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Cyclotron resonance and quantum oscillations of the surface resistance of single crystals of 
bismuth are simultaneously investigated at a frequency 9. 5 x 109 cps and temperature 1. 7°K. 
Effective electron and hole masses are measured in two crystallographic planes and the 
cross sectional areas of the electron Fermi surface along directions close to the binary 
axis are determined. Some accurate and detailed quantitative characteristics of the Fermi 
surface of bismuth are obtained. 

THE new experiments on the Fermi surface of 
bismuth were prompted by the recent theoretical 
study of Abrikosov and Fal'kovski'i: [1], who demon­
strated the possibility of a complete determination 
of the energy spectrum of the current carriers in 
bismuth from the experimental data. 

The main experimental investigations of the 
Fermi surface of bismuth, using the de Haas -van 
Alphen effect, were made by ShoenbergC2- 4J, who 
proposed a detailed model of three ellipsoids for 
its electronic part. This model apparently agrees 
with the experimental results [2- 12 ] within the lim­
its of measurement error 1>. The present work 
makes it possible to make more precise many 
characteristics of the electronic Fermi surface 
of bismuth. 

Much less is known concerning the hole part of 
the Fermi surface of bismuth. Galt et al [S], in a 
study of cyclotron resonance in a circularly polar­
ized high frequency field, observed resonance in 
the holes and measured their effective masses in 
two crystallographic directions. Brandt [10] sug­
gests that the short-duration oscillations in the 
magnetic susceptibility of bismuth which he noted 
pertain to the hole surface. The form of the hole 
surface is represented in first approximation as 
an ellipsoid of revolution, the major axis of which 
is parallel to the trigonal axis of the bismuth. Thus, 
as the result of a large number of investigations of 
the electric and magnetic properties of bismuth it 
is known that it has closed electron and hole Fermi 

1lJncidentally, according to Weiner[•] and Lax[22 J, there are 
grounds for assuming that the electron dispersion law is not 
quadratic and the electron surface is not ellipsoidal. 

surfaces, the main characteristics of which have 
been determined. However, for the new theory of 
[ 1] it is necessary to investigate quantitatively in 
detail the Fermi surface, and in particular to as­
certain the degree to which the quadratic disper­
sion law is valid. The purpose of the present re­
search was to obtain accurate quantitative charac­
teristics of the Fermi surface of bismuth. 

EXPERIMENT 

The experiments were carried out by the fre­
quency-modulation method [13]: the logarithmic 
derivative of the surface reactance of bismuth 
was measured at a frequency 9.5 Gc as a function 
of the reciprocal of the intensity of the constant 
magnetic field, applied to the specimen parallel 
to its plane surface. The specimens were single 
crystals of bismuth in the form of discs 18 mm 
in diameter and 1.5 mm thick. The single crys­
tals were grown from a melt in a dismountable 
glass mold, and their surfaces were not treated 
further. The original material was bismuth char­
acterized by a ratio of the room -temperature to 
helium temperature resistance on the order of 
100. 

Four specimens were investigated: two had 
surfaces coinciding with the basal plane of the 
crystal, perpendicular to the trigonal axis ( C3 ), 

while two others had a surface containing the 
trigonal and binary ( C2 ) axes of the bismuth 
crystal. 

The specimen was placed in a round strip 
resonator [13] under a resonating strip, so that 
the high frequency current flowed on one side of 
the crystal in a straight line. Rotation of the spe-
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cimen in the cavity made it possible to change the 
direction of the high frequency current in the spe­
cimen, that is, the polarization of high frequency 
field relative to the crystallographic directions 
of the specimen. It was thus possible to choose 
the experimental conditions that were optimal for 
the observation of cyclotron resonance [14• 15]. The 
constant magnetic field could be rotated in the 
plane of the specimen. The magnetic field was 
maintained parallel to the specimen plane with 
accuracy ~ 5' [15]. 

