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A theoretical formula for the stripping cross section of a nucleon cluster is deduced by taking 
into account the internal structure of the nuclei and clusters participating in the reaction. The 
theoretical angular distribution curve for the reaction Li6 ( Li7, t) B10 is compared with the ex
perimental data. 

1HE question of the existence of substructures 
(clusters) in nuclei has been frequently raised in 
the recent literature. The effect of clustering of 
nucleons would be expected to be particularly 
clearly pronounced in various nuclear reactions 
with emission or capture of clusters. Among the 
entire aggregate of nuclear reactions, a special 
place is occupied by direct stripping and pickup 
reactions, since they relate the ground and low
lying excited states of the nuclei, that is, precisely 
the region in which one can speak of individual 
properties of a nuclear level. So far only one paper 
has been published [l] on the theoretical interpre
tation of stripping of clusters in the Be9 ( Li6, a) B11 

reaction. This paper makes use of ordinary theory 
of the stripping of a nucleon from a deuteron with 
all the specific "deuteron'' simplifications of this 
theory. The internal structure of the cluster is 
not considered. 

The purpose of the present paper is to present 
a theoretical derivation of a formula for the strip
ping cross section of any cluster from any incident 
nucleus (including a heavy ion), and take correct 
account of the internal structure of the nucleus and 
of the cluster in accordance with various model 
representations. A more complete reduction of 
the experimental data with the aid of the formula 
obtained will be undertaken in the future. 

1. We shall agree to assign the incident nucleus 
the index P; the target nucleus will be designated 
T; the fragment of nucleus P which is emitted as 
a result of the reaction will be designated by e, 
and the second fragment of the P nucleus by t; 
the nucleus formed as a result of the reaction will 
be designated by R. 

In the Born approximation [2], the amplitude of 
the reaction T ( P, e) R is [2] 

T = (2;r)112 f.leRn- 2 [ (1\lt J Vet 11\J;) + ( 1\lt I VeT 

+(VeT+ Vet) G(Vet + VtT) i'l'i)J, 

where 1/Ji and 1/Jf are the wave functions of the ini
tial and final states; J.L eR = MeMR/ (Me + MR) is 
the reduced mass; V ab is the interaction between 
nuclei a and b; G is the resolvent, G = 1/ ( H - E 
- iE) ( H is the total Hamiltonian of the reaction 
and E is the corresponding eigenvalue of H). 

The main contribution to the amplitude of the 
stripping reaction is made by the first term of the 
sum; the second term, as was shown by Fulton and 
Owen 12J, causes the scattering and the reaction through 
the compound nucleus. We therefore assume for 
the amplitude of the stripping reaction the expres-
sion 

Describing the motion of the nuclei P, T, e, 
and R in accordance with the Born approximation 
by means of plane waves we obtain after some 
manipulation 13J 

where Ec.m. is the total kinetic energy of the 
system in the c.m.s., Ep the binding energy of the 
e and t clusters in the nucleus P, kp and kE the 
wave vectors of the nuclei P and e, x the internal 
coordinates of the nucleons in the nucleus t, y the 
internal coordinates of the nucleons in the nucleus 
e, ?; the internal coordinates of the nucleons in the 
nucleus T, RtT' and Ret the :r;adius vectors joining 
the respective mass centers of nuclei t and T or 
e and t, </Jn the wave function of the nucleus n, 
nk1 = li ( kp - keMT/MR) the momentum of the 
cluster t relative to the center of mass of the 
nucleus R, and nk2 = li ( ke - kTMe/MT) the mo
mentum of the cluster e relative to the center of 
mass of the nucleus P. 
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We separate in the wave function l/JR ( RtT, x, l;) 

a part 'PR ( RtT) corresponding to the relative 
motion of two clusters in the nucleus, and a part 
XR ( x, t;), corresponding to the internal motion of 
the nucleons in the clusters: 

Assuming the interaction potential of the clusterE 
in the nucleus to be spherically symmetrical, we 
can write for 'PR 

cpR (Rtr) = u~' (R.tr) Y:W, (QR1r), 

where QRtT are the angular coordinates of the 
vector RtT. Thus 

Analogously, l/Jp = u~2ylf;xp Now the reaction 

amplitude assumes the form 

(I) 

where 

f1 = ~ u~· (R.tr) Y:W, (QR 1r)e-ik,R.trmrdR.trdQRtr' 

[ \ L, (R. ) yL, (Q ) -ik,R.etR,'2 dR. d" 
2 = ,) Up et M, • Ret e et et ••Ret' 

A = ~X~ (x, ~) '¢: (y) XP (x, y) 'Pr (~) dx dy d~. 

