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The scattering of neutrons by molecules is treated on the assumption that the energy trans­
ferred in a collision is much greater than the average separation of vibrational energy levels 
of the molecule. It is shown that then the expression for the differential cross section (in 
energy and angle) can be expressed in terms of a few simple terms in an expansion, which 
are then averaged over the orientations of the molecule. In the approximation given by the 
leading term of the expansion, some other important scattering characteristics have been 
found. The formulas apply to any molecule. For certain types of molecules the final ex­
pressions for the scattering cross section are reduced to single integrals, and can be easily 
evaluated numerically. Results of computations for water are given. 

DURING the collision of a neutron with a nucleus 
in a molecule, the chemical binding of the atoms 
plays an important role. In general the scattering 
cross section is a complicated function, depending 
on the properties of the molecule and the structure 
of its energy levels. The high energy region is 
important for neutron scattering because this de­
pendence is not so detailed, and one can achieve a 
compact as well as quite complete mathematical 
description. 

The range of neutron energies and energy trans­
fers in the collision considered here is of the 
order of a few electron volts, which is much 
greater than the separation of vibrational levels 
of the molecule. The scattering of such neutrons 
may be accompanied by quite complex intramo­
lecular transformations: excitation of high energy 
levels and dissociation of the molecule. The 
problem is greatly simplified if we disregard the 
final state of the molecule. Then only the param­
eters of the neutron which is being scattered are 
fixed, and one can use the convenient and well­
developed formalism described in papers of 
Placzek,Ct] Wick,[2J and Zemach and Glauber.C3J 
Such a formulation of the problem, which we shall 
also use here, is most interesting for studies of 
the behavior of neutrons in moderating media, and 
is most convenient for studying the properties of 
the molecules themselves. 

The basic formal results for the scattering of 
neutrons in the approximation of the Fermi pseudo­
potential were already found by Placzek for sys­
tems of heavy nuclei, and by Wick, who generalized 
the method to apply to light nuclei. But these re­
sults are useful only for getting the total scattering 
cross section, the mean energy loss and other 

energy moments, which of course does not give a 
, complete picture of the scattering. In the first 
section of the present paper, we give a further 
extension of the Placzek-Wick method to the 
double-differential cross section (in energy and 
angle) and to other characteristics of the scat­
tering which cannot be gotten by the method de­
scribed in [t, 2]. 

In the second and third sections, after justifi­
cation, the method is applied to the scattering of 
neutrons by molecules. The scattering of neutrons 
by molecules has been studied in many papers,[3- 5J 
but with respect to the double differential cross 
section only individual features of the problem can 
be regarded as understood. Zemach and Glauber 
gave a solution of the problem of scattering by a 
system of oscillators and by a rotator separately. 
The problem of the rotator and the rigid molecule 
has also been treated by Krieger and N elkin and 
by Volkin.r4, 5J As applied to molecules, the oscil­
lator model is applicable only to heavy molecules, 
while the rotator model can be used for any mole­
cule, but only for energies where there are no 
vibrational transitions. The combined vibration­
rotation effect 0 including vibrational transitions 
cannot be gotten simply by superposing the results 
for oscillators and rotators, since they are dis­
joint: the rigid molecule model is applicable only 
when the oscillator model is not valid. For the 
case of energy transfer which is large compared 
to the difference between vibrational energy levels, 
the method described here gives a solution of this 

llzemach and Glauber[2 ] treated this effect by a method 
similar to that of Wick, and consequently not applicable for 
our purposes. 
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problem in the most general form. 
In the third section we also discuss the effect 

of averaging the scattering over all orientations of 
the molecule. For the case of thermal motion 
(where the incident energy, unlike our case, is 
thermal) the averaging is usually done approxi­
mately, [4] which spoils the accuracy of the results. 
In the present paper, in addition to formulas which 
are approximate in this sense, we also, for a cer­
tain class of molecules, give rigorous formulas 
obtained on the basis of an exact averaging of the 
scattering over the molecular orientations. 

1. GENERAL TREATMENT OF THE SCATTERING 
PROBLEM 

The differential cross section for scattering of 
neutrons by a system of atoms, when we neglect 
interference terms is given by the sum of the 
cross sections for scattering by the individual 
atoms, which are determined by the following ex­
pression [3] (where we use the system of units 
having ti = 1): 

00 

d2crv 2 k \' . I n/ I 'HI. dt (1) 
dedo = cr. (x, e)= a. 2nko .\ e-" (e v e····l > . 

