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Expressions are obtained for the probability of the coalescence of photons in the Coulomb 
field of a nucleus, in the limiting cases of photons with frequencies large and small compared 
with the electron mass. For high frequencies the coalescence of photons is investigated by 
means of the dispersion-relation method. The low-frequency case is treated by means of the 
radiative corrections to the Lagrangian for the electromagnetic field. 

1. One of the nonlinear effects of quantum electro­
dynamics which has not been studied so far is the 
coalescence of photons in the Coulomb field of a 
nucleus. The coalescence of photons can occur not 
only in an external field, but also in interaction 
with particles, for example electrons (this process 
is obviously the inverse of the double Compton ef­
fect). For the case of electrons this process has 
been treated by Fried [t] for small frequencies. 
We shall be principally interested in the coalescence 
of photons at large frequencies wi >> m ( where 
m is the mass of the electron and Wi is the fre­
quency of the photons). As will be shown below, in 
the high-frequency region the main mechanism for 
the coalescence of photons is the process in the 
Coulomb field of a nucleus. In the low-frequency 
region, on the other hand, the main effect is the 
coalescence in interaction with electrons. 

For the high-frequency region we shall study 
the process of coalescence in the Coulomb field of 
a nucleus by means of the method of dispersion re­
lations. We find the expression for the probability 
of the coalescence of photons in this range of fre­
quencies. For comparison, the contribution from 
the coalescence on electrons is also estimated for 
the high-frequency case. Besides this we treat the 
case of coalescence of photons in the Coulomb 
field of a nucleus in the low-frequency region also. 
To do this we use the expression for the radiative 
corrections to the Lagrangian for the electromag­
netic field. 

2. In studying the coalescence of photons in the 
Coulomb field of a nucleus by the method of dis­
persion relations, as in the treatment of photon­
photon scattering, [2] it is convenient to deal with 
the total amplitude A, which is connected with the 
matrix element M for the coalescence by the rela­
tion 

M<l (w1 + w2 -wa) = 

- ....::_ Ze5 (2w1w2w3)-'1' \ ds~ A<l4 (k1 + k2 - ka- q), (1) 
2 • q 

where kt, ~. and k3 are the four-momenta of the 
photons before and after the coalescence ( Wt, w2, 
and w3 are the frequencies of these photons), Ze 
is the charge of the nucleus, and q is the momen­
tum transferred to the nucleus. 

The amplitude A can be written in the form 

A = A1 + A2 +A a + A1e + A2e + As•• 

where the partial amplitudes At, A2, A3 correspond 
to the following processes: 

(k1. e1) + (k2. e2) -+ (ka. ea), 
(-k3• e3) + (k2. e2)-+ (-kl, el), 
(k1. e1) + (- ka· ea) -+ (- k2. ez) 

(2.I) 
(2.II) 

(2.III) 

( ei are the polarization vectors of the photons). 
The partial amplitudes Ate• A2e, A3e are those for 
the exchange processes with respect to the vari­
ables (kt, ed and (k2, e2}, and are obtained from 
At, A2, A3 by the interchange ( kt, et ) ~ ( k2, e2 ). 

The amplitudes At, ... Ate• ... depend both on 
the scalar products kiej and on the scalar invari­
ants s = - ( kt + k2 )2, t = ( kt - k3 )2, u = ( k2 - k3 )2, 
which because of the conservation law are connected 
by the relation - s + t + u = q2. Owing to the cross­
ing symmetry of the processes (2), the expressions 
for all of these amplitudes can be obtained from the 
expression for any one partial amplitude, for ex­
ample At, by means of interchanges: 

A 1 -.Ador(k1.e1)~ (-k3.ea), s~ -u, t _,f; 

A 1 -+A 3 for(k2 .e2)~(-k3,e3), S<-4 t, U-+U; 

A1 -.A 1efor (k1. e1) <-4 (kz, e2), t <-4 u, s-+ s; 

A1 -+A 2e for (k1. e1)-+ (- k3 • e3) -+ (k2. e2)-+ (k1. el), 
s _. - t _. - u -+ s; 
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s--.. -u--.. -t -.s. (3) 

Therefore it suffices to consider the amplitude in 
the first channel. 

