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An expression for the amplitude of photoproduction of pions on nucleons at low energies is 
derived with the help of integral and differential methods on the basis of one-dimensional 
dispersion relations. The results obtained by the two methods are compared with each other 
and with the experiments. The role of the unobservable region is assessed. 

1. INTRODUCTION 

PHoTOPRODUCTION of pions on nucleons was in
vestigated with the aid of the dispersion relations 
by many authors [ 1-5]. In some papers [ 1 •2] approxi
mate account was taken of the nucleon recoil but no 
account was taken of the 1m-interaction contribution. 
In others [a-5], the Mandelstam representation is 
used to derive formulas which take into account in 
principle the nucleon recoil in the 1r1r-interaction. 
In the most recent papers, relations containing the 
unobservable region are used. The continuation to 
this region is made with the aid of the first terms 
of the Legendre-polynomial expansion. On the 
whole, the Legendre-polynomial series converges, 
at least in the large Lehmann ellipse, but we do 
not know how fast it converges in the unobservable 
region. If the series converges slowly, then the use 
of the limited number of terms may lead to errors 
in the calculation of the dispersion integrals. 

The present work is devoted to an evaluation of 
the corrections for the nucleon recoil and to an ana
lysis of the effect of the unobservable region. We 
assume here that at the energies under consideration 
it is sufficient to calculate the S and P waves, and 
that the higher partial waves for the charged mesons 
need be accounted for only in the term for the direct 
photon-pion interaction. In order to obtain the am
plitudes of the S and P waves from the one-disper
sion relations, we use two different methods. In the 
first method, as is customary, the amplitude is in
tegrated with respect to the angle (we call this the 
integral method). The amplitudes then contain ex
plicitly the contribution of the unobservable region. 
In the second method the amplitude is expanded near 
the threshold value of the square of the momentum 
transfer ( we call this the differential method). This 
method has several advantages over the integral 
method. First, formulas obtained with its aid are 

much simpler than the formulas obtained with the 
integral method; second, they do not contain expli
citly the unobservable region. The differential 
method has been used by Chew et al [S] and its ad
vantages when applied to the double dispersion re
lations were analyzed in detail by Efremov et al [ 7]. 

We note that if we neglect the nucleon recoil (we 
let the mass of the nucleon tend to infinity), then 
both the differential and the integral method yield 
identical results. 

The calculations made in the present investiga
tion show that when the nucleon recoil is taken into 
account both methods likewise give results that. 
differ little at low energies. These results are in 
fair agreement with experiment. 

A comparison of the results of both methods en
ables us to estimate the contribution of the unob
servable region to the partial-wave amplitudes. 

2. DETERMINATION OF THE PARTIAL AMPLI
TUDES 

We consider the photoproduction of pions on nu
cleons in the center-of-mass system and use a 
system of units in which li = c = pion mass = 1. 
The principal symbols are: M-nucleon mass, 
k-photon energy, wq and q-pion energy and mo
mentum, W-total energy, x-cosine of the angle 
between the photon and pion momenta, a = ±, 0-
isotopic variables. 

The pion-nucleon photoproduction amplitude can 
be expressed in terms of the twelve amplitudes 
F}a>(w, x) (i = 1, 2, 3, 4), for which the following 
one-dimensional dispersion relations exist: 

00 

Re F}a) (W, x) = F}a) B (W, x) + ~ dW' ~ KY!) (W, W', x) 
M+l i 

Xlm F)a) (W', x') = F}a) B (W, x) + bF}a) (W, x); (1) 
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188 N. V. DEMINA et al 

k (wq- qx) = k' (wq'- q'x') = t. (2) 

We shall denote the dispersion integrals by oF\oo 
x ( W, x). The explicit form of the Born terms 
F<.a~>B = F<.onB + F<.onB and of the kernels K<.cy> 

1 1e rJ.L 1J ' 
and also the connection between the functions F<.on 

1 
and the photoproduction cross section, can be found 
in [1 ,2]. 

