1, ... 
± (n -1 ). The quantity p + p' is even or odd ac­
cording as r is even or odd and equal to n or 
n + 1. The number of complex conjugate pairs of 
branch points is in this case equal to ( n - 1 ) . 

5. INCREASE IN COUPLING CONSTANT AND 
APPEARANCE OF BOUND STATES 

So far we have considered the case of arbitarily 
weak coupling. It is of interest to understand how 
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the picture of the motion of the poles changes with 
increasing coupling constant, and, in particular, 
how do bound states appear. Qualitatively new 
properties of the trajectories may already be 
studied in the next order of perturbation theory. 
It is convenient here to consider the region of 
small k2 values. The equation for the motion of 
the poles in this region is obtained in the Appen­
dix. Accurate to terms of order ""'g2 it has the 
form 

( k2 . )1+'/, [ g ( 1 )] ~~lYe-"' l+z+lJ. z21+1 -1 

= - sin ln ( 1 - 1 ~ 11.) . (11) 

As was already remarked previously, [1] along 
with the poles described above Eq. (11) gives rise 
to a new type of pole, which for k2 = 0 ends up not 
at l = - % but at some other real point l 0 < - %­
The position of this point corresponds to the van­
ishing of the expression in the square brackets 

[since ( k21L- 2e-i1r )l+1/2 - oo as k2 - 0] and, con­

sequently, depends on g. For small g this point 
lies at a distance llo I ""' ln ( 1/g) from zero. It 
can be verified that higher orders of perturbation 
theory have a small effect on the quantity l 0 (see 
Appendix). As g increases ll0 I decreases. The 
existence of poles of this type was first discovered 
in the work of Ahmadzadeh, Burke, and Tate. [2] 
In the case of repulsion there are no such poles. 

Equation (11) also has an infinite number of 
solutions which for k2 = 0 end up at certain points 
that come in complex conjugate pairs. All these 
points lie to the left of l 0• In the following we con­
sider only the trajectory that ends up for k2 = 0 at 
the real point lo. 

Let us study the trajectory of the new pole 
(referred to in the following as the N -trajectory) 
for real negative values of k2, and also the influ­
ence of this pole on the motion of the other poles. 
It follows from Eq. (11) that as - k2 ( k2 < 0) in­
creases from zero the N -pole moves out from l 0 

towards the nearest even point. In Fig. 4a we show 
the situation when -6 < l 0 < -5. As k2 varies 
from zero to - oo the N -pole moves from l = l 0 

to l = -6. The character of the trajectories lying 
to the right of l 0 is qualitatively the same as in 
the absence of the N-pole. Indeed, Eq. (11) differs 
from Eq. (2) only by the factor {1 + [g/(l + 1/2)]x 
( 2-2l-1 -1)} which in this region simply makes for 
a smaller effective value of ~l· Therefore, as be­
fore, the fifth pole collides with the fourth, and the 
third with the second. The story is different for 

a 

I 

-.rlt -t·b0j '~t~-01- c 

FIG. 4. Pole trajectories for real negative k2 after the 
arrival of theN-pole; l 0 - its limiting value for k2 -> 0. The 
coupling constant increases from Fig. 4a to Fig. 4c. 

the poles that lie to the left (at k2 = - oo) of l 0• 

For l < l 0 the expression in the square brackets 
in Eq. (11) is negative which changes attraction 
into effective repulsion, and therefore to the left 
of l 0 the even left and odd right poles collide, as 
is normally the case for repulsion. [1] 

With increasing g l 0 moves to the right. When 
l 0 has moved sufficiently far to the right of the 
point -5 the situation depicted in Fig. 4c is cre­
ated. Now as k2 varies from zero to - oo the N­
pole moves from l = l 0 to l = - 4; to the right of 
it the second and third poles collide, to the left of 
it the fifth and sixth poles collide. 

The question arises: how does the transition 
from the picture shown in Fig. 4a to that shown in 
Fig. 4c take place? Equation (11) allows one to 
answer this question. Because of lack of space 
we do not give details but only describe the result. 

When l 0 passes through the point - 5 we have 
the situation depicted in Fig. 4b. As k2 varies 
from - oo the fifth and sixth trajectories move 
towards each other, collide at the point b and 
diverge into the complex plane. The point b cor­
responds to the point also so labeled in Fig. 4c. 
As - k2 is further decreased the fifth and sixth 
trajectories do not, however, move towards l = - %. 
but return instead to the real axis and collide at the 
point c. Thereafter they diverge along the real 
axis; one pole ends up for k2 = -0 at l 0 and is 
the N -pole, the other moves towards the fourth 
pole and collides with it at the point a (which 
corresponds to just such a point in Fig. 4a). After 
this collision as k2 - 0 two poles go through the 
complex plane to the point l = -%. 

