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Superconductivity differential equations for the inhomogeneous case and an arbitrary tern
perature are derived. It is shown that in a system of fermions in the superfluid state quan
tum vortices arise which possess properties similar to those of vortices in a boson system. 

AT the present time it has been established in where m * is the reduced mass, which in our ap-
many experiments [i] that in rotating superfluid proximation takes into account the influence of the 
He II there are produced vortex filaments, that is, self-consistent field, J.L is the chemical potential, 
certain singular lines, around which the superfluid and g is the energy of the pairing interaction. 
part of the liquid, according to Onsager and Feyn- For what follows it is convenient to change over 
man, rotates with velocity v = n.li/mr, n = 1, 2, 3, ... to a system of integral equations. Introducing for 
[2J. Recently Pitaevski! presented a quantum-me- this purpose the Fourier component of the fermion 
chanica! derivation of the main properties of such Green's function for the normal state, Gw(r -r' ), 
vortex filaments for a Bose gas with weak repul- using the formula 
sion interaction between the atoms [3]. On the other 
hand, it is known from modern superconductivity 
theory that a bound Cooper pair of fermions behaves 
in many respects like a boson. It is therefore natu
ral to expect that under certain conditions there will 
be formed in a superfluid Fermi gas quantum vor
tices with properties similar to vortices in the Bose 
gas. 

In the present work we derive, by a method pre
viously proposed [4], the basic properties of quan
tum vortices in a Fermi gas for an unbounded sys
tem of fermions (for example, for nuclear matter) 
at any temperature T < Tc, including T = 0, where 
Tc is the critical temperature. 

1. FUNDAMENTAL EQUATIONS 

Inasmuch as in the presence of a vortex the 
fermion system is not homogeneous in space, we 
start from the following system of equations for 
the Fourier components of the temperature Green's 
functions Gw(r,r') and Fw(r,r')[5J: 

{ iw + 2~. :r: + !l} Goo (r, r') + 11r (r) F~ (r, r') 

= 6 (r- r'), 

{ - iw + --!.- ::. + fl} F~ (r, r') - 11~ (r) Goo (r, r') = 0; 
~ (U 

11~ {r) =gT]JF: (r, r), w = J1 (2n + I)T, 
w' 

{ iw +~ aa•. +Ill G., (r- r') = 6 (r- r'), (3) 
2m r r 

we obtain in lieu of (1) the following system of in
tegral equations 

G., (r, r') =Goo {r- r') - ~ G"' {r - s) 11r (s) 

x (L., (s - I) 11~ {I) Goo {1, r') d3s d3 1, 

F~ (r, r') = ~ G_00 (r- s) 11; (s) G., (s - r') d3s 

(4) 

- ~ G_oo {r- s) 11~ {s) Goo (s -I) 11r (I)F~ {1, r') d31 d3s. 
(5) 

In the region I w I « J.L we have 

Goo(r-r') =- 2:~ exp{ip0 l:l _l:l}R. 
R =I r- r' 1. v0 = (2[1/ m•)'1•. (3') 

From (5) with allowance for (2) we can obtain 
the equation for the gap ~f(r ): 

g-1 11~ (r) = T lJ ~ G_ 00 (r - s) 11~ (s) Goo (s - r) d3 s 

"' 
- T lJ ~ 0_00 (r- s) 11~ {s) 

"' 

Equation (4) for the homogeneous case can be 
written in symbolic form as 

(6) 

Goo = G~/(1 - 11~F~\ (7) 

n = ... - 1, 0, I, ... , (2) where the homogeneous Green's functions G~ and 
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F~ of the superfluid system have the form 

• 1 ~ - iw- ~ · a Gw (r) = ('' )3 O? e<Pr d p, 
.:.n w•+ £•+ 1'1r" 

(8) 

, 1 /}. o /Pr 
F (r) = -- \' T d3 

w (:ln)3 .l w• + ~· + 1'1~2 p, 
(9) 

where ~ = p2/2m * - ~J,; ll.9:r is the homogeneous en
ergy gap at temperature T. Let us rewrite equation 
(6) with allowance for (7) in symbolic form 

g- 1 ~~ = T~{G-w~~G~ + (Lw~~G~~~F~· 
w 

,_. * ' + "-:; * , 1 0 +' 0 +' - G-w~TGw~Tfw + G-w~TGw 0 , ~Tfw ~rfw 
1- 1'1rF: 