In order to compare theory with experiment at 
low energies it is sufficient to take into account 
only the S and P waves for the neutral pions, while 
for the charged pions it is necessary to take into ac
count in addition to the S and P waves only the 
higher waves contained in F<.a>B, or more accu-1e 

rately in the part of F\~>B which corresponds to 
the direct photon-pion interaction. 

A. Integral Method 

We first consider the dispersion integrals, the 
contributions of which to the amplitudes of the S 
and P waves have the form [2] 

1 

6£0+ (W)= + ~ dx{6F 1 (W, x)- x6F2 (W, x) 
-1 

+(I- x2) [-fr- 6F3 (W, x) + x6F4 (W, x)J}, 

1 

6Ml+ (W) = f ~ dx{x6F1(W, x) +}(I-3x2) 6f2 (W,x) 
-1 

-}<I- x2) 6F3 (W, x)}, 
1 

M11_ (W) =-} ~ dx {- x6F1 (W, x) + 6F2 (W, xl 
-1 

(3) 

where 
co 

6F; (W, x) = ~ dW' ~ Kii (W, W', x) Im Fj{W', x'). (4) 
M+l 

It is well known that these formulas contain the 
contribution of the unobservable region. At fixed 
W and for arbitrary observed x, the cosine of the 
angle x' under the integral sign in (14) varies in 
accordance with ( 2) in the following manner: as 
W'- 00 , x' tends to unity (from below), but as 
W'-M+1 

( += 

x'->- ~ O 

t- DO 

t < 1thr 

1 = 1thr; 

t? 1thr 

2M+1 
fthr =2M+ 2. (5) 

To calculate the dispersion integrals o Fj ( W, x), 
one usually expands Im Fj ( W', x') in partial waves 
and this expansion is used to continue Im Fj ( W', x') 
into the unobservable region. It is assumed here 
that this expansion converges not only in the observ
able but also in the unobservable region so rapidly 
that we can confine ourselves to its first few terms 
(for example, the S and P waves). This expan
sion can be written symbolically in the form 

Im F (W', x') = ~ Im A 1 (W') P1(x'), (6) 
I 

where P1 is the Legendre polynomial. 
From the unitarity condition it follows that when 

W' - M + 1 ( q' - 0) the l-th term of the series 
decreases as q' 1+1• Therefore the series actually 
converges well near threshold. Matters can be
come more complicated only away from threshold, 
when I x' I > 1 (but I x' I is finite) at high energies, 
where we do not know the extent to which the partial 
amplitudes decrease with increasing l. If the series 
converges slowly (of course, the series can also di
verge outside the Lehmann ellipse), the use of only 
the first terms of the expansion can lead to an error. 

In order to check this circumstance, we use the 
expansion (6) and confine ourselves in it only to the 
amplitude of the magnetic-dipole transition in the 
resonant state ( 3/2 3/2): 

Im Fi+l (W', x') = - 2Ffl (W'', x') = 2 Im Mi~~ (W') x', 

Im F~+l (W', x') =- 2F~-> (\¥1', x') =.j-Im Mi'~~ (W'), (7) 

Im Fi+l (W', x') =- 2F~-> (W', x') = - 2 Im Mi~~ (W'), 

Im Fi±> (W', x') = Im F~o> (W', x') = 0. 

These formulas enable us to express all the contri
butions from the dispersion integrals in terms of a 
single function Im MWJ l. For the amplitude of 
MfVJ> we choose the expression [ 1] 

M('/,) - l-Ip- 1-tn .!!._ f 
l+l'- - 2/ q 33• 

where f33 is the scattering amplitude: 
•!af2q2 ; w 

fsa= 1-w;w,- 4/ai/2q"/w; 

(8) 

(9) 

J.L p and J.L n are the total magnetic moments of the 
proton and neutron; f is the pion-nucleon coupling 
constant, f2 = 0.0877 [a]; w = W- M, wr = 2.17. 
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In view of the narrowness of the (33) -resonance, 
we put approximately 

e;,l ) 4.69n fk " (W W ) Im MHP.(W = :fM-e qu - r. (10) 

With the aid of this expression we calculate the am
plitudes oE~>, oEf!>, oMf~> and oMW2 >. In order 
to complete the calculations, it is necessary to add 
to these quantities the contributions of the Born 
terms. A direct calculation shows that the Born 
terms of the partial amplitudes for rr 0 mesons are 
not very sensitive to the method used in their cal
culation. We have used for these terms the results 
obtained below by the differential method. 