A sample record of cyclotron resonances is 
shown in Fig. 1; each curve shows clearly a series 
of equidistant resonant peaks, which shift with ro­
tating magnetic field H. In all the experiments the 
signal was so large that the sensitivity of the appa­
ratus [13 ] had to be reduced by approximately two 
orders of magnitude. In fields larger than ~ 700 
Oe, no cyclotron resonances were observed. 

I tlX 
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FIG. 1. Record of cyclotron resonances in a single crystal 
of bismuth, whose surface coincides with its basal plane. The 
series of resonances, which shifted rapidly with varying angle 
between the magnetic field and the binary crystal axis (L HC2), 

pertains to the electrons of the Shoenberg modelJ2 •'] 

In fields larger than ~ 500 Oe, quantum oscil­
lations of the surface resistance of bismuth were 
observed. This effect was not yet investigated ex­
perimentally 2>, and mention of its observation was 
made in the paper by Aubrey [12]. A sample record 
of the quantum oscillations is shown in Fig. 2. The 
region where the quantum oscillations were ob­
served was limited on the side of the weak fields 

2lQuantum oscillations of the surface impedance of a metal 
under anomalous skin effect conditions were considered theo­
retically by Azbel' .[ 16] 

L----O,L~-----------7------------~~~25 
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FIG. 2. Record of the quantum oscillations of the surface 
impedance of a single crystal of bismuth, with a surface whose 
plane coincides with its basal plane. On the right of the 
curves are marked the angles between the magnetic field and 
the binary axis (during the course of the experiments, records 
were taken usually in smaller angle intervals); 14- number 
of the oscillations, counting from H-1 = 0; the Roman numerals 
denote the "fadings" of the beats:. The rise in the right 
halves of the upper curves corresponds to the edge of the 
cyclotron-resonance peak. 

by their reduced amplitude and the appearance of 
deep cyclotron resonances, while on the strong­
field side it was limited by the appearance of 
rapidly growing oscillations with smaller period 
(they are seen on the left ends of the curves of 
Fig. 2 ). A separate article [17] will be devoted to 
a study of these oscillations of the surface imped­
ance of bismuth. 

RESULTS OF INVESTIGATION OF CYCLOTRON 
RESONANCE 

The investigations of cyclotron resonance were 
aimed at measuring the effective masses of the 
electrons and holes, and also at an elucidation of 
those singularities in their anisotropy which can 
serve for a determination of the form of the Fermi 
surface of bismuth. 
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FIG. 3. Polar diagram of the dependence 
of the effective masses p. on the direction of 
the magnetic field applied to a single crystal 
of bismuth. The left quadrant represents the 
basal crystallographic plane, and the right 
quadrant the plane containing the binary 
axis C2 and the trigonal axis C,. The dashed 
curves are continuations of the experimental 
curves made in accordance with symmetry re­
quirements. The values of the electron ef­
fective masses given by [•] are marked with 
crosses, the values of the holes are marked 
with circles (henceforth, the error bars near 
some of the experimental points indicate the 
accuracy of the measurement of the given 
mass). The figures designating the curves 
are explained in the text. 

The effective masses were calculated from the 
formula [14] 

m* e 
fl =m = m C(JJ~lH-1 ' e e 

where ~1H-1 is the period of the cyclotron reso­
nances of the given mass, determined from experi­
mental records similar to those shown in Fig. 1 
(the remaining symbols are standard). Variation 
of ~1H-1 by rotating the field in the plane of the 
specimen makes it possible to study the anisotropy 
of the effective masses, which manifests itself 
clearly on Fig. 1. Results of the measurements 
are shown on the polar diagram in Fig. 3; part of 
curve 2 is plotted on the basis of data from Fig. 1, 
pertaining to a sharply anisotropic mass. 