-00 

Here av is the scattering length from a rigidly 
bound atom; k0 and k = k0 - K are the momentum 
of the neutron before and after scattering; E = k~ /2m 
- k2 /2m is the energy transfer, m is the mass of 
the neutron, o the solid angle into which the neu­
trons are scattered; H is the Hamiltonian of the 
scattering system, H{J the transformed Hamil­
tonian, which is related to H by the relation 

(2) 

rv is the position vector of nucleus v. The 
brackets in (1) denote a quantum mechanical 
average and an average over the Gibbs statistical 
ensemble. 

We write the Hamiltonian of the system in 
general form: 

H = h p~/2M 1, + V; 
1'-

then from (2) we have 

(3) 

H~ = H + x2/2M. +L., Lv = xpJM.,. (4) 

We use Wick's [2] operator expansion: 

' 00 

elH/ e-iHt = eii><'/2Mv ~ (i~~n gn(x), (5) 
n=O 

in which the expansion coefficients are given by 
the following recursion relation: 

+ ~ n (n- 1) gn-2 [H, [H, LJ] + .... (6) 

We note that the various commutators are re­
peated in each coefficient gn. Combining these 
repeated commutators by using (6), we write the 
expression for gn in the form 

Ln 1 ( 1) Ln~-·> [ J gn ~~ • + 2 n n- ·1 " H, Lv 

+ ~ n (n- 1) (n- 2) c- 3 {[fH, L.,], L.] 

+ lH, [H, LJ]} + + n (n-1) (n-2) (n-31 c- 1 

X [H, L~l [ff, L.,] +. . .. (7) 

In (7) we have dropped the commutators 

[H, [H, [H, L,JJ] (8) 

and those of higher order in H. We shall treat 
only the terms given in (7), since for the case of 
large energy transfer the contribution of the 
omitted terms to the final result will be negligible. 

We now substitute (7) into (5) and (5) into (1), 
and sum the expression over n and integrate over 
t; we then have an expression for the differential 
cross section: 

J (") (. x" L \ [H L J 1 (3) ; x2 \ + ..,- 6 " ''M - e + v 1 , v --;:- 6 I ZM - e + Lv ) 
~ ~ v / 0 \ v . 

-+-{[[H,Lvl.Lvl+ [H, [H,Lvl]}{o(4)(2~ -e+L.,) 
\ 'J I 

+ [H, Lvl [H, Lvl + ..• +) . (9) 

We introduce the quantity Pvo• which is a char­
acteristic momentum of the scattering atom, and 
estimate the terms containing derivatives of the 
o function. Averaging the term containing the 
s-th derivative gives a quantity of order 
(Mv/ K )S+ 1F /p~ 0 , where F gives the order of mag­
nitude of the corresponding commutator. Cons id­
ering the structure of the commutators appearing 
in (9), we can already conclude from such a rough 
estimate of the terms in (9) that this series con­
verges in the small parameter Pvo /K of our prob­
lem; we can also assert that the second and third 
terms are of the same order, that the fourth and 
fifth terms give higher order corrections, and 
that the term containing the commutator (8) 
[which enters into (7) together with the factor 
L~-5 ] should be a correction term for the whole 
expression (9). 

Let us look at the individual terms of (9) in 
more detail. The first one corresponds to the 



392 G. K. IVANOV 

"impulse" approximation:2> the neutrons are scat­
tered from free nuclei having the same momentum 
distribution as they have in the initial state of the 
scattering system. The limiting transition 
€, K2 /2Mv - co is immediately carried out and 
gives the scattering by free nuclei which were 
initially at rest. In the "impulse" approximation, 
the collision of the neutron and nucleus is treated 
classically, but the properties exhibited by the 
system in scattering are quantum mechanical. 
For example, when the temperature of the medium 
T- 0, formula (9) does not give the classical limit. 

The other terms in (9) represent corrections to 
the "impulse" approximation due to the influence 
of binding on the nuclear recoil. The corrections 
are not as simple as the first term, but using them 
greatly improves the result and extends the range 
of energies. 