Finally, with the aid of the formulas (16) and (17) 
below we obtain the differential cross section for 
the rr 0 mesons. The corresponding curves are pre
sented in Fig. 1. 

B. The Differential Method 

As noted above, a shortcoming of the integral 
method is a fact that the expansion ( 7) must be used 
in the unobservable region. To avoid this, we use 
the differential method. We consider first, as be
fore, the dispersion integrals ( 4), which we expand 
in a Taylor series near t = tthr- We assume that 
in the physical region it is sufficient to retain only 
the S and P waves (and take the higher waves into 
account in the Born terms), so that it is sufficient 
to retain the first two terms of these series: 

bF; (W, x) = bft (W, X0) -! bF~ (W, X0 ) (x- x0), (11) 

where the prime denotes the derivative with respect 
to x and 

(12) 

Comparing (11) with the expansion in the S and P 
waves, we obtain 

bEo+ (W)= bF1 (U'1 , X 0) - bF~ (W, X 0) X 0 , 

bEl+ (W) = f{bF~(W, X0) + bF3 (W, X 0)}, 

bMl+ (W) = ,i- {bF~ (W, X9) - bF3 (W, X0)}, 

bM1_ (W)= bFdW, x 0) -+ {bF~ (W, X 0) -bF3 (W, X 0)}. 

(13) 

These formulas replace formulas (3) of the in
tegral method. To obtain them we had to assume 
that the D wave and the higher waves are negligibly 
small in the physical region (or else are deter
mined completely by the Born term in the case of 
charged mesons ) at the low energies considered 
by us ( experiment confirms this assumption). 

Now, for fixed x = x0 under the integral sign in 
(4), 

x' = (k'wq'- fthr)/k'q' (14) 

assumes only observable values, and we can use 
the partial-wave expansion of Im Fi ( W', x') in the 
observable region. We note that the nonresonant 
P-phases are negligibly small and we neglect them 
in the expansion of the imaginary parts. In the first 
approximation in Im Fi we even neglect the S wave 
( the question of the evaluation of the S phase will 
be discussed below) and confine ourselves in this 
expansion only to the amplitude of the magnetic
dipole transition in the resonant state ( 3/2 3/2 ), 
i.e., we use formulas (7) as above. Thus, we have 
expressed all the contributions for the dispersion 
integrals in terms of the single function Im Mf1~ >. 

The Born partial-amplitude terms corresponding 
to the neutral pions are not very sensitive to the 
computation method. We use for these terms ex
pansions at the point x 0 = 0: 

E~+ (W) = Ff (W, 0), 

Ef+ (W) = T {Ff' (W, 0) + F~ (W, 0)}, 

Mf+ (W) = T {Ff' (W' 0) - Ff (W, 0)}, 

Mf_ (W) = Ff (W, 0)--} {Fr (W, 0) - F~ (W, 0)}. (15) 

For charged pions, this remains true of those 
Born terms which depend on the magnetic moments. 
Adding expressions (15) to the corresponding ex
pressions in (13) we obtain the complete expressions 
for the partial neutral-pion photoproduction waves. 
For the amplitude Mf~~ > we obtain (together with 
the unitarity condition) an inhomogeneous linear 
integral equation. The numerical calculations show 
that expression (8) together with the approximation 
( 10) satisfies well this equation, at least near thres
hold. Therefore, as before, we choose expression 
(8) for MWA>, and use the approximation (10) for the 
calculation of the nonresonant amplitudes. 