For definite real values of the variables s, t, 
and u the amplitudes At, ... have both real and 
imaginary parts. The imaginary part of the ampli­
tude At is connected with an element of the scat­
tering matrix S = 1 + iT by the relation 

-+ <k3, e3! T- T+ I kr, er; k2, e2) 

=!- -T Ze5 (2rol(J)2(J)3) -'/, ~ d;~ Im Ar64 (kr + k2- ka- q), 
I 

where T+ is the operator which is the Hermitian 
adjoint of the operator T. 

It follows from the unitarity condition on the 
operator T 

T -r+ = iT+T (4) 

that in the first nonvanishing order of perturbation 
theory (in the order Ze5 ) Im A1 is represented by 
the Feynman diagrams shown in Fig. 1 (electron 
lines with cross marks denote free particles). 

As we shall see, the imaginary parts of the 
amplitudes At, Ate are different from zero for 
s 2:: 4m2, Im A2 and Im A3e for u :s - 4m2 , and 
Im A3 and Im A2e for t :s - 4m2 • 

In what follows we confine ourselves to the 
treatment of the coalescence of photons under the 
condition that the momenta of the photons in the 
initial state are parallel to each other (this is the 
most interesting case, since then the momentum 
transferred to the nucleus can be a very small 
quantity, which leads to a large value of the proba­
bility of coalescence). To this case there corre­
sponds the value of the invariant s = 0. 

When now for fixed s we try to find from the 
imaginary part of an amplitude an expression for 
the real part, it is convenient to use the dispersion 
relations in the form of Eq. (2.6) of a paper by 
Mandelstam [ 3] [see the expression (14) of the 
present paper]. For these dispersion relations it 
is necessary to know the imaginary parts of the 
amplitudes A2, A3, A2e. A3e. Since it is more cus­
tomary to deal with channel (2 .I), we shall first 
calculate the imaginary part of the amplitude At 

FIG. 1 

for the values of s, t, u which correspond to s 
= 0 in channels II, III, IIe, Hie. We then get the 
expressions for Im~. ImA3, ImA2e, ImA3e from 
Im At by using the crossing-symmetry property 
(3). 

For this purpose we write down the explicit ex­
pression for Im At, corresponding to the diagrams 
of Fig. 1, 

ImA 1 = 4~2 ~d4v6(kv)6(v2 -s-t-4m2)(vp-s)(v:-s-q2) • 

(5) 

s = sP( f (k + v) - m) 
x1rfl(f(;-p)-m)r.(~ (k-~)+m) 

(5') 

where v = Pt - P2, k = k1 + k2 , p = kt - ~, p' = k3 

- q = 2k3 - kt - k2 [ Pt and P2 are the four-mo­
menta of the free electron and positron in the 
unitarity condition (4)], and k = kf..t YJ..t (yf..t are the 
Dirac matrices). 

3. Let us now get the expression for the coales­
cence amplitude A in the case of large photon fre­
quencies Wi >> m. In the variables s, t, and u 
(when we keep in mind that the momenta of the 
photons in the initial state are parallel to each 
other) the condition wi >> m is equivalent to s 
= 0, t = 2wtw3 (1- cos B)>> 4m2, u = 2w2w3 (1 
- cos B ) >> 4m2, where B is the angle at which 
the photon formed by the coalescence emerges. 
B is consequently subject to the restriction B 
>> max ( 2m ( Wt W3 )-1/2, 2m ( W2W3 rt/2], 

Let us begin with channels III and IIIe. To get 
the expressions for Im A3 and Im A3e for s = 0, 
according to crossing symmetry, Eq. (3), we must 
calculate the imaginary part of the amplitude At 
for t = 0. If t = 0 the amplitude At can be repre­
sented in the form 

A1 = (2rr)-2 [a16fl,k2a + b16,ak2fl + cr6flak1• + dr6flaka, 

(6) 

From the condition that the expression (6) be 
gauge-invariant one has the following relations be­
tween the coefficients at, bt, ... : 

sc1 + ud1 = 0, ar + br -+ sfr -+ ug1 = 0, 

and the contributions of the third and fourth terms 
in Eq. (6) cancel. Therefore we need to know only 
the expressions for, say, the coefficients a1, b1, ft. 