Formula (9) gives the double differential cross 
section, but it can be used to get other important 
characteristics of the scattering: angular moments 
of the function (9), including the cross section for a 
given energy transfer da/d€ for E > Esyst' as 
well as the cross section for scattering of neutrons 
at large angles. Because of the restriction on the 
energy transfer, the integration over E in (9) for 
small angles gives an incorrect result. For this 
reason, one also gets an incorrect result for the 
total cross section (to be precise, small correc­
tions to the geometrical cross section are not 
taken into account correctly; these can be gotten 
from the formulas of Placzek [t] and Wick [2]). 

But formula (9) does permit us with sufficient 
accuracy to include the influence of chemical 
binding on the total scattering cross section in 
the energy range where E > Esyst (where Es st 
is a characteristic energy of the system, Esy:t 
'""P~o/2Mv ). 

2. SCATTERING OF NEUTRONS BY MOLECULES. 
GENERAL FORMULAS. 

The usual picture of a molecule is based on a 
model consisting of point atoms coupled by forces 
which keep the atoms near their equilibrium posi­
tions; these posit ions correspond to deep minima 
in the potential energy, so that from the classical 
point of view the atoms vibrate with amplitudes 
which are small compared to the dimensions of 
the molecule. Corresponding to this picture, in 
quantum mechanics the condition 

(10) 

2)This terminology, which is taken from Goldanskir,[•] fits 
the physics of the phenomenon. 

is well satisfied (t.Er and w are the mean separa­
tions of rotational and vibrational levels, respec­
tively, and w is usually of the order of some 
tenths of eV). 

As already stated, we are considering the range 
of energy transfers of the order of several eV. 
Then the nuclear recoil velocity is much less than 
the electron velocities, i.e., it is still not high 
enough to seriously perturb the electron motion. 
Thus the requirement of adiabaticity (the possi­
bility of splitting the wave function into an elec­
tronic and a nuclear part) for the initial and final 
states is generally reasonable. But if we are 
studying the details of processes with large energy 
transfer, this requirement can be weakened con­
siderably. A process with large energy transfer 
occurs in a time T ,.., 1/E which is much less than 
the vibrational periods of the molecule. Those 
nonadiabaticities which result in electronic transi­
tions (which are effective only if there are sur­
faces of crossing of terms) and which involve 
times of the order of a few molecular vibration 
periods cannot manifest themselves in scattering, 
and have no effect in either the "impulse" approx­
imation or the leading corrections to it. In other 
words, the requirement of adiabaticity of the final 
state of the molecule is unnecessary. Thus if the 
electronic state of ·the initial molecule is separated 
from the nuclear state, it need not be included any 
further, and we can use just that part of the 
Hamiltonian which acts on the coordinates of the 
nuclei; we note that the most general form of this 
part of the Hamiltonian is given by (3). 

In order to use formula (9) directly, we need 
the condition 

(11) 

which can also be rewritten in the form 1/Kao 
« 1, where a0 is the amplitude of vibration of the 
atoms in the molecule ,.., 10-9 em. 

Formula (9), which was obtained neglecting in­
terference terms, includes terms of order 1/Kao 
(first order correction) and ( 1/K a0 ) 2 (second 
order quantum correction). The interference 
terms give a contribution to the differential cross 
section of order 3 > a~oh I afnc K b ( acoh and ainc 
are the coherent and incoherent scattering ampli­
tudes; b is the interatomic distance ,.., 10-8 em), 

3>Such a contribution appears only when the molecule con­
tains atoms with equal or almost equal masses. The interfer­
ence from two different atoms is effective only if x 2/2M1 

- x 2 /2M2 ;';; w. If this is not the case, the matrix elements for 
the scattering from different atoms differ from zero in non­
overlapping energy regions and the interference is completely 
negligible. 
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which is a fraction t; 10 a~oh Iaine of the contribu­
tion of the first quantum correction in (9). Usually 
a~oh Iaine ...., 1, but there are exceptions. For ex­
ample, for molecules containing hydrogen, when 
there is no correlation between the proton spins, 
a~ohla~nc ~::J 'l'4o (cf., for example, p. 442 of [7J ). 
It follows that formula (9), including the first and 
sometimes even the second order quantum correc­
tions, can be used for a description of the actual 
picture of neutron scattering by molecules. 

When we make the additional assumption that 
the vibrational and rotational motions are inde­
pendent, the total energy operator (3) takes the 
form H = Ht + Hr + Hv and includes the transla­
tional motion of the molecule as a whole, the 
rigid-body rotation of the molecule and the vi­
brational energy of the nonrotating molecule. 