3. RESULTS OF THE CALCULATIONS 

Using the formulas of Sec. 2 we can calculate the 
cross sections and compare the results of both 
methods. For the process 

Y + P __.no +P 

the differential cross section has the form 

da/dQ =A (W) + B (W) x + C (W) x2, (16) 

where 

A= f {(Eo+) 2 + + (Mt+)2 + (M1-) 2 + Ml+M1_ + f (Er+)2 

- 3El+ (M1_ - Mt+) + 1u0 (Im Mi1~)2}, 

2q 
B = 7i Eo+ {Mt+ + 3El+ -- M 1_}, 
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(17) 

Figure 1 shows plots of the quantities A, B, and C, 
obtained with the aid of the integral and differential 
methods. From the figure it is seen that both 
methods give almost i9-entical results at low ener
gies. At energies above resonance, the results be
gin to diverge, the difference increasing with the 
energy. Nonetheless, the results of both methods 
agree sufficiently well with experiment. Figure 2 
shows plots of the angular distributions of the 1r0 

mesons for different energies, calculated by means 
of the differential method. 

For the photoproduction of charged mesons we 
have considered only the case when x = 0 ( angle 
goo) and used only the differential method. For the 
process y + p - 1r+ + n we have here 

ReF1 (W,O) = F~ (W, O)+ <'\E~~l(W), 

Re F2 (W, 0) = F: (W, 0) + <'lMi::l (W) + 2<'\Mi~l, 
Re F3 (W, 0) =Ff (W, 0) + 3<'l£i~l- <'lMi~l, 

ReF, (W, 0) = F: (W, 0), (18) 

where Fi and :FJ? correspond to 1r+ mesons. The 
values of oE and oM were calculated by formulas 
(13). 

The differential cross section of the 1r+ mesons 
emitted at goo has the form 

dCld~+) la=eo• = ¥{(Re F1 (W, 0)) 2 + (Re F 2 (W, 0)) 2 

20 

15 

+ + (Re f 3 (W, 0))2 + { '(Re F4 (W, 0)) 2 + Re F 2 (W, 0) 

x Re F 3 (W, 0) + Re F 1 (W, 0) Re F 4 (W, 0) 

, 5 (I M<%l )21 'Til m I+P. J. 

tit! 
ti!]• !lb/ sr 
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FIG. 1. Plot of the coefficients A, 8, and C of the dif
ferential cross section for the photoproduction of neutral 
pions vs. the laboratory-system energy of the photon. The 
continuous curves show the results of the calculation by the 
differential method without account of the imaginary part of 
the S wave, while the dashed curve accounts for the imagi
nary part of the S wave. The black dots represent the re
sults of the calculation by the integral method (without 
account of the imaginary part of the S wave). 

It is shown in Fig. 3. Figure 4 is a plot of quantity 

d::; (Jt+) I I ( k )-2 at = ~ 9=9o' qwq 1 + M . (20) 

FIG. 2. Dependence of the differential cross 
section of the photoproduction of neutral pions 
on the angle in the c.m.s. Curve I (o, e) -for 
Ey = 360 MeV, curve II (o, •) - for Ey = 300 
MeV, curve III (6, A)- for Ey = 260 MeV, curve 
IV (x)- for Ey = 220 MeV, curve V (o) -for 
Ey = 200 MeV, curve VI(*) - for Ey = 180 MeV. 

e. deg e. deg 
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FIG. 3. Differential cross section of photoproduc
tion of positive pions at goo in the c.m.s. as a function 
of the laboratory-system energy of the photon. 
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FIG. 4. Value of Eq. (20) for the photoproduction of posi
tive pions as a function of the laboratory photon energy; ex
perimental data: 0 _[,•], o _[,•], x _[19 ], 6 _[ 20 ], 

Formulas (18) and (19) can be used for the pho
toproduction of negative pions ( 'Y + n - 71'- + p), 
but Fi and F~ should correspond to the 71'- mesons, 
and the signs of the o-terms in (18) must be re
versed. Finally, Fig. 5 shows a plot of the ratio 

{Ida (rc) /dQ]!(da (:rt+)fdQ]} 0~~o"' 

4. DISCUSSION OF THE CONTRIBUTION OF THE 
UNOBSERVABLE REGION TO THE PARTIAL 
WAVES [ 24] 

In order to note the differences between the in
tegral and differential methods, we have compared 
the contributions of the dispersion integrals to the 
nonresonant amplitudes, (i.e., the quantities oE~>, 
oMf~l, and oM?{2l), calculated by both methods. 
The difference between them is caused by the fol
lowing: 

1) Neglect of the higher-order partial waves in 
the calculations by the differential method; this 

_. Q=JO' 
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FIG. 5. Ratio of differential photoproduction cross sec
tions of negative and positive pions at goo in the c.m.s. as 
a function of the photon laboratory energy. 

circumstance can, generally speaking, manifest it
self at all energies. 