Figure 4b differs from Fig. 4a in that it con­
tains two additional real collision points (b and c). 
For l 0 < - 5 these points were located in the com­
plex plane and corresponded to the collision of the 
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fifth and sixth trajectories for complex k2• Their 
first appearance on the real axis occurs at the 
point - 5 for that value of g for which l 0 is also 
equal to -5. With increasing g 10 moves to the 
right and the points b and c diverge in opposite 
directions. 

As g further increases the point c approaches 
the point a. After their coincidence the fourth tra­
jectory becomes an N -trajectory (for k2 = 0 it 
ends up at l 0 ), and the fifth and sixth trajectories 
after colliding at the point b go through the com­
plex plane to l = - %. We arrive at Fig. 4c. 

It must be noted that the collisions at the points 
a, b, and c and in the intermediate region take 
place when - k2/J.L2 "" 1, when Eq. (11) is, strictly 
speaking, inapplicable. It is to be expected, how­
ever, that the qualitative features described by us 
are valid. 

As g continues to increase the point l 0 con­
tinues to shift to the right. As l 0 passes through 
the point -3 a process analogous to that de­
scribed above takes place after which the limiting 
position of the N -trajectory for k2 - - oo becomes 
equal to - 2 and does not change anymore. 

If terms of higher order in g are taken into ac­
count in the equations for the trajectories then one 
finds other N -poles lying to the left of the first 
N -pole. The last limiting position for k2 - - oo 

of the second N -pole is equal to - 3. For the fol­
lowing N -poles it is - 4, - 5, etc. 

We have analyzed the motion of the poles for 
negative k2• The case of positive and complex k2 

turns out to be more complicated. Several tra­
jectories of N -poles for positive k2, obtained by 
numerical calculations, are shown in the work of 
Ahmadzadeh, Burke, and Tate. [2] We shall not 
describe the trajectories of the poles but will dis­
cuss only their analytic properties in k2 as a func­
tion of g. For simplicity we limit ourselves to 
poles with smallest numbers. 

In Fig. 5 is shown the complex k2 plane for the 
second trajectory ( n = 2). Before the arrival of 
l 0 at the point - 3 the second trajectory has one 
real branch point corresponding to the collision 
with the third pole (Fig. 5a). After the limiting 
value l 0 of the ~-pole passes through the point 
l = -3, analogously to what has been described 
above for the fifth and sixth trajectories (Fig. 4b), 
the third and fourth trajectories undergo double 
collisions to the left and right of the point l = -3, 
prior to colliding with the second trajectory. Both 
collision points are, obviously, root type branch 
points in the k2 plane. It is easy to understand 
that after going around both branch points in the 

FIG. S. Complex k2 plane for 
the trajectory with n ~ 2 for vari­
ous coupling constants; a- prior 
to the arrival of theN-pole, b­
after the arrival of the N-pole but 
before the disappearance of the 
branch points onto the unphysical 
sheet. 

_0_ _,[ ---';+·----• a 
I I 

01 
~ 
0 'I 
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same direction the fourth trajectory, which was 
moving with decreasing - k2 along the real axis 
from left to right, continues to move in that direc­
tion, while the third trajectory moves along the 
real axis to the left. Therefore the third trajec­
tory falls into the point l 0 whereas with the second 
trajectory collides the fourth. This means that for 
l 0 somewhat larger than -3 Fig. 5a remains cor­
rect, however the branch point corresponds now to 
the collision with the fourth trajectory. 

As g increases further, as was explained above, 
the collision points a and c (displaced now rela­
tive to Fig. 4b by two units to the right) coincide, 
and thereafter the second trajectory goes for k2 

- - 0 to the point 10• This means in the complex 
k2 plane that instead of one real branch point there 
appear two complex conjugate branch points, so 
that there exists a sector near the negative real 
axis in which the second trajectory represents an 
N-pole with the limiting value l 0 (Fig. 5b). In order 
to understand how one real branch point corre­
sponding to collision with the fourth trajectory is 
replaced by two complex conjugate ones, corre­
sponding to collisions with the third trajectory, 
one must turn to a discussion of the third and 
fourth trajectories. For the sake of conciseness 
we conclude first the discussion of the second tra­
jectory. As g increases the complex branch points 
approach the positive real axis and disappear 
through the physical cut. At the moment of their 
disappearance the second trajectory collides with 
the third for real positive k2• A case of that type 
is shown in [2] in Fig. 4. 