Let the equilibrium position of atom v be given 
by the vector b11 ; then the vector displacement r 11 

of the atom from its equilibrium position is made 
up of independent contributions from each of the 
types of motion: 

r, = rJ + r; + r,v . (12) 

If the molecule has a rigid-body rotational 
velocity n, the velocity of an atom in the molecule 
can be written as 

(13)* 

where v~ is the velocity vector in the moving 
frame and is associated only with the vibrational 
motion of the molecule; Vm is the velocity of the 
molecule. 

The internal motion of an N-atom molecule is 
described by 3N-6 ( 3N-5 for linear molecules) 
independent normal coordinates, 

(14) 

and the displacement of the atom in the rotating 
system is 

v t v i r, = ~ c,Q, ; v, = ~ c,P;, (15) 

where c~ is the vector amplitude, Pi the moment 
conjugate to the normal coordinate Qi. 

After introducing the normal coordinates, the 
wave function of the molecule has the form 

(16) 

In averaging the operators in (9) which, we re­
call, is to be done in both the quantum mechanical 
and statistical sense, we shall keep in mind that, 

because of condition (10), since the parameter 
w (€ is assumed to be small, the rotational transi­
tions can be treated classically. The classical 
approximation for a rotator means that there is 
no change in orientation during the time of collision 
of the molecule, and we can replace the rotational 
wave function by a wave packet with simultaneously 
assigned orientation and angular momentum.[4J 

After this is done, the averaging in (9) reduces 
to an integration over the angular momentum 1 
including the Boltzmann temperature factor 
exp ( -1· r 1 ·li2T) followed by an average over 
the orientations of the molecule ( T is the temper­
ature of the medium in the system of units with the 
Boltzmann constant kB = 1; I is the moment of 
inertia tensor of the molecule). 

The classical approximation for the rotator 
also means that the operators describing the rota­
tional motion are not contained in the commutators 
in formula (9). Using (14) and (15), we can write 
for the commutators (we include only the first 
correction to the "impulse'' approximation) 

[H, L,l = - + ~ (xc~)w,Q1 ; [[H, L,], L,)=-~ (xc~)2wr 
I (17) 

We now split the 6 function and its derivatives, 
which appear in (9), into factors containing sepa­
rate independent variables (we use (13) and (15) ): 

00 00 

6(s) (E- xv,) = ~ ... ~ 6 (Et -xVM) 
-00 -oo 

X 6 (Er - [Qb,) x)6<s> (Et-XC~Pi) 

x fi [<'I (Et- xc~P;) dEtl dEt dEr d£1 
i+/ 

X 6 (E - Et - E r - ~ E,) 

and bring the expression for the differential cross 
section to the form 

()() ()() 

cr, (x, e)= a~~(~ ... ~ Wt (Et ) W.. (Er ,) 
-oo -00 

x {fi [ W; (E;) dE, I ~ w)I> fi [ W, (E,) dE;) dE1} 
; i i +I 

The factor which takes account of the excitation 
of rotational degrees of freedom has the form 

Wr = Nr ~ exp (- 1!-1 l/2T) <'I (E. - [Qb,) x) dl 

( Nr, and Nt and N~ later on, are normalization 



394 G. K. IVANOV 

factors whose meaning is obvious ) . The integra­
tion is done as in [4] ; we get 

Wr = ( 2JtT~Rvx t exp (- 2T~~vx ) • ( 19) 

The tensor Rv, which was introduced in [4], is 
related to the moment of inertia of the molecule 
and the position of the scattering atom relative to 
the center of gravity of the molecule. 

The integration of the factor for translational 
motion 

lli't = Nt \ exp (- MV~/2T) o (£- xVm) dVm 
.) 

is done by elementary methods, giving 

., _ (~)';, ·' ( MEt ) 
W t -- 2nTx2 exp \- 2Tx2 • 

(20) 

In (19) and (20) the rotational and translational 
transitions are included classically. For the vi­
brational degrees of freedom we have factors of 
the type 

W1 = (o (£1 - xc~P,.)), 

U?jn = ( + o< 2l (£1 -- xc(P1) xc(w7 (-+ Qi) 
! 1 .<.(3) (£ fp) ( i)2 2"-.. 