2) Continuation into the unobservable region with 
the aid of a finite number of Legendre polynomials 
in the calculation by the integral method; this cir
cumstance, by virtue of the approximation (10), can 
manifest itself only at energies above resonance, 
w>2.17. 

Calculation shows that the difference between the 
results of both methods increases with increasing 
energy, but even when w = 2. 77 ( Ey = 465 MeV) it 
amounts to 2.5% for oE~:>, 21% for oMl~>, and 25% 
for oMf!/2 >. At resonant energy, the differences 
(due only to the failure to account for the high-order 
partial waves) amount to 1, 13, and 8% respectively. 
We can therefore conclude that the continuation into 
the unobservable region with the aid of a finite num
ber of Legendre polynomials leads to negligible er
rors for energies below resonance, and for energies 
from resonance up to 460 MeV it leads to errors 
not exceeding 1-2% for the contributions to the 
dispersion integrals by the S-wave amplitudes and 
10-20% for contributions of the P-wave amplitudes 
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to the dispersion intervals. For the partial ampli
tudes as a whole, this error is smaller or larger, 
depending on whether the signs of the correspond
ing Born terms and of the dispersion contributions 
are the same or opposite. 

It would be interesting to ascertain the error 
that arises if the contribution of the unobservable 
region is completely disregarded in the dispersion 
integrals when using the integral method. 

The unobservable region in (4) corresponds in 
the c.m.s. to an integral with respect to W' from 
M + 1 to the value determined by the equation 
x' = ( k'wq' - t)/k'q' with x' = 1 ( t < tthr) or 
x' = - 1 ( t > tthr ) . 

In the approximation (10) this means that the 
contribution of the unobservable region is equal to 
zero if W ~ W r• and if W > W r this contribution 
occurs when 

tinuities due to the discontinuity of the amplitudes 
with isotopic spin 3/2. If we replace the a-function 
(10) by a continuous function then, of course, these 
discontinuities are smoothed out. However, owing 
to the existence of the narrow (33) resonance, this 
change does not modify the deduction that the con
tribution of the unobservable region is quite small 
when w < wr and, to the contrary, it is quite large 
when w > wr· 

5. DISCUSSION OF THE RESULTS AND CONCLU
SIONS 

It is seen from Fig. 1 that the integral and dif
ferential methods give results which are hardly dis
tinguishable at low energies; the difference increases 
with increasing energy. The calculated values of 
the coefficients A and C of the differential cross 
section of the neutral mesons (16) agree well with 

x > x+andx < x_, 

where 

(21) experiment, 'and for the small coefficient B (which 
characterizes the forward-backward asymmetry) 
there is a small discrepancy at large energies. If 

(22) we take into account the imaginary part of the S
wave amplitude, i.e., if we add in the coefficient B 

Thus, in our approximation the contribution of the term Im Efj.::> Im MfV~>, then the behavior of this 
the unobservable region to the nonresonant partial coefficient changes radically at high energies. 
amplitudes (3) is equal to zero when W < Wr· In The coefficient B with account of the imaginary 
order to discard this contribution when W > Wr, part of the S wave (which we have taken from the 
it is necessary to integrate in (3) not from - 1 to paper by Chew et al [ 1] in the form Im E~!) = efFs 
+ 1, but from x_ to x+. Since we are now interested . 2/3 ( 01 - 03 ) with the phases taken from [a]) is 
only in qualitative deductions, it is perfectly suffici- plotted in Fig. 1 (dashed curve). The term 
ent to consider the dispersion relations in the static 
approximation, M - oo • 

In this approximation the result$ of the integral 
and differential methods coincide and the contribu
tion of the dispersion integral to the S wave is 

"£(+) - f 4,69 4 
u o+- e 3M3w. (23) 

If we discard, on the other hand, the unobservable 
region [and determine the partial amplitudes with 
the aid of the projection formulas (3)], then we ob
for oE~> an expression that coincides with (23) 
when w < wr and has for w > wr the form 

(24) 

Thus, when w > wr the entire contribution to (23) 
is produced by the unobservable region. 