For yet larger values of g the plane of the sec­
ond pole contains only the physical cut, the trajec­
tory is closed as k2 varies from - oo to + oo, re­
maining real for all k2 < 0 and lying in the upper 
half-plane for k2 > 0. In this sense the trajectory 
is "normal," one can write for it a dispersion re­
lation with only the single physical cut. As g in­
creases further l 0 continues to shift to the right. 
As l 0 passes through - t,/2 the equation defining 
l 0 changes. For 10 < - t,/2 the point 10 corresponds 
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to the vanishing of the left side of Eq. (11) or rather 
of the more precise Eq. (A.8) obtained without sim­
plifications arising from perturbation theory. For 
l 0 > -% the quantity (k2/ p.2 l+1/ 2 - 0 as k2 - 0 
and it is then necessary to equate to zero the right 
side of the same equation. It is clear from the 
formulas in the Appendix that the passage through 
l 0 = -% with increasing g proceeds continuously 
so that for Z0 = -% the left and the right sides of 
Eq. (A.8) vanish simultaneously (both sides should 
be first multiplied by Z0 + % to remove the singu­
larity at that point). When Z0 passes through non­
negative integer values bound states are produced. 
It is interesting to note that the creation of a nor­
mal trajectory occurs for values of g smaller than 
needed for the creation of bound states. 

Let us investigate now the k2 plane for the third 
trajectory (n = 3 ). As long as the N-pole is suf­
ficiently far to the left the plane looks as shown in 
Fig. 6a. There is one real branch point due to col­
lision with the second trajectory and a pair of com­
plex conjugate points due to collisions with the 
fourth trajectory. From the previous discussion 
we know that after Z0 becomes larger than - 3 the 
third trajectory has the limiting value Z0 for k2 

- - 0. This means that for smaller g, when Z0 

is still less than -3, there already was in the 
plane of the third trajectory the N -sector. The 
corresponding situation is shown in Fig. 6b. The 
two additional, as compared with Fig. 6a, branch 

FIG. 6. Complex k2 plane for the trajectory with n = 3 for 
various coupling constants; a- prior to the arrival of theN­
pole; b- after the arrival of the N-pole for l 0 <- 3; c -l '> -3; 
c'- real branch points of the fourth trajectory for the same 
coupling constants as in the case c; d- departure of branch 
points into the complex plane; e- final appearance of the 
complex plane after the passage of the N-pole. The points 
a, b and c correspond to the analogous points in Fig. 4. 

points came, apparently, from other sheets through 
the complex cuts of Fig. 6a. 

At the moment when Z0 = -3 the pair of com­
plex branch points of Fig. 6b arrive at the negative 
real axis. At that the real branch point due to col­
lision with the second trajectory falls on the fourth 
sheet (i.e., as was previously explained, the second 
trajectory collides now with the fourth). As g is 
further increased the branch points diverge along 
the real axis (Fig. 6c), there being no cut between 
zero and the right branch point. For that same 
value of g the positions of the real branch points 
in the k2 plane of the fourth trajectory are shown 
in Fig. 6c'. 

With increasing g, as was already noted, the 
points a and c approach each other, coincide, and 
become complex. After that the k2 plane for the 
third trajectory looks as shown in Fig. 6d. The 
conjugate branch points correspond to collision 
with the second trajectory. We should place these 
points in the plane of the third (and not fourth ) 
trajectory because if we don't then the limiting 
value of the third trajectory for k2 - - 0 would 
remain equal to Z0 whereas it is clear from the 
foregoing that it should be equal to -%. 

As g is further increased pairs of complex 
branch points disappear in succession through 
the physical cut. At the moment when the branch 
points due to the second trajectory disappear there 
remains in the complex k2 plane of the third tra­
jectory only, aside from the physical cut, one real 
branch point (Fig. 6e) and the second trajectory 
becomes normal. With increasing g as the next 
N-pole passes through, the position of the singular­
ities of the third trajectory undergoes the same 
changes as were previously described for the sec­
ond trajectory. Thus with the passing of the first 
N -pole there disappears from the k2 plane of the 
third trajectory a pair of complex branch points; 
the second N -pole sweeps the complex plane clean 
of the real branch point and thereafter the third 
trajectory also becomes normal. 