Electronic Fermi surface. Curves 1 and 2, 
drawn through the experimental points of Fig. 3, 
are quite close to ellipses. Therefore, assuming 
the quadratic dispersion law to be approximately 
correct, we must conclude that the corresponding 
resonances occur on ellipsoidal Fermi surfaces. 
Inasmuch as the effective mass should in this case 
be proportional to the area of the extremal cross 
section of the ellipsoid, it is obvious that the major 
axes of the ellipsoids are perpendicular to the di­
rections of the binary axes C2, and the Fermi sur­
face contains three such ellipsoids, separately 
located in the reciprocal-lattice space of the bis-

muth a>. The ratio of the major to the minor axes 
of the ellipsoid can be determined as the ratio of 
the maximum and minimum effective masses, and 
amounts to 14.8 (we have in mind here the ellip­
soid minor axis perpendicular to the trigonal axis 
of the bismuth crystal ) . 

From an examination of the curves la, 2a, and 
3a on Fig. 3 we can conclude that the ellipsoids are 
located inclined to the basal plane, but a reliable 
determination of the angle of inclination from this 
data is difficult because of the inaccurate orienta­
tion of the surface of the given specimen (were the 
orientation accurate, curves 1a, 2a, and 3a would 
intersect at one point of the c3 axis). The deter­
mination of this angle will therefore be made in 
the course of the analysis of the quantum-oscilla­
tion data ( see below). 

Figure 4 shows, on an enlarged scale, the be­
havior of the effective masses under consideration 
near their minimal values. The fact that the ex­
perimental curves fit well the lines described by 
equations of the type 

3lFrom symmetry considerations, [ 1 ' 18 ] the Brillouin zone of 
bismuth contains three pairs of "halves" of ellipsoids adja­
cent to the cell edges. 
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FIG. 4. Polar diagram of the dependence of the electron 
effective masses /l in the low-mass region on the direction of 
the magnetic field applied to a single crystal of bismuth in 
its basal place. The dashed curve 3- mirror image of the ex­
perimental line 1, drawn in accordance with the symmetry 
requirements. Crosses-results of Galt et al.[•] The numbers 
of the experimental lines correspond to the numbers on Fig. 3. 

(the equation of the line 1 on Fig. 4 ) indicates that 
the central parts of the ellipsoids cannot be distin­
guished, within the limits of the experimental accu­
racy, from cylinders with axes perpendicular to 
these lines [19 ]. This deduction will be used later 
on in conjunction with the results of the investiga­
tions of the quantum oscillations. 

The characteristics obtained above for the three 
ellipsoids of the Fermi surface of bismuth are in 
full qualitative agreement with the model proposed 
by Shoenberg [2•3] for its electronic part. 

Let us compare now some of the quantitative re­
sults of the described experiments with the avail­
able literature data. Figures 3 and 4 show the 
values of the electron effective masses, measured 
by Galt et al [9] for rational directions of the mag­
netic field; the very good agreement is obvious. 

The comparison with Aubrey's results [12 ] looks 
worse, for the discrepancies reach ~ 15 per cent. 

·It is possible that the reason for the discrepancies 
lies in the low accuracy of Aubrey's measurements 
[ 12], which can be gauged from the experimental 
curves given in his paper. A comparison of the ef­
fective masses measured by the cyclotron reso­
nance method with the values obtained from an in­
vestigation of the de Haas-van Alphen effect [4•8•11 ] 

is not illustrative for the present investigation, 
since the second method is much less accurate. 