Calculating the trace (5') and carrying out the 
integration over v in Eq. (5) (for t = 0 ), we get 
the following expressions for the imaginary parts 
of the coefficients at, bt, ... (see Appendix) 
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l h (s) ( 2 ) m a 1 ;::::; s + q2 sw3 - q w1 , 

Im b1 ;::::; 2 1+1 (s~ (s (w 2 - w1)- q2w1}, 
s q 

Im f1 ;::::; 4Jl(s) wa/(s + q2), 

Im g1 ;::::; - 4J 1(s) w1/(s + q2 ), 

where 

(Here we have kept only the terms which lead to 
the largest contributions to the real part of the 
amplitude.) 

When we now use the crossing symmetry (3), 

(7) 

we get from Eqs. (6) and (7) the expressions for the 
amplitudes A3 and A3e 

A3 = (2n)-2 laa<'1p.ok3" + ba<'l"okap. + fak1oka"kap. 

where 

I J1 (-I) (t 2 ) m aa ;::::; - q2 _ 1 W2 - q ul1 • 

Im b3 ;::::;- 2lt2(- 1
1) (t (w1 + wa)- q2w1 ) 

q-

Im fa;::::;- 4J1 (- t) W2/(q2 - t), 

Imga;::::; 4Jl (- t) w1/(q2 - t) 

and 

Aae = (2n}-2 laae<'lvokap. + bae<'lp.okav + faeka"kap.kzo 

+ ga.ka..,.kavk1ol el..,.ezveao• 

where 

I lt(-u) 2 m a3e;::::;- - 2-- (uwl- q W2}, q -u 

Im b3,;::::;- 2 \(- u) (u (w2 + wa) - q2w2), 
• q -u 

lm fae;::::; - 4J 1 (- u) w1/(q2 - u}, 

lm gae;::::; 4J 1 (- u) w2/(q2 - u). 

(8) 

(8') 

(9) 

(9') 

Next, to get the expressions for the imaginary 
parts of the amplitudes A2 and A2e for s = 0, we 
must calculate the imaginary part of the amplitude 
At for u = 0. Using the condition of gauge invari­
ance, we have for At 

Using the crossing symmetry (3), we get for 
A2 and A2e " 

A 2 = (2n}-2 [a2<'1vokap. + b2<'1p.okav + f2k2oksvkap. 

(12) 

where 

Im a 2 ;::::; 0, Im b2 ;::::; - 2J1(- u) (- uwa + q2w2)/(q2 - u), 

Im f2 ;::::; 4J1(- u) W1/(q2 - u), Im g2 ;::::; 4Jl(- u)w2/(q2 - u) 

(12') 

and 

A 2e = (2n)-2 [a2e<'lp.oka" + b2e<'lvoksp. + f2ek1okap.k3v 

(13) 

where 

Im a2e;::::; 0, lm b2e;::::; - 2J 1 (- t) (-twa+ q2w1)/(q2 - t), 

lm f2e;::::; 4Jl(- t) Wz/(q2 - t), Im g2e;::::; 4J1(- t) wl/(q2 - t). 
(13') 

We have found the expressions for the imagi­
nary parts of the amplitudes in which we are in­
terested. Knowing them, we can find by means of 
the dispersion relations the expression for the 
real part of the total amplitude A. For fixed s ( s 
= 0) it is convenient to use the dispersion rela­
tions in the form of Eq. (2.6) of [ 3] 

_ _!_ ~ lm A3 {t') + Im A2e (I') , 
A- >t J 1, _ 1 dt 

4m2 

00 

1 ~ Im A2 (u') + Im A., (u') + . ~· 
Jt .tm' u'-u ' 

(14) 

which contain the imaginary parts of the ampli­
tudes A2, A2e. A3, A3e, which we have calculated 
[in Eq. (14) the momentum q transferred to the 
nucleus is fixed]. 