It is easy to understand that an analogous proc­
ess occurs also with the remaining trajectories: 
with increasing g, as N-poles pass through, the 
branch points in succession disappear through the 
physical cut and in the end the trajectories become 
normal. It is not hard to see that in this respect 
even the first pole ( n = 1 ) is no exception. For 
repulsion ( g < 0) this pole has a real branch point 
due to collision with the second. This point disap­
pears onto an unphysical sheet through the point 
k2 = 0 for g = 0. 

We are grateful to V. N. Gribov for numerous 
and useful discussions, and also to I. T. Dyatlov 
for valuable to the authors criticism. 
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APPENDIX 

POLE TRAJECTORY EQUATION FOR SMALL k2 

We have previously[!] derived the following 
exact equation for the trajectories of Regge poles: 

e-:n). r j). (kr) u (r) 'ljl). (r) dr 

co 

co 

A (A., g) = ~e-x X1. (x) x 2). dx!r (2A. + 1), 
0 

co 

B (A., g)= I - (g/A.) ~e-x X,. (x) dx. (A.S) 

Integrating Eq. (A. 7) and substituting the result 
into Eq. (A.S) we obtain A(A, g) and B(A, g) in the 
form of power series: 

co co 

=sin n:A. +-} ~ L (kr) U (r) 'ljl). (r) dr, (A.1) A (A.,g) = L] an (-f)", B(A.,g) = L] bn(- f)". (A.9) 
n--=o n=O 

where A= l = Y2, jA(x) = -.frrx/2 JA(x), and the 
radial wave function l/J ( r ) satisfies the integral 
equation 

r 

'\f"1. (r) = j). (kr) + k si~ nA. ~ [ j). (kr) j_). (kr') 
0 

- j_). (kr) i1. (kr')] U (r') 'ljl). (r') dr'. (A.2) 

In [i] h and lf!A were denoted by jz and 1/Jz. 
For small k 

. vn-· ( kr )"+'/, 
h (kr) ~ r (1 + t.) 2 · (A.3) 

Substituting Eq. (A.3) into (A.2) and expressing 
lf!A in the form 

"Vn ( kr )).+'/, 
'ljl,_ (r) ~ r (1 +A.) 2 X,. (r), (A.4) 

we obtain for XA the integral equation 

r 

x,. (r) = I+ A ~[1- ( ;' t] u (r') x).(r')r' dr'. 
0 

At that Eq. (A.1) takes on the form 

e-in). n (k2 ). co 

-y [f (i + A.JF 4 ) ~ r 21- U (r) X1. (r) rdr 
0 

co 

= sinn:A.[1+ 2~ ~ U(r)X1.(r)rdr]. (A.6) 
0 

For the case of a Yukawa potential U ( r) 
= -2gJJ.e-JJ.r;r under consideration Eq. (A.5) re­
duces to 

X 

X1. (x) = I + f ~ e-x'[(f t -1 J XA(x')dx', 
0 

(x = 11r), (A. 7) 

and Eq. (A. 6) to 

vn-r(-A.J ( )). 
g r (-A.++) ~ e-in A (A.,g) = B (A.,g) cos n:A., 

where 

The first coefficients in these series are equal 
to 

(A.10) 

1 ' 
b 1 b b b _ b0 b 2nA. + \ dyy-21. 

o = ' 1 = O• 2 - - 2 + 1 - sin 2nA. ~ (y + 1)2 ' 
0 

b =!'!__- ~+b -~(2-21- -221-) 
3 o 2 2 sm 2nA. 

(A.ll) 

The coefficients bn in Eq. (A.ll) are given in a 
form convenient for use in the left half-plane Re A 
< 0. The bi ( i 2:: 2) have poles at all integer and 
half-integer negative points. For half-integer A 
these poles are compensated by zeros of the cosine 
in Eq. (A.S). In the neighborhood of integer A (i.e., 
half-integer l) the indicated singularities reflect 
the illegitimacy of the utilized asymptotic behavior 
[ Eq. (A.3)] of the Bessel functions; near these 
points Eqs. (A.6) and (A.S) are inapplicable. As 
was shown in the Appendix in [1] the region of in­
applicability of the equations has dimensions of 
order g. 

One arrives at Eq. (11) of the text if one keeps 
only first order expressions for the functions 
A(A,g) and B(A,g), i.e., keeps only a0, a1o b0, b1• 
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