Let us consider now the ratio of the major and 
minor (perpendicular to C3 ) axes of the electronic 
ellipsoid, as calculated from results of various in­
vestigations (see the table ) . In the case of inves­
tigations of the de Haas -van Alphen effect, this 
quantity was defined as the ratio of the sections 
of the Fermi surface, obtained for corresponding 
directions of the magnetic field (a correction for 
the orientation of the specimen was introduced 
where necessary). In the ease of investigations 
of cyclotron resonance, the ratio chosen was that 
of the corresponding effective masses, which holds 
true only if the quadratic dispersion law is valid 
for the electrons. As can be seen from the table, 
the spread within the two groups of numbers per­
taining to these two methods is ~ 20 and ~ 10 per 
cent, respectively. However, the difference be­
tween the averages of the groups reaches ~ 40 per 
cent. On the other hand, if we take in each group 
the latest results, which are the most reliable, the 
difference comprises ~ 60 per cent and is far be­
yond the limits of the measurement errors. It fol­
lows from this fact that generally speaking the 
quadratic dispersion law does not hold for the bis­
muth electrons (this makes the very designation 
"ellipsoid" for the electronic Fermi surface some­
what arbitrary). Later on, in the analysis of the 
investigations of the quantum oscillations, we shall 
consider the question of the region in which the 
quadratic dispersion law can be regarded as sat­
isfied within the limits of experimental accuracy. 

Hole Fermi surface. The value of the effective 
mass, the behavior of which is represented by 
curve 4 of Fig. 3, corresponding to a magnetic 

Authors Measurement method Ratio of axes of 
the ellipsoid* 

~~·· ~-~---·---'-~ 

Dillon, Shoenberg, 1955 [3 ] 

Brandt, Ventsel', 1958 [11] 

Brandt, Razumeenko, 1960 [11] 

Weiner, 1962 [•] 
Galt et al, 1959 f•] 
Aubrey, 1961 [" 
Present investigation 

de Haas-van Alphen effect 
The same 

)) 

)) 

Cyclotron resonance 
The same 

10 
(8-8. 6) sec 30° ==9. 2-9.9 

10-11 
7.9 sec 30°=9.1 

14.3 
13.3 
14.8 

*The ratios of the ellipsoid axes were determined from the experimental plot8 pub­
lished in the indicated articles, and are of corresponding accuracy. 
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field directed along the C3 axis, practically cor­
responds with the effective mass of the holes as 
measured by Galt et al [9] for the same direction. 

The corresponding data for the direction along the 
C2 axis differ by "'20 per cent. This discrepancy, 
however, cannot be attributed, for example, to er­
rors in the specimen orientation. Thus, it appears 
justified to ascribe to the holes an effective mass 
whose anisotropy is represented by the experimen­
tal curve 4. A certain difference between the two 
branches of this curve, lying in the different quad­
rants in Fig. 3, is essentially the consequence of 
the inaccuracy in the specimen orientation, corre­
sponding to the right quadrant of Fig. 3. 

Judging from curve 4 of Fig. 3, the form of the 
hole Fermi surface can be close to an ellipsoid of 
revolution with a major axis parallel to the C3 axis, 
with an axis ratio on the order of 3.5 (mass ratio). 
However, as can be seen from Fig. 3, twb other 
masses are observed in the basal plane, repre­
sented by curves 5 and 6 (the latter apparently 
has curve 7 as its continuation), the isotropic be­
havior of which coincides with the behavior of the 
hole mass 4. It is therefore probable that masses 
5 and 6 also pertain to the hole Fermi surface. But 
in this case the simplest model of this surface in 
the form of an ellipsoid of revolution cannot be 
conserved: it is necessary to modify it in such a 
way as to cause the appearance of the singularities 
responsible for the cyclotron resonances 4> 5-7 
(Fig. 3). In this respect certain possible variants 
of the form of the hole Fermi surface for bismuth, 
considered by Abrikosov and Fal'kovskH [1], are 
of interest. 

It must be noted that the ratio of the axes of the 
hole "ellipsoid," calculated as the ratio of the 
areas of its cross sections, as obtained by Brandt 
[ 10J, amounts to "'3.8, which practically coincides 
with the mass ratio "'3.5 given above. However, 
in view of the statements made above regarding the 
form of the hole surface, this agreement is appar­
ently accidental. 