In accordance with the stripping approximations 
[ 4] we introduce into the integrals I1 and I2 the 
cutoff radii R1 and R2, which are respectively 
those minimum values of RtT and Ret' starting 
with which we can neglect the influence of the in
teractions VtT' Vet' and VeT· The introduction of 
the cutoff radii is justified by the fact that in an 
approximation more accurate than the Born approxi · 
mation the plane waves in I1 and I2 will be re
placed by more accurate wave functions, which take 
into account the interaction in the initial and final 
states and which decrease with decreasing RtT 
and Ret· In addition, the wave functions u~1 and 
u~2 will be maximal at the surface of the R and 
P nuclei, since the probability of cluster formation 
in the nucleus is maximal at its boundary and min
imal in the central region[ 5J. Thus, the main con
tribution to the integrals I1 and I2 will be made by 
the region near the surface of the nuclei R and P. 
This indeed constitutes the "surface" character of 
the stripping reaction. 

If we put in (1) R2 = 0 and Ret = 0, we arrive at 
the case of stripping from a deuteron. Such simpli
fications can be made for a deuteron, since we can 
use there the approximation of zero action radius 
for the nuclear forces (see, for example, [s] ) , by 

putting Vet~ o (Ret). The interaction VeT is in 
the deuteron case negligibly small (for heavy nu
clei P, comparable in dimension with the nucleus 
R, the influence of VeT increases [ 7] ). In addition, 
the wave function of the deuteron is strongly 
"smeared" over the entire space, and the main 
contribution to I2 is made by its exponential part 
at large Ret· Therefore u~2 can be taken in 
asymptotic form and integrated in I2 over all of 
space [ 4]. 

Returning to the consideration of formula (1), 
let us expand, as is customary in stripping theory, 
the plane waves in terms of spherical functions, 
and let us integrate in I1 and I2 with account of the 
cutoff radii. The amplitude of the stripping re
action will now have the form 

f1 'fi2 ( _ 1 )L' iL,+L, 
T = eR ,1 R.1R.2u~' (R.l) u~' (R.2) 

(2:rt) 'fLetfLtTC 

x wL, (k1R.1) wL, (k2R.2) v:W,YXi,A, (2) 

where 

L [ dh(kr) d L J I W (kR.) = -----;[(- h (kr) dr In Un (r) r~R, n = R., P; 

j L ( kr )-the spherical Bess1al function. 
It must be noted that the factor wL2 ( k2R2) 

which is contained in formula (2) has for L2 ¢ 0 
a maximum at a scattering angle () ¢ oo. This can 
appreciably influence the angular distribution of 
the stripping reaction. 

2. Let us determine now how the reaction am
plitude is influenced by the structure of the nuclei 
that participate in it. For this purpose we trans
form the integral A, using model representations 
and the concept of reduced width of the reaction. 

In analogy with the single-nucleon case [s,s], 

we represent the reduced widths 9k and 9j:, in the 
form of a product of two factors 

In our case 

will be the analogs of the single-particle reduced 
width. They determine the probability of the 
breakup of the nucleus R or P into component 
clusters. The factors sR and sP -the spectro
scopic factors-will determine the probability of 
formation of clusters in the nuclei R and P. The 
magnitude of the spectroscopic factor depends on 
the chosen nuclear model. To describe the strip
ping of the clusters in the region of light nuclei we 
can employ three models. 
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In the simplest cluster model, a particular case 
of which is the alpha-particle model, the wave 
function of the compound nucleus is written simply 
in the form of the product of the wave functions of 
the internal motion of the nucleons in the cluster 
and the wave function of the relative motion of the 
centers of mass of the clusters 1 l : 

'¢R (x, ~. Rtr) = '¢r (~) '¢t (x) (jll( (Rtr ), 

'ljlp (x, y, Ret)= '¢t (x)'¢e (y) (jlp (Ret). 

It is clear that for this model A = 1 and sP 
= sR = 1. 

In the more complicated model of the clusters 
[to-l4] the wave function of the compound nucleus is 
written with account of the antisymmetrization over 
all the nucleons of the nucleus (and not only over 
the cluster nucleons, as in the preceding model). 
The quantitative treatment of the reduced width 
has not yet been developed, but one can expect [15] 

sP and sR to be close to unity in this model. 
We can, finally, calculate the probability of 

cluster formation in nuclei within the framework 
of the shell model, using methods developed in[l6,t7J. 
In this case (for the LS coupling scheme) we have 

Y sR = <~Rt [fR] TRSRLR [} 

X,~rzn-m lfrl TrSrLr; ~tlm lftl TtStL~>KL'L, 
1 t 

Y SP = (~pl[ [fp] TpSpLp I} 

x ~ezr-m lfel TeS,L,; ~tl;" [ftl TtStL~> KL, L , 
2 t 

where < 1 n I} 1 n-m; 1m> is the symbol for the 
fractional parentage coefficient for the individual 
m nucleons out of a system of n nucleons; n, m, 
and p are respectively the number of nucleons in 
the outer shell of the nuclei R, t, and P; 1 is the 
orbital momentum of the individual nucleons; Tx, 
Sx, Lx, and [ fx] are the isotopic spin, spin, orbital 
momentum, and the Young tableau ascribed to the 
given state of the nucleus x; L1 and L2 are the 
orbital momenta of the configuration of the m 
nucleons of shells 1 and 11; f3x is the additional 
quantum number, necessary for a complete classi
fication of the states; 

K L~Lt = <~~r [ftl r1s1L~ / <p;;~· I ~~r [ftl TtStLt), 

KL~Lt = <~,t;n [f,J r~s~L~ I <p;~~, I ~~r Utl TtStLt), 

where I> is the symbol for the wave function of 

1lTo simplify the notation we do not write out the coeffi
cients of vector addition of the cluster momenta. 

the nucleon configuration in the independent par
ticle shell model; PNL is the wave function of the 
motion of the center of mass of the cluster t in 
the oscillator potential 2l with quantum numbers 
N and L. 

