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A method is considered for writing out the dispersion relations in quantum electrodynamics. 
The proof is carried out in the lower orders of perturbation theory which is improved by ap­
plication of the renormalization group. 

l. Infrared singularities. The dispersion relations 
for photon-electron scattering at zero angle were 
first described in 1954. [ 1] However, subsequent 
application of the method of dispersion relations in 
quantum electrodynamics has met with a difficulty 
broughtaboutby infrared singularities. The physi­
cal essence of this difficulty lies in the fact that the 
amplitudes of processes in which charged particles 
and a finite number of photons take part are equal 
to zero if the charged particles are scattered at 
non-zero angle, and are different from zero for 
forward scattering. Therefore, for example, the 
vertex functions in electrodynamics are not analytic. 
Also, the dependence of the scattering amplitudes 
on the transferred momentum is not analytic. 

Cross sections of processes with an infinite num­
berofparticles (soft photons) differ from zero. The 
method of dispersion relations has been developed 
up to the present only for the amplitudes of processes 
with a finite number of particles. Nevertheless, we 
can also consider amplitudes of processes in elec­
trodynamics with a finite number of particles if use 
is made of the factorization formula for the infrared 
singularities [2] 

( 1) 

Where MA is a matrix element computed with in­
troduction of the mass !>:. in the photon propagation 
function, while the function FA has the form 

F" = - ~ z,.a,.ziaiF ((p,.a,. + Piai)2), (2) 
i<i 

where the summation is carried out over all charged 
particles, zi is the number of the charge, ai = + 1 or 
- 1 for incoming or outcoming particles, respec­
tively, with momentum Pi· The function F is equal 
to 1 l 

1lin the system of units used, 1i = c = me = 1; me is the 
mass of the electron. The scalar product ab = a"b" - a • b. 

1 ict (' dk ( 2p'- k 2p - k )2 ( ) 
F ((p - P)2) = 8Jt3 .\ k2 - A 2p'k- F -- '.!.pk- k2 3 

(a is the fine structure constant); it can be written 
in the form 

I r I m F (t') dt' 
F (t) ~ n.\ I'(F-1-ic) ' (4) 

4 

I F(t) - _5!:_-./~_--4(21-4+Al 1-4-i "-I). (5) 
m - 4 V 1 . 1-4 n A 

Examining the coefficient of ln A in FA' one can 
show that its real part is greater than zero in the 
physical region, vanishes for forward scattering 
(and also for backward electron-electron scatter­
ing), and becomes less than zero in the unphysical 
part of the region. If the quantity M is finite here 
in the limit A = 0, this means that the matrix ele­
ment MA in the limit A = 0 vanishes in the physi-
cal part, is finite for forward scattering and in­
finite in the unphysical part of the region. 

The assumption that the value of M in Eq. (1) is 
constant in the limit A = 0 is not rigorously demon­
strated; however, it is very likely. [2] In what fol­
lows, we shall consider the analytic properties of 
M for A = 0 in several processes in the lower orders 
of perturbation theory that is improved by means of 
the renormalization group. 

2. The vertex function. For a vertex with three 
lines, which correspond to two real charged par­
ticles and a virtual photon with square of the mass 
t, the value of M in the third order perturbation 
theory is an analytic function in the t plane with a 
cut from 4 to oo. Beginning with the seventh order, 
diagrams arise with intermediate photons. They 
must give a cut from 0 to 00 • Thus, for the vertex 
function the value of M possesses the usual normal 
analytic properties. 

3. Compton effect. We now consider the value 
of M for scattering of photons by electrons. We 
designate the square of the total energy of the di-
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rect and crossed processes by s and u, respec­
tively, and the square of the transferred momentum 
by t. 

In the second-order perturbation theory, M con­
tains the terms M~l and M~>, which have poles at 
the points s = 1 and u = 1, respectively. The cited 
diagrams of fourth order have, among ot~er terms, 
polar terms which depend on the additional magnetic 
moment of the electron JJ.'. We include these terms 
in M<~l and M~l, substituting in them the matrices 
yn + p.' anmqm for yn ( q is the transferred mo­
mentum). The remaining terms of fourth order 
give the following contribution: 

M<4l = [~ (t) In (1 - s) + r (t)l M;2l + M;~ 
+ [~ (t) In (I - u) + r (t) 1 M~2l + M~4~; (6) 

00 

t \' t'- 2 dl' 
~ (t) = an~ V t' (I'- 4) I' (I'- I_· ie) ' 

4 

(7) 

00 v-et t '(l'-2)1nl' 1 t'-4 dt' 
r (t) =- Tn~ [ Vl'(l'- 4) -z- -,,-JI'(t'-t-ie)' 

4 • 

( 8) 

The values of M~4J and M<~l (more precisely the 
coefficients of their spinor structures) are analytic 
functions of the variables s, t and u, t with branch 
points as singularities, and satisfy the Mandelstam 
representation. [ 3] We see that in fourth order 
there are terms with anomalous singularities 
(1-s)-1 ln(1-s) and (1-u)-1 ln(l-u). 

