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The ferromagnetism arising upon introduction of a small amount of magnetic atoms into a 
nonmagnetic metal is considered. It is shown that the objection raised in Yosida's paper [ 3] 

against explaining this effect by exchange interaction between the admixture atoms and con
ductivity electrons is unfounded. The main magnetic characteristics of impurity ferromag
nets are determined. 

JMATTHIAS, Suhl, and Corenzwit [i] have ob
served that ferromagnetism exists in a pan-mag
netic metal in which a small amount of paramagnetic 
atoms is dissolved. The idea that this ferromag
netism may be the consequence of exchange inter
action between the momenta of the impurity atoms 
and the conduction electrons was advanced in the 
literature many times [Z]. However, this idea was 
discarded after the publication of the paper by 
Yosida [ 3], where it was stated that such an inter
action did not lead to the appearance of homogeneous 
polarization of the electron spin. Instead, according 
to Yosida, the polarization of the electron spin takes 
place near each impurity atom, and this polarization 
oscillates rapidly and decreases in amplitude with 
increasing distance from the impurity atom. 

Actually, Yosida's statement is in error. Al
though the decrease in the spin density does in
deed take place, it is nevertheless not very fast 
[proportional to (PaR)- 3 cos p0R - ( p0R )- 4 sin PaR, 
where R is the distance from the impurity atom]. 
In view of this, in considering the polarization of 
the electron spin at a given point, it is necessary 
to take into account the influence of all the impurity 
atoms, not only the nearest one. This leads to an 
entirely different deduction than obtained by Yosida. 

Indeed, let us take the Yosida formula for the 
density of the number of electrons with different 
spin orientations: 

P± = V ± * 2 r~V ~ 1 (q) f lq) ~ S,~ cos [q (r- Rn)l, (1) 
r-; It 

where 2n is the total electron number density, EF 
the Fermi limiting energy, N the number of crystal 
cells, J ( q) the Fourier component of the exchange 
potential, Sn the spin of the n-th atom of the im
purity, and 

, - q2 ] \ 2po + q I f (q) = 1 -~- --- n .----! 
l±poq 2po - q , 

( p0 is the limiting Fermi momentum). 
We assume that the spin of the impurity atoms 

averaged over all atoms is different from zero, 
Sn ;" 0. Since we are interested in homogeneous 
polarization, we can immediately confine ourselves 
to an examination of small values of q in (1). We 
also assume that the impurity atoms are distri
buted randomly in the lattice. It follows therefore 
that that sum over the impurity atoms can be re
placed by an integral over Rn; as a result we ob
tain 

n .·· :) .J (0)- ~ 
D+ = -- I 1 + -- C --- S z 
J- VI, ~ ~ 1 Sp . ' (2) 

where ci is the number of impurity atoms per 
crystal cell. The impurity spin polarization thus 
gives rise to homogeneous polarization of the elec
tron spin. 

It is seen from the foregoing argument that 
Yosida's objections to attributing the impurity fer
romagnetism to exchange interaction of the impurity 
spins and of the conduction electrons is unfounded. 
We investigate below the thermodynamic properties 
of such a model. 

The interaction between the electrons and the 
impurity atoms can be written in the form 

U = - ~ s (r) ~ S;l (r- R;) d3r, (3) 
i 

where Si and Ri are the spin and coordinate of 
the i -th impurity atom, J ( R) some interaction 
function, and s ( r) the electron spin density at the 
point r. The interaction (3) can be regarded as 
the result of the action of some fictitious magnetic 
field on the electron spin. We assume that the 
electrons become "magnetized" in this field, i.e., 
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at each point of space some average electron mo
ment is produced. In view of the random distribu
tion of the impurity atoms, which in the mean is 
homogeneous in space, we can assume the average 
density of the electron spin to be independent of the 
coordinate. In this case U can be rewritten in the 
form 

U =-as~ St. (4) 
i 

where the constant is a= J J ( r) d3r. 
Formula (4) corresponds fully to the energy of 

the independent moments in the external field and 
it is possible to obtain from it in the usual fashion 
the impurity part of the free energy of the system 
(per unit volume): 

F;=-N;T[lnsh as(S+ 1
/ 2) -1 h~] 

T n s 2T ' (5)* 

where Ni is the number of impurity atoms per 
unit volume. 