(10) 

Equation (10) is exact. Bearing in mind that a 
solution of (10) for an inhomogeneous energy gap 
must contain also the homogeneous solution corre
sponding to the ordinary temperature dependence 
of the gap, we construct the first iteration in the 
following manner. We put 

F: (1, r) = F;,: (I - r) ~~ (I)/~~ (11) 

and replace ll.T(r) by ll.9:r in the fourth and fifth 
members of the right half of (10). In place of (10) 
we obtain here an approximate equation which 
takes into account the inhomogeneity only up to 
third order in ll.T(r ): 

g-1 ~~ (r) = T ~ {~ G_w (r- s) ~~ (s) G~ (s- r) d3 s 
w 

+ ~ G_w (r- s) ~~ (s) G~ (s- I) ~~Fj' (I- r) d3 sd3 1 

- --j,} ~ G_w (r - s) ~~ (s) 

x G~ (s- I) ~r (I) ~~ (I) F~: (I - r) d3sd3 1 } . (12) 

If we now assume that ll.f( r) is a slowly varying 
function of the coordinates, then by expanding ll.f ( r ) 
in a series up to second order in the derivatives, 
we reduce (12) to the form 

{~.-[I + _,t!_ I~ (r) !2] a~ +_I:_ a 1"' (rl r• _j_ 
.!.m. C T ar' C ar ar 

R [ j AT (r) 12 J D a"j /'J.T (r) 12 ) A* ( ) = 0· (13) 
-1- C- l- - --!'J.'fl + 2C- 8r2 J o.r r ' 

__ rn' ~l \' ~ 2 A - .-,1 T ..w \ G_w (r- s) (r- s) 
3/'J.r w • 

B = ~~T~~ G_w (r- s) G~ (s -I) F:' (I- r) d3 s d3 1, 
w' 

C = ~· T ~ ~ G_w (r- s) (r - s)2 G~ (s - r) d3 s 
w 

+ m; T ~ ~ G_"' (r- s) (r -- s) 2 

0) 

x G~ (s -I) (I - r) 2 F;; (I - r) d3sd3 l, 

T 'V"~ 
E = - 0 L..J \ C_w (r - s) (s- r) 

"'r w • 

We can confine ourselves to terms up to the 
second derivative if the series obtained by inte
grating the Taylor series of ll.f ( r) converges 
rapidly. The condition for the convergence is 

(14) 

1 I a2n"'~ (r) 1 a2(n+1l"'~ (r) 

(2rij! ar2n H2n I~ (2n + 2)!i I ar2(nH) H2(nH) l' (15) 