In final form the amplitude of the reaction will 
be 

T= 
f1el(fi2 (- 1)L' iL,+L, 3()0l(()OP 

(2;rt)'1'f!etf!trC V R,f~z-

(3) 

where the summation is over Mst' MLt' ML1, ML2' 

Iz, Iz', Miz• Miz', Lf, L2, Mq, and Mq, while the 

statistical multiplier appears as a result of the 
vector addition of various momenta: 

r = UrStMirMstllzMI) (LtL1MLtML,I(ML') 
1 

X UzL~M,ZM L' II RM,R) (I,StMI,Mst r lz'MI) 
1 

X (TrTtMrrMr1 I TRMrR) (T,T,Mr/'•1r, I TpMrp) U 

X (SRLrfrL 1 : LRiz) U (LrSrfzSt : SRlr) 

XU (SpL,I,L 2 : Lplz') 

X U (L,S,lz'St: Spl,) (- 1)2(Sp+SRl; 

( ... I ... ) is the Clebsch-Gordan coefficient, and 
Ix the spin of the nucleus x; Iz and Iz' are quan
tities that are labeled by the channel spins: 

lz = SR + Lr, lz' = Sp -+- Le; 

U (abed: ef) is the Racah function, connected with 
the Racah coefficients W ( abed : ef) by the relation 

U (abed : ef) = V(2e-,-- I) (2f--;-- I) W (abed : ef). 

The differential cross section of the reaction 
will have the form 

keMP 9rt;Rn• 
k pM, (2Jt)'tt;,ft~rCz 

[ WL, (ktRt) WL, (k2Rz) ]2 

(2/ T -t· 1) ('2.1 p-!- 1) 

(summation over MI , MI , MI , MI ). 
P R e T 

(4) 

3. The absence of systematic experimental data 
on the stripping reactions of nucleon clusters does 

2>KL'Lt appears when the internal motion of m nucleons 
of the cluster t is separated from the motion of the center of 
mass of the entire cluster t. Such a separation can be carried 
out only for an oscillator· potential. This. limitation is not un
realistic, for the potential for the region of light nuclei under 
consideration is quite close to an oscillator potential. 
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not enable us to calculate as yet the reduced widths 
of the reactions and to estimate the region of ap
plicability of the nuclear models listed above. In 
the present investigation we only calculated the 
angular distribution of the Li6 ( Li 7, t) B10 reaction 
and carried out the comparison with Morrison's 
experimental data [ 18]. After making the necessary 
summation in (4) and leaving only the angle-depen
dent terms that influence the angular distribution, 
we obtain 

:~~ = ~ ~ [WL, (klRl) WL, (k2R2) !CF. 

ilo/df1, rei. un. 

"I\ 
:r\.0). 

I "" I 
ol ·~ 

l,!j 80 120 160 

ec.m.s.• deg 

Angular distribution of the 
reaction Li 6(Li7 , t) B'0 (0. 72 
MeV). The continuous line de
notes the theoretical curve 
while the circles mark the 
experimental points from [ 15 J. 

In place of the exact form of the function wL 
we used the approximate form W L ( kR) 
"" .J 2J.L Ejn2Rj L( kR), proposed by Banerjee [1], 

which is particularly well justified for the case of 
stripping of nucleon clusters. 

The reaction Lis ( Li 7, t) B10 , which goes to the 
ground state o+ of the B10 nucleus, gives an iso
tropic angular distribution, due obviously to the 
mechanism of the compound nucleus. We there
fore consider a reaction that goes to the excited 
( 0. 72 MeV) state 1+ of the B10 nucleus. In accor
dance with [10 •11 ], Li 7 in the ground state was con
sidered as a system of an alpha particle and a 
triton, moving with relative momentum L2 == 1. 
The level 1+ ( 0.72 MeV) of B10 is regarded as a 
system made up of an Lis cluster and an alpha 
cluster in ground states. From the spin conser
vation law it follows that the capture of an alpha 
cluster can occur only with momentum L1 == 0. 

The calculation of the theoretical angular dis
tribution curve was made for different values of 
the cutoff radii R1 and R2. The best agreement 
with the experimental points was obtained for R1 

R2 == 3.7 x 10- 13 cm (seethefigure) 3l. However, 

3)In the comparison with experiment we have subtracted 
the isotropic background due to the reaction that proceeds via 
the compound nucleus. 

variation of R1 and R2 in the range + 0.5 x 10- 13cm 
changes the form of the theoretical curve only 
slightly. 

The author is deeply grateful to G. F. Drukarev, 
under whose guidance this work was performed. 
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