T If u f - XCv j XCv ffi j / • 

The average of the operators in (21) can be ex­
panded in the form 

n 

where the operators under the summation sign are 
averaged over harmonic oscillator wave functions, 
which in the momentum representation (which 
makes the averaging easier) have the form 

i _ n 1 ·- -'!'H p /- -Pzi2w1 lJlrz -- (2 n. Vnwi) n ( /} w,)e , (23) 

where the Hn ( x) are Hermite polynomials. 
Using the Bloch formula for the momentum dis-­

tribution of the oscillator ( cf, for example, [taJ, 
p. 107) 

n 

( (J). ) -'/, ( p2 ) 
= ~ :rtw,cth 2~ 1 exp - w1 cth (w;f2T) ' 

we can perform the sum over n in (22). 
First we note the following property of the 

functions (23): 

*cth = coth 

/,"' 11 Q /•"' "-.. 1 d , (P 2 
"-.. 'fn T i 'ft!/ = 2 dP; ['IJln ;)] · 

(24)* 

Also using (24) and (21), we find 

W1 = ~ <D~o (E1 -xc~P;) dP;; wJI> 

= - b; ~ (})~ (P1) o<s> (£1 - xc~P1) (xc~)2w}dP 1, 

and after integrating, we finally get for (21) 

W1 = V~ exp (- E?/a7) 
1tCLi 

( 
i 2 th (J)i ) (25) a, = (xcv) w, c ZT , 

W(l) = _1_ (xc~w/)2 Ei [2E~/<Y.i~'- 3] exp (- £21/<Y.21·) (26) 
I 3 -v n CL1 I • • 

We note that Wr and Wt have the same form as 
wi in (25). 

Because of the simplicity of the expressions in 
(19), (20), (25) and (26), it is easy to carry out the 
integration in (18) over the variables Er, Et and 
Ei. As a result we get the following expression 
for the differential cross section: 

2 k / 1 
O'v (x, e) = av -k "-.. ,r-

0 r ncx 

where 

(28) 
Formula (27) is general and makes only two 

assumptions: (16) and the assumption that the 
electronic state of the initial molecule is separable 
from the nuclear state (both these assumptions 
are usual in applications ) . The further steps of 
averaging over molecular orientation require more 
specific information about the molecules. We intro­
duce the quantities a2 = K2c;:;/Mv, ~ (K ·c~ )2wi 
= K2w2 /Mv averaged over orientation, and consider 
the question of the accuracy of the express ions we 
have obtained. One can see that the corrections to 
the "impulse" approximation given in (27) are of 
order 

where € is the average energy loss for a given 
K (E = K2/2Mv ). 

In the region of the maximum for the process, 
up to values E2 j(i?. F:; 2, where the cross section is 
down by about a factor of ten, the corrections give 
a contribution somewhat less (factor of three) 
than ( w /E) 112, and one can show that this remains 
true in the higher corrections to the ''impulse'' 
approximation; thus we can state that over a quite 
wide range around the maximum for the process 
formula (27) reproduces the cross section to an 
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accuracy of the order of t; 10 (€/w r 1• One can 
also see that in regions far from the maximum, 
the conditions for the validity of (27) are much 
poorer. 

With increasing temperature, the relative im­
portance of the corrections decreases. This is 
natural: from the classical point of view the case 
we are considering gives the optimum conditions. 

Formula (9) permits us to find the second 
quantum correction to (27). However, it is much 
more complicated and of no practical interest 
when E » w. 

Using (27) we can get the integral characteris­
tics of the scattering which were mentioned in the 
first section. We shall be interested in the cross 
section for scattering with a given energy transfer 
da/dE (or da/dk ), which is very important in ap­
plications, and also in the total cross section for 
scattering with an energy transfer exceeding some 
minimum value D > w. We first note that the cor­
rections vary in sign and furthermore that the 
main contribution to the integral comes from the 
region of the maximum, where the corrections are 
small. Thus we may expect that the integral 
characteristics are given quite accurately by the 
''impulse'' approximation. 