The addition to the electron free energy for a 
specified magnetization (i.e., s) can be written in 
the form 

(6) 

where J.l.o is the Bohr magneton and Xo the para
magnetic susceptibility of the electrons in the ab
sence of impurities. 

The value of s is obtained by minimizing the 
free energy F i + Fe. The equation obtained is 
transcendental 

(7) 

Here Bs is the known Brillouin function. It can be 
shown that for this value of s the sum F· + F < 0 1 e 
over the entire range of the temperatures where 
s ¢ 0. 

Let us consider Eq. (7) in the high-temperature 
region T >> asS. Here 

Substituting this in (7) we obtain in first approxi
mation 

( 4[1~ N 1a2S (S + 1)) 
s -- -0 Xo 3T - • 

This equation determines the Curie temperature, 
starting with which a nonvanishing value of s can 
appear: 

*sh =sinh. 

Tc = N 1S (S + 1) a2xo 
12[1~ . 

(8) 

Thus, the Curie temperature is proportional to the 
impurity concentration. 

The next approximation of (7) in asS/T gives 
the temperature variation of s near T c= 

2 5 S (S + 1) N;Xo 
s = 4fl~ s• + s + 1/z (Tc - T). 

In the opposite limiting-case T- 0, Bs- 1 
and we obtain 

(9) 

(10) 

The total moment comprises the electronic mo
ment and the impurity moment, equal to 
NiJJ.ogiSBs(asS/T), where gi is the gyromagnetic 
ratio for the impurity atom. Thus, according to 
(7), the total magnetic moment per unit volume is 

(11) 

From (9) and (11) we see that near Tc we have 
M ~ ( T c - T )112 . When T = 0 we obtain the satu
ration moment 

(12) 

Depending on the sign of the constant a, which 
can be different in different cases, the moment of 
the impurity and the moment of the electrons can 
be parallel or antiparallel. Note also that in this 
model we have assumed that there is no noticeable 
coupling between the impurity spin and the lattice. 
This means that gi ~ 2 and thus only the new con
stant ~ appears in all the formulas. 

To take into account the influence of the exter
nal magnetic field we must add to the free energy 
a term - 2JJ. 0sH, and in addition, replace as in the 
impurity term of Fi [Eq. (5)] by as+ giJ.l.oH. 

As a result we obtain in place of (7) 

4fl~ 2 H N SB r· (as + g;floH) s J Xs- flo = ;a s T • 
0 -

(13) 

From this, in particular, we obtain the paramag
netic susceptibility at T > Tc: 

{ Tc { 2[1~1)2 1 
'X= 'Xo I + T- Tc \I + axo ( (14) 

The formulas obtained make it also possible to 
obtain the additional specific heat. Of course, as 
in all cases of second-order phase transitions, 
these formulas do not fit the experimentally ob
served singularity near the transition point as 
T-Tc. 
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At temperatures T << T c formula (7) leads to 
an exponential temperature variation of all the 
quantities. This conclusion, apparently, cannot 
be correct for arbitrarily low temperatures, in 
view of the fact that the collective excitations of 
the spin systems are not taken into account here. 

In conclusion it must be noted that in accordance 
with the experimental data the ferromagnetism 
arises not in all weak solutions of magnetic atoms 
in non-magnetic metals. For example in the case of 
a weak solution of Mn in Cu we obtain antiferro
magnetism C4J. The nature of this phenomenon is 
unclear at present. The attempt by Overhauser [ 5] 

to construct a theory for the antiferromagnetism 
of weak solutions appears unconvincing to us. 
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