RESULTS OF INVESTIGATION OF QUANTUM 
OSCILLATIONS 

The origin of the quantum oscillations of the 
surface impedance has the same physical cause 

4lit is also necessary to take into account the fact that in 
constructing the diagram of Fig. 3 we used only cyclotron 
resonances which were most pronounced on the experimental 
curves and accompanied by clearly visible resonances of order 
higher than the first (except for curve 5). Therefore the dia­
gram of Fig. 3 can be supplemented in further experiments 
with some new data. 

as the admittance oscillations (the Shubnikov-
de Haas effect) and the oscillations of the magnetic 
susceptibility of a metal (the de Haas -van Alphen 
effect). According to the quasi classical theoryC20J, 
these oscillations should be described by periodic 
functions of the reciprocal field, as is confirmed 
by experiment. 

The main result that can be obtained from in­
vestigations of quantum oscillations of the surface 
impedance of a metal is the determination of the 
areas of the extremal sections of the Fermi sur­
face by planes perpendicular to the direction of 
the magnetic field in each experiment. 

The area of the section S is calculated from the 
experimentally measured period ~H-1 of the quan­
tum oscillations, as a function of the reciprocal 
field, in accordance with the formula 

S = eh I c!1H-1 

in analogy with the processing of the experiments 
on the de Haas-van Alphen effectC4•16•20J. There­
fore the main problem of the experiment consists 
of an accurate measurement of the periods of the 
quantum oscillations. 

The values of the periods and their anisotropy 
are determined from records of the type shown in 
Fig. 2. The interval of the fields in which the os­
cillations are observed, and consequently their 
number, is relatively small. However, by extrapo­
lating the record of an experiment made at !.. HC2 

~ 2° to the origin ( H-1 = 0) it is possible to es­
tablish accurately the numbers of the oscillations, 
the displacement of which is then traced continu­
ously on the records obtained with gradual increase 
of the angle !.. HC 2• This procedure raises the ac­
curacy of the relative measurements and at the same 
time the accuracy with which the anisotropy of the 
oscillations is investigated. We note that this does 
not improve the absolute accuracy of the measure­
ments, since the initial phase of the oscillations is 
not known beforehand. In the experiments described 
the initial phase was equal to zero, within the meas­
urement accuracy, and was assumed to be the same 
on all the records. 

It is clearly seen on Fig. 2 that each curve rep­
resents a recording of beats between two oscilla­
tions, close in period and in amplitude. The "fad­
ings" of the beats (numbered with Roman numer­
als) appear to the right, as the field is rotated, and 
move toward the left ends of the curves. The beat 
period on the upper curve, which exceeds the en­
tire length of the record, was determined also from 
the continuously traced number of the "fadings," 
measuring from the origin (H-1 = 0 ). We note 
that the phase (sign) of the oscillation of a given 
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FIG. 5. Areas of extremal sections of electronic 
Fermi-surface ellipsoids of bismuth, determined from 
the quantum oscillations for different directions of 
the magnetic field in the basal plane (the angle is 
reckoned from the binary axis C2). a- Lattice con­
stant of bismuth. 

0 

f.O 2.0 

r.z · s.ro-7fl 
2.5 S. tu-•2 CGS 

number, for example 14 on Fig. 4, changes after 
the "fading" of the beats passes through its loca­
tion. The described procedure of measurements 
makes it possible to determine with high accuracy 
the areas of the two sections of the Fermi surface 
responsible for the appearance of two oscillations 
of close period, and the difference in the areas of 
these sections is determined from the periods of 
the beats with the same relative accuracy as the 
sections themselves (this leads to a clearly pro­
nounced character in the spread of the experimen­
tal points, which is seen on Fig. 5 and particularly 
on Fig. 6, namely each pair of points representing 
two sections in a given direction deviates to one 
side of the straight lines ) . 