where 

H2n = ~ T ~ C G_w (r- s) (s -- r) 2n G~ (s- r) d3s 
w 

+ ~~~a_"' (r - s) (s - rr 

x G~ (s- I) F;,: (I - r) d3s d3 I}. 

The integral Hm has the following order of 
magnitude 

Hzn ~ (v0/nT)2n 

H2n ~ (vol~t) 2" 

for T --. Tc, 

for T --. 0. 

(16) 

Therefore, in particular, for the fourth derivative 
to be small, we have 

az!'J. ~(r) ( Vo ')2 a'!'J. ~ (r) 
~ ~ 0.08 JtT -ar:'-, (17) 

a2 /'J.~ (r) ( vo )2 a• A~ (r) 
~~0.2~ ---;~· 

T 

T->0. (18) 

For further simplification of (13), we neglect the 
terms containing the products of the derivatives of 
ll.T ( r) by the function itself. The conditions under 
which this neglect is possible actually coincide with 
condition (17) and (18). Then (13) simplifies con
siderably: 

{ 
1 a• B [ jl'1;(r)j 2

]} • 
2m* F + c I - ~ ~r (r) = 0. (19) 

Let us find the explicit form of the coefficients 
B and C contained in (19). In calculating the cor
responding integrals by means of formulas (14) it 
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is necessary to take into account the momentum 
cutoff contained in the definition of the Hamiltonian 
in the model of Bardeen, Cooper, and Schrieffer, 
since it is necessary to take into account only the 
interaction of fermions which are contained in a 
layer of thickness w at the Fermi surface, that is, 

(EF- w) < ~ < (EF + w). 

The calculation of the integrals B and C in the 
approximation ~T « w « f.J. entails no difficulty. 
We obtain 

C = 2~ m·v~N r (0) T ~ f . V 1 
.., "' \ (w + w2 + fl~2) Vw2 + !1~2 

3 V w2 + fl02 + w \ + fl02 T \ 

r 2 (w + V w2 + !1~2? (w2 + tl~2t'f' 

R (p) = 1 -e-0.7P. (25') 

The quantity l has the meaning of the internal 
radius of the vortex and its dimension is on the 
order of the Cooper pair ( ~ 10 -l2 em for nuclear 
matter and ~ 10-4 em for metal at T = 0 ). The 
temperature dependence of l is determined essen
tially by the temperature dependence of the homo
geneous energy gap: 

(26) 

We see from (26) that as T - T c the inside radius 
of the vortex tends to infinity and the vortical state 
becomes destroyed, as is the state of superfluidity 
itself. 

(20) The most essential region is the region near 

where NT( 0) is the level distribution density at 
the Fermi surface. 

In the limiting cases T - T c and T = 0 we ob
tain for the ratio of the coefficients B/C 

~--{3/2!1~2/)1, T.-Tc 

C - 3/s llg 2/)1, T = 0 • 
(21) 

Introducing ljJ(r) = ~f(r)/~&_, and Z2 = c/2m*B, 
we rewrite (19) in the form 

2. QUANTUM VORTEX 

Equation (22) has the same form as the Ginzburg
Landau equation. In cylindrical coordinates r, cp, 
and z it admits of a solution in the form 

'ljJ (r) = ei~R (r), (23) 

which represents one vortex filament at the center 
of a cylinder of radius R0• In this case R( r) sat
isfies the equation 

a2R _!_ aR _ ~ _ a = 0 ap• + P ap p• R + R R , (24) 

and p = r/Z. 
Equation (24) was solved numerically by Ginz

burg and Pitaevskil [G] in connection with the phe
nomenological theory of superfluidity near the 
critical point. Asymptotically R( p ) - p as p 
- 0, and for p » 1 we have 

(25) 

In all the intermediate points we approximate the 
solution in the form 

T = 0, which could not be considered in the macro-
scopic theories, owing to the unknown dependence 
of the parameters of (22) on the energy gap and on 
the temperature. We note, however, that the radial 
dependence of the solution in the form of (25) and 
(25') is compatible with the condition (17)-(18) only 
in the temperature range where ln ( T c /T) « 4. 

In the limit as T - 0 the solution is valid only 
in the form (25) for p » 1, that is, away from the 
core of the vortex. In order to determine the cor
rect radial dependence of the vortex near the core, 
it is necessary to consider the equation with high 
derivatives with respect to r. 

Let us find now the velocity component Vcp and 
the energy per unit length of the vortex filament. 
As is well known, these quantities can be deter~ 
mined with the aid of the density matrix. The tern
perature Green's function is connected with the 
density matrix p ( r, r' ) in the following fashion: 

p (r, r') = T ~G., (r, r') +-%- b (r- r'). (27) 

The part of p ( r, r' ) due to the superfluid addition 
has in first approximation the form 

b p(r, r') =-fl. (r) fl.* (r') T 

X ~~Ow (r - s) cL, (s - I) G~ (I- r) d3s d3 1. (28) 
"' 

The average component of the velocity v cp of par
ticles that participate in the vortex, and the addi
tional energy on top of the homogeneous superfluid 
state, will be determined from the formulas 

v~=Sp~{-~. V~bp(r,r')}jsp~{bp(r,r')}, (29) 
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f..£ = Sp {- 2~. v; [ 6p (r, r') - 6p (r, r') 4 1} 

{~} (r}- ~0/} + Sp 2g . 
(30) 

Using formula (23) in the calculation of v <P, we 
obtain 

v"' = 1/m'r, 

that is, the same variation for the velocity compo
nent v <P as for a Bose system. 

Calculating ~E. for example, with radial de
pendence (25'), we obtain 

f...£=7rtNr(O)ft +~{I 0.7Ro + 022}~¥ 
12m' m' n l · 4ftg · 

From the last expression for ~E we see that in 
general outline at T = 0 it is analogous to the for
mula for ~E. obtained by Pitaevski'i for a Bose 
system [3J. 

In conclusion we emphasize that Eq. (19) is in
terpolative for the entire region of the existence 

of the vortex, and describes the vortex only quali
tatively. 
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