First, starting from the expressions (8), (9), 
(12), (13) for the partial amplitudes A2, A2e, A3, 

A3e, we can write for the total amplitude A the 
expression 

(15) 

where the coefficients a, b, are expressed in 
terms of the coefficients of the partial amplitudes 

(10) in channels III, IIIe, II, lie in the following way: 

Calculation of the trace (5') and integration over 
v in Eq. (5) for u = 0 give the following expressions 
for Im at, Im bt, ... (see Appendix): 

lm a1 ;::::; 0, lm b1 ;::::; 2J 1(s) (- sw1 + q2w2)/(s + q2), 

f =fa+ gae + g2 + /2e• g = ga + fae + /2 + g2e· (15') 

Now, substituting in Eq. (14) the expressions for 
Im aa. Im a3e, ... given in Eqs. (8'), (9'), (12'), (13'), 
we get for Rea, Reb, ... 
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Rea:::::::: (w/2t) ln2 (t/m2 ), Reb:::::::: (wi2u) ln2 (u/m2 ), 

Ref:::::::: Reg:::::::: Oo (16) 

(Here we have kept only the terms that give the 
largest contribution to the probability of coales­
cenceo) 

It must be noted that for coalescence t > 0 and 
u > 0 ( s = 0) o Furthermore the imaginary part of 
the amplitude A is equal to zero, and consequently 
only the real part of the amplitude contributes to 
the probability of coalescence. Keeping this in 
mind, we finally get for the matrix element M of 
Eq. (1) the expression 

M::::::::--1- Ze5 _1_ 
16:!t (2WtW2Ws)'/, t + U 

4. The probability for two photons to coalesce 
into one is defined as the number of such events 
per unit time referred to unit flux of incident pho­
tons, and is connected with the matrix element M 
by the relation 

(18) 

Substituting in Eq. (18) the expression (17) for M, 
we get 

where n3 is the unit vector in the direction of the 
momentum ka. 

Averaged over the polarizations of the photons, 
the probability of coalescence is given by the for­
mula 

dR:::::::: z•rx• sin2EI do 

2"nw1 w2wi ( 1 - COS (J )4 

[ I 4 2wrwa (1- cos El) + I 4 2w2wa (1- cos El) 
x n m• n m• 

+( I 2 2u)JWa(1-costl)+l 2 2w2wa(1-costl))2 26] 
n m• n m• cos . (2 0) 

this formula is valid for wi ~ m and fJ 
>> max [2m ( WtW3 )-t/2 , 2m ( W2W3 ri/2 ]. 

In the small angle region fJ ~ 1 the expression 
(20) takes the form 

{ I 4 WtWat12 + I 4 W2Watl2 + I 2 WrWaE12 I 2 WzWaE12 } 
x n m• n m• n m• n m• • (21) 

This expression does not hold for very small 
angles IJ ~ m/wi. Starting from Eq. (5), one can 
show that (dR/do)fJ=o = 0. In addition, as we see 

from Eq. (20), (dR/do)fJ=7T = 0. The probability of 
coalescence takes its maximum value for fJ ~ m/ wi. 

To estimate the total probability of coalescence, 
we integrate Eq. (21) over the angle variables with 
the lower limit taken as fJ =max [2m ( w 1w3 )-1/2 , 

2m ( w2w3 r112 ]. For Wt = w2 = w3/2 = w we have 
for the total probability 

R:::::::: 0.05 Z2rgm!w, 

where r 0 is the classical electron radius. If 
Wt ~ w2, w3 ~ w, we have 

R:::::::2 ° IQ-3Z2rg~~ln4 ~0 
w w w, 

(22) 

(23) 

We note that for w1 = 0 the expression (23) goes to 
zero. This is a simple consequence of Furry's 
theorem and Ward's identity. 

5. For comparison let us estimate the proba­
bility of coalescence of photons on electrons at high 
frequencies. This process is shown graphically in 
Fig. 2 [the remaining three diagrams are obtained 
from those shown by the interchange ( k1, e1 ) ~ ( k2 , 

e2 )] • A simple estimate of these graphs leads to 
the following expression for dR (for w1 = w2 

= w3/2 = w ): 

(24) 

where C is a numerical constant. Integrating this 
expression over the angles with a lower limit of 
about fJ ~ m/w, we get 

(25) 

It can be seen from a comparison of the expres­
sions (22) and (25) that at high frequencies coales­
cence of photons occurs mainly in the Coulomb 
fields of nuclei. 

6. Let us now consider the coalescence of pho­
tons in the Coulomb field of a nucleus at low fre­
quencies wi ~ m. In this case we can obtain the 
probability of coalescence very simply if we use 
the expression for the radiative corrections to the 
Lagrangian for the electromagnetic field. 

The matrix element for the process considered 
is now represented by the expression 

i Ze6 ~ d3q }\d =- , -,r /l'-vo4 
Sn (2wrWzWs) 1• q 