In the present investigation quantum oscillations 
of the surface impedance of bismuth were investi­
gated at magnetic field directions close to the di­
rection of one of the binary axes ( C2 ) of the bis­
muth. In this case the oscillations were observed 
only in sections of nearly equal area of two elec­
tronic ellipsoids, the major axes of which were 
perpendicular to the other two axes c2. On the 
other hand, the oscillations on the ellipsoid which 
is prolate perpendicular to the first C2 axis, were 
not observed because they should have a period 
which is one order of magnitude smaller, and oc­
curs at a magnetic field intensity which is one order 
of magnitude larger, that is, in the region 5-7 kOe. 
At such fields, observation of these oscillations is 
extremely difficult, owing to the presence of bis­
muth surface-impedance oscillations of a different 
origin; they manifest themselves at a field of 1 kOe 
(Fig. 2) and reach a relatively large amplitude [HJ. 

1.5 

FIG. 6. Areas of extremal sections of electronic ellipsoids 
of the Fermi surface of bismuth, determined from the quantum 
oscillations, in a plane containing the binary C2 and the tri­
gonal axes. The lines were drawn through the experimental 
points by least squares; the angle between the lines is 14°. 
The crosses denote the measurement results of Brandt and 
Ventsel' ,[11 ] the triangles the results of Weiner[•] (a -lattice 
constant of bismuth). 

Figure 5 gives the results of the measurement 
of the extremal areas of intersection between the 
electronic ellipsoids of the Fermi surface and 
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planes parallel to the trigonal axis of the crystal. 
This figure must be compared with Fig. 4, which 
shows the effective masses of the electrons mov­
ing in phase space along orbits that are the perim­
eters of the Fermi-surface sections shown in Fig. 
5. Information on the location and form of the elec­
tronic ellips·oids, which follows from Fig. 5, coin­
cides with the statements made above on the basis 
of an analysis of Figs. 3 and 4: the major axes of 
the three ellipsoids are perpendicular to the binary 
axes C2; the central parts of the ellipsoids are in­
distinguishable in form, within the measurement 
accuracy, from right cylinders. 

The absence in Fig. 5 of experimental points at 
angles L HC2 > 19° is due to the fact that the obser­
vation of the quantum oscillations was practically 
impossible under these conditions, owing to the 
rapid growth in the amplitude of other oscillations 
with smaller period, the appearance of which is 
noted on Fig. 2. The investigation of the quantum 
oscillations at angles L HC2 ::s 30° was carried out 
by Vol'skH [21 ] (at a frequency ~ 3 Me), who es­
tablished that the lines drawn in Fig. 6 represent 
correctly the sections of the ellipsoids up to L HC 2 

= 30°, that is, up to a field direction along the trace 
of the symmetry plane ad of the bismuth crystal 
(thus, OB = 20A in Fig. 6 ). 

From a comparison of Figs. 4 and 5 it follows 
directly that within the range L HC2 ::s 30° the elec­
tron effective mass if proportional to the area of 
the extremal Fermi-surface section enclosed in 
the orbit of these electrons in phase space. This 
is experimental proof of the fact that within the 
indicated limits the deviation of the dispersion 
law of the bismuth electrons from quadratic is 
smaller than the measurement errors (in the 
analysis of the investigations of cyclotron reso­
nances above it was established that the quadratic 
dispersion law cannot hold true for the entire elec­
tronic Fermi surface). On this basis we can calcu­
late the limiting energy of the bismuth electrons: 

£ 0 = S j2:n:f.lme = (2.5 ± 0.1)-10-14 erg, 

which corresponds to an effective temperature 
181 ± 7°K. The limiting electron velocity, pertain­
ing to the central part of the ellipsoidal Fermi 
surface, is 

v0 = Y 2£0 /f.lme = (7.7 ± 0.2)-107 em/sec. 

The results of the experiments shown in Fig. 6 
yield the inclination of the major axes of the elec­
tronic ellipsoids to the basal plane of the crystal. 
The experimental points of Fig. 6 were obtained 
by an analysis of records (similar to those of 
Fig. 2 ) of quantum oscillations at different mag-

netic-field directions in