For other nonresonant amplitudes, the contribu
tion of the physical region is not equal to zero when 
w > Wr· Nonetheless, the contribution of the un
physical region is in this case quite large and is at 
least comparable with the contribution of the physi
cal region. 

In the approximation (10) the quantities em~:> 
and 6MI:> experience at the point w = wr discon-

Im Eb:> Im M1~1Z > makes an appreciable contribution 
to the coefficient B at high energies. At low ener
gies this term is negligibly small. As regards the 
contribution of the imaginary part of the S wave 
[the term ( Im E~l )2 ] to the coefficient A, it 
amounts only to several per cent at high energies. 
The relative contribution of this term increases 
with decreasing energy: it reaches 10 and 20% at 
E = 180 and 160 MeV, respectively. 

Figure 2 shows directly the angular distribu
tions 1 > obtained by the differential method with ac
count of the imaginary part of the S waves. We 
see that for all the energies under consideration 
the angular distributions of the 1r0 mesons are in 
fair agreement with experiment. The differences 
caused by the use of the integral method or when 
the imaginary part of the S wave is included can 
be estimated from Fig. 1. 

For the charged mesons, we see from Figs. 3 -5 

!)For energies 160, 180, 200, and 220 MeV the plotted 
points were obtained from data for the coefficients A, 8, 
and C, which in turn were obtained from the experimental 
data for three angles. 
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that the agreement with experiment is much worse. 
At low energies the discrepancy is most noticeable 
for the ratio da(7r-)/da(7r+). It can be assumed 
that this discrepancy is due to the crudeness of the 
approximation used here ( failure to take into ac
count the 1m-interaction and the small scattering 
phase shifts, as well as the approximate evaluation 
of the integrals). It must be noted that we have 
considered only the 90° angle for the charged 
mesons. The relative contribution of the imagi
nary part of the S-wave amplitude is then negligibly 
small. 

Let us summarize the comparison of the inte
gral and differential methods: 

1. In the integral method, owing to the existence 
of the narrow resonance, the contribution of the un
observable region to the partial amplitudes is neg
ligibly small at energies below resonance. At ener
gies above resonance this contribution is quite large 
and is comparable with the total contribution of the 
dispersion integral. 

2. A continuation into the unobservable region 
with the aid of a finite number of Legendre poly
nomials does not lead to noticeable errors in the 
partial amplitudes at energies below resonance. 
At energies above resonance, the error increases 
with increasing energy, but even for 460 MeV it 
does not exceed 1 or 2% for the contributions of 
the dispersion integrals to the S-wave amplitudes 
and 10-20% for the contribution of the dispersion 
integrals to the P-wave amplitudes. 

3. In the differential method, the assumption 
that the amplitudes of the D, F, and higher-order 
waves are identically equal to zero in the observ
able region leads to a small error, on the order of 
1% for contributions of the dispersion integrals to 
the amplitudes of the S-waves and on the order of 
10% for the contributions of the dispersion intervals 
to the P-wave amplitudes. 

It must be emphasized that we have discarded 
in the dispersion integral the imaginary part of all 
the amplitudes except the resonant one. All the 
deductions are based on this approximation. We do 
not know what error is introduced by this approxi
mation itself. 

From a comparison of the calculations with ex
periment we can draw the following conclusions: 

1. The calculations performed can serve as a 
basis for further refinement of the results. 

2. In order to refine the coefficient B for neu
tral mesons ( and also the corresponding quantities 
for charged mesons), it is necessary to take accu
rate account of the S-wave amplitudes. 

3. The greatest discrepancy at low energies is 

obtained for the ratio of the cross sections of the 
negative and positive pions, i.e., for a quantity which 
is most sensitive to the influence of the 1r1r -interac
tion [ 3- 5]. Consequently any further research must 
take the 1r1r-interaction into account. 
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