Let us make use of the formal analogy between 
the expressions obtained on the "impulse" approx­
imation and the formulas for the scattering of neu­
trons by monatomic gases ( cf., for example, [sJ ) . 
Making the analogous change of variables, we have 
for da /dk in the ''impulse'' approximation 

da (Mv + m)2 k / ( k~ k2 ) f ( ko k ) - = Ov -' exp --- er r-- '!]-
dk 4M vm k~ ' crg crg cro Clo 

( k k0 ) [ ( kg k2 ) f ( ko , k ) + erf y ao- '!] ao exp cr~ - cr~ er Y ao T '!] Clo 

- erf (r!:. + 'lJ ~)1) , (29) 
cto Clo _ 0 mol 

a11 = 47Ta~M~ ( m + M11 ) 2 is the total cross section 
for scattering by the free atom at rest; 01 ~ 
= M~01 2/K 2, 01 2 is defined in (28); 

X 

erf (x) = )-;; ~ e-1'dt. 
0 

Formula (29) is applicable for ( k0 - k )2 /2m 
> w. Let us go into more detail for molecules 
containing hydrogen. An interesting feature of the 
scattering of neutrons by bound hydrogen atoms is 
that the cross section da/dk has a characteristic 
simple form: 

/ k" J (k) = "-erf (lo/ , 
nmol 

(30) 

which permits us to draw a number of important 
conclusions. 

1. The effects of chemical binding are important 
for < 1/01 0 > k ~ 1 and do not disappear as k0 

--. 00 • For < 1/ a 0 > k « 1, the cross section is 
da/dk = 2aHk/k5 and corresponds to scattering by 
a free proton at rest. 

2. For< 1/0io>k « 1, the function J(k) 
= 2 < I/ a 0 > k/ -fi. If the scattering is accom­
panied by intramolecular transformations which 
have an energy threshold D (this is just the s itua­
tion for the dissociation of the molecules), we im­
mediately get for the total cross section of the 
process near threshold 

2 vr;z- / Vm' • [Eo- Dj'i, 0==- -0 _, 
3 n H "- ao / n Fo ' 

mol 

(31) 

where E 0 is the energy of the incident neutron. 
3. The proportionality of the cross section 

da /dk to the factor kJ ( k) is retained for any 
nonmonochromatic beam of incident neutrons with 
E 0 » w. 

Integrating (30), we get the total cross section 
for scattering of neutrons in the energy range for 
which E > D: 

/ cr2 [ I k'2 ) k' 2 k' -k''ja2]"-
0=0 ,~ 1--1 erf(-)+----=-e 0 / , 

H '- k~ \ex~ cro V n Clo !l mol 

(32) 

k' is the momentum of the neutron after scattering 
corresponding to E = D ( k' = .J 2m ( E 0 - D)). For 
k' < 1/01 0 > > 1, the rigorous averaging over 
molecular orientations is superfluous. We can 
simply replace a~ in (32) by a 5• its average over 
orientations. 

The general formulas (27) and (29)-(32) contain 
the dependence on the main characteristics of the 
molecules: the frequencies w i and the vector 
amplitudes, their absolute values and their spatial 
distribution in the molecules. The ci contain the 
force constants of the molecules. Thus informa­
tion about neutron scattering in the high-energy 
region can give additional information about the 
properties of polyatomic molecules, as already 
pointed out by Gol'danski1.CsJ We see that the 
main advantage of the high energy region is that 
the results are not complicated by those specific 
features which are introduced by the various pos­
sible final states of the molecule. In other words 
the advantage is the relatively simple analysis of 
the experimental material. 

We note still another important application of 
the results. As we see from (29) and particularly 
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from (30), chemical binding is important for the 
scattering in a range of energies which is narrow 
but very important for the physics of moderation of 
neutrons: because of this region (k,..., ..JNIW) which, 
expressed in temperature units T, amounts to a few 
tenths of a unit, there is a connection between the 
neutrons which are slowing down and the neutrons 
of the thermal group. 

3. AVERAGING THE EFFECT OF SCATTERING 
OVER THE ANGULAR ORIENTATIONS OF THE 
MOLECULE 

Formulas (27) and (29) require an averaging of 
the effect of neutron scattering over the molecular 
orientations. For molecules of arbitrary structure 
one can give no single recipe for carrying this out. 
The approximate averaging, in which one replaces 
a 2 and a~ by a 2 and a~ (their averages over 
orientation), does not give the correct result for 
the double differential cross section but can be 
used for getting approximate express ions for the 
cross sections d2a/dEdo da/dk (as can be seen 
from the tables given later). In obtaining rigor­
ous results, it is most convenient to choose the 
coordinate system fixed in the molecule so that 
the tensor R11 is diagonal. In diagonal form, R11 

has components ( r 1, r 2, 0); r 1 and r 2 are given in 
[sJ. The zero component corresponds to the axis 
passing through the center of gravity of the mole­
cule and the scattering atom. 