Applying the equation of the renormalization 
group [ 4] in the variable s and choosing the con­
stant of integration from the correspondence with 
perturbation theory (6), we get the result that the 
amplitude M close to the point s = 1 actually has 
a singularity of the form 

exp [~ (t) In (1 - s) + r (t)l (M;2l + ... ) (9) 

and a similar singularity close to u = 1. In Eq. (9) 
terms of the order [a ln ( 1 - s )]n and a 2 in per­
turbation theory are summed. 

It is reasonable to suppose that the amplitude 
M has the form 

M = exp [~ (t) In (1 - s) + r (t)l M~2) 

+ exp [~ (t) In (1 - u) + r (t)l M~2l + Ma. (10) 

where {3 and y are series in a, the first terms of 
which are represented in (7), (8), the additional 
magnetic moment is taken into account in M~2.>u 
and 

(11) 

is an analytic function with branch points, which 
satisfies the Mandelstam representation. 

The real part of the coefficient {3 ( t) in ( 1 0), ( 7) 
is less than zero in the physical region of the vari­
able t ( t < 0, t > 4) and is larger than zero for 
0 < t < 4. Therefore, the value of M close to s = 1 
(and similarly close to u = 1) has a singularity of 
the form 

which is stronger than the pole in the physical 
region of t. 

(12) 

Finally, let us consider one consequence of Eq. 
(10). That is, let us assume that for all physical 
energies one can neglect the value of the fourth 
order of Ma. Then we get for M an asymptote of 
the Regge type with exponent - 1 + {3 ( t), which 
satisfies the bound states of the electron and the 
positron. The level of these states in the nonrela­
tivistic limit leads to the Coulomb level. 

4. Electron-positron scattering. If the value of 
FA. in ( 1) is equal to F ( t) for the vertex function 
and the Compton effect, then it has the following 
form for electron-positron scattering: 

FA= 2F(s)- 2F(u) + 2F(t), (13) 

where the variables s, u, and t have the same mean­
ing as in the previous section. 

The quantity M contains the terms M~) and M<p 
for electron-positron scattering in the second order 
of perturbation theory; these terms are poles for 
s = 0 and t = 0, respectively. As before, we take 
into account in them polar terms of higher orders, 
which depend on the additional magnetic moment. 

The remaining terms of fourth order of pertur­
bation theory give the following contribution: 

M<4> = 2 (<I> (s, t) - <I> (u, t)) M/2 ) 

+ Mi!> + 2 (<I> (t, s)- <I> (u, s)) M~2) + M~~>. (14) 

where 

<I> (s1 t) = cp (s1 t) -cp (0, t) 1 (15) 

iet \' dk (p'p- (p'k) (pk) 1 k2) 2qk 
!1 (s, t) = n• ~ k' (k• + 2p'k) (k2 - 2pk) (q•- 2qk + ie) 1 (16) 

p' and p are the momenta of the electron and posi­
tron before ( or after) the reaction, q is the trans­
ferred momentum. 

The function 4? has the form 
00 

<D (s f) = ~ (' Im <l> (s', I) ds' 
1 n .\ s' (s'- s- ie) ' (17) 

4 

et -. / s - 4 {s - 2 I - I 1 } 
Im <I> (s, t) = 2 v-s - s- 4 n s- 4 + 2 . ( 18) 

The functions M~4~ and M~J do not contain pole 
terms and are analytic functions of s, u and t, u, 



DISPERSION RELATIONS IN QUANTUM ELECTRODYNAMICS 211 

respectively, satisfying the Mandelstam represen­
tation. 

One can rewrite Eq. (14) in the form 

M<4 ) = [(~ (s)- ~ (u)) In(- t) + e (s)- e (u)l M)2 ) + M)~> 
+ [(~ (t)- ~ (u)) In(- s) + e (t)- e (u)l M~2) + M~~, 

(19) 

where {3( t) is given by Eq. (7) and E ( t) has the 
form 

00 --

t 1 -. It- 4 -r- 2 1 1 J dt 
e(t) =an.\ v-t'-lt'-4ln 1'-4+2 1'(1'-1-ie) 

4 (20) 

Repeating the discussion of the previous section, 
a representation of type (10) can be written for the 
quantity M, or the representation 

M = exp [(~ (s) - ~ (u)) In(- t) + e (s) - e (u)l M 1a 

+ exp [(~ (t)- ~ (u)) In(- s) + e (t)- s (u)l Msa- (21) 

Employing the explicit form of the function ( 13), 
we can express the matrix element MA. in the form 

Mt. = exp {(~ (s) - ~ (u)) In(- t I/,) +2f(t)} Mta 

+ exp {(~ (t)- ~ (u)) In(- s/ t:) +2f(s)} Msa· (22) 

We consider the imaginary part of the exponent 
of the first exponential of this equation in the physi­
cal region s > 4, t < 0, u < 0. It is equal to 

. -1 . s-2 -,-I 
t Im ~ (s) In---.,= ta V In """'. (23) 

"' s (s- 4) "' 

We see that the imaginary part of the singular func­
tion in the exponent of the first exponential of (22) 
leads to a diverging phase: 

exp [ia Vs-2 In --:,t] = exp [ia J?+EP"In 2psin(8/2) J 
s(s-4) "' P V'A 

(24) 

(in the c.m. system), which is identical in the non­
relativistic limit with the diverging phase of the 
scattering amplitude in a Coulomb field in nonrela­
tivistic theory. [ 5] 
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