For certain important types of molecules, 
formulas (27) and (29) can be written in terms of 
relatively simple integral expressions. 

a) Linear and diatomic molecules. The vibra­
tions of a diatomic molecule are along the line of 
the nuclei, and those of a linear molecule are 
either along the axis of the molecule or in a plane 
perpendicular to it. We choose our coordinate sys­
tem so that one of the axes coincides with the axis 
of the molecule. In such a coordinate system the 
tensor R11 is diagonal, and its components for 
nucleus v are equal to r 1 = r 2 = r = r1b~ (where I 
is the moment of inertia of the molecule). 

We introduce effective "frequencies" for longi­
tudinal and transverse vibrations w 11 and w 1 in 
accordance with the following form for a 2: 

a2 = (x2/Mv) [w u cos2 8 + WJ. sin2 8], (33) 

where e is the angle between the molecular axis 
and the vector K. Similarly we introduce 

1 "" ( i 2 x2 2 .L.i XCv) W; = -M [A cos2 e + B sin2 8]. (34) 
ro~ v 

We write p = ( E- K2/2M11 )/Kv'wu/M11 and change 
to dimensionless variables, in which the energies 

are given in units of w II and the momenta in units 
of ..,f2M11 w11 (p = (E- "E)/,[2€). Integrating (27) 
over the orientations of the molecule, using (33) 
and (34), we get for the differential cross section 
for neutron scattering 

Clv (x, e)= a~fo [ n~~ll r [ [f (p) + 3-V 2ecp (p) J' (35) 

where 
~ 

t ( f3 \' -p't dt 
p)=2ff3-1 )e tVf3-t; 

1 
13 

cp (p) = f3 ·p C e-p•t(2p2t-3) [B~ + (A- B~) f3 -t ]dt. 
2ff3-1 ~ Vf3-t f3-1 

1 

(36) 

In general the integrals (36) cannot be expressed 
in terms of elementary functions. But in the fre­
quently occurring case where the transverse vibra­
tions are much weaker than the longitudinal ones, 
for not too high temperature {3 » 1, A» B and 
the functions (36) for p 2p » 1 can be written in 
the form 

f (p) = f Ei(- p2), 

-oo 

cp(p) = ~ (2p2 - I) e-~· (Ei (- p2) =- ~ / ~~). 
-p' 

For p = 0, which corresponds to € = K2 /2M11 , 

f (0) = ..!_ -. f f3 In Vi3 + Vff=i · cp (0) = 0. 
2 V f3-1 Vf3- Vf3-1, 

For the cross section (30), expressed in dimen­
. sionless momentum variables (p = k/..J2mwu) 

dcr 2p 
d = 0 H 2 J(p), 

P Po 

the factor J ( p) has the form 
13 

{37) 

J(p) = 2V:-1 ~erf(p}/2t) t'l.:1[3-t; (3S) 
1 

and we get for p « 1, 

J(p) = p ,(!_ -. f f3 In Vi3 + Vff=i . V n V 13-1 Vf3-Vf3-1 

b) More complex molecules. For complex 
molecules an interesting case is that in which the 
system of spatially distributed amplitude vectors 
forms three mutually perpendicular directions 
coinciding with the coordinate system in which the 
tensor R11 is diagonal. The last condition is not 
necessary at low temperatures. In this case the 
scattering cross section can again be written in 
terms of a few integrals. 

In accordance with our assumption, we write 
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Table I. Scattering of neutrons by water molecules for T - 0 
and T = 300° K for the case of interaction with one 

of the hydrogen atoms 

p' 1 o 1 0.05 1 0.10 1 0.20 1 0.30 1 o.•o 1 0.60 1 0.80 JI.OO 11.25 11.50 

r ...... o 
, (p).. 11,900 I 1.3001 1.070! o. 756l o.559l o.431l o. 278 1 o.188l o.123l o .. 086I o.o55 
q> (p) * 0 -2.50 -1.92 -1.101-0,561-0.240 0.080 0,201 0.250 0,246 0.225 

T = 300° 

f(p)* 11.6421 1,3711 1;1601 0.8691 0.6631 0.52510.34510,22810.15710,10210.069 
<p (p) * 0 -1,322 -1.441 -1.150-0.847-0.501 0.088 0.109 0.198 0.228 0,225 

*Values of the functions f(p) and <:p (p) of (40) to be used in the cross section (35). 

Table n 
p 0 0.05 0.15 0,25 0,35 0,45 

I 0.60 
I 

0.80 1,00 

T--+0 

J(p) * 0 0.149 0.426 0.623 I o. 742! o.830 I 0.915 I o. 960 I o. 980 
J' (p) * 0 0,125 0,362 0.568 0.729 0.8'13 0.9'11 0, 988 0. 998 

T = 300° 

J (p) * 0 0.130 0.377 0.580 I o.730 I o.813 I 0.912 I 0.975 I o.990 
J' (p) * 0 0.117 0.341 0,539 0,697 0.815 0.922 0.982 0,997 

*Values of the functions J(p) and J 1(p) in the formula (37) for the cross section, 

U 2 (t) = {~ = ~ + [ C- ~ = ~ q ]t 
+ [A - C _ 8 - c] 1 - q (I _ dt)} 

1-q d-q 1-d 

1 K ('-.l1-d1-qt)(A-C 8-C) 
X V (d- q) (t -1) V d- q t -1 . 1-q- d- q 

The significance of the variables e and cp is 
obvious ( 1 > d ::::: q). The integration gives the 
following result: the scattering cross sections are 
given by formulas (25) and (30), where 

-. I d- q (-. 11- d 1- qt ) + V (1- d) 2 (t- I) E V d- q t -1 · 
(40) 

K ( x ) and E ( x ) are the complete elliptic 
integrals of the first and second kind. The function 
J ( p) is obtained from f ( p ) by replacing the 
factor e-P2t in the integrand by erf(p/2t)jt1!2. 

1/Q 

f() 1 (' -p•tdf 
P =-;:t,)e T 

1 

( 1 (-. I d- q t -1 ) , 1 .;;, 1 .;;, 11d 
X I V (1-d)(1-qt) K V 1-d1-qt, """ """ · 

t V(d-:)(t-1) K (V~~)' 1Jd<t~1jq; 
1/Q 

(j) (p) = ~ p ~ e-p'l (2p2/ - 3) df { U1 (f), 1 ~ f ~ 1jd, 

i u2 (f), 1jd < t ~ 1jq; 

UI (t) = {8- C + [c- (8-C) q] t} 
d-q d-q 

+ v (1 - :l (1 _ qt) K ( V d..,..1 =-~-11,_=-q-,--\) 
+(A- C _ 8- C)-. 11- qt E (-. ld~ --q---,t---,--1 ) . 

1 - q d - q v 1 - d v 1 - d 1 - qt , 

The water molecule. We consider the scattering 
of neutrons by one of the hydrogen atoms in a 
water molecule.4> We shall assume (this is well 
justified) that the normal vibrations with frequen­
cies w 1 = 0.446 eV and w3 = 0.466 eV are along 
the line passing through the center of gravity of 

4>For water molecules this case is of principal interest, 
since the cross section for scattering by the oxygen atom is 
ten times less than for scattering by the two hydrogen atoms. 
Furthermore, because of the large difference in masses, the 
additional scattering by the oxygen has no effect whatsoever 
on those features which appear from the scattering by the 
bound hydrogen atoms. 
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the molecule and the hydrogen atom (we choose 
this as the z' axis). Using the interatomic dis­
tance ro-H = 0.97 A and the angle 105° between 
the 0-H bonds, we get r 1 = 0.945 m- 1 and r 2 

= 0.481 m- 1• The component r 2 corresponds to 
rotation in the plane of the molecule. It is there­
fore clear that in this case formulas (35) and (40) 
are completely applicable. 

Using the known values of the force constants of 
the H20 molecule ([to], p. 175) and taking account 
of the normalization of the ci, we find for the am­
plitude vectors 

fc\~>] 2 = [c~>p = 0.472 m-1; rcWl2 = 0.464 m-1• 

Because of the importance of the case consid­
ered here, we give the values of the parameters 
w II• d, q and A, B, C, which appear in formulas 
(39) and (40): 

w 11 = 0.472 [w1 cth ~~ + w3 cth ;~] + 0.110 T, 

w 11 d = 0.464 w2 cth~~ + 1.072 T, w 11 q = 2 T, 

w~1A = 0.472 (wi + w~), w;1B = 0.464 w;, C = 0. 

In Tables I and II we give the results of numer­
ical computations of the functions f ( p ) , ({J ( p ) and 
J (p) for T- 0 and T = 300° K. For comparison 

we also give values of J' ( p), which is obtained 
from J ( p) by an approximate averaging over 
molecular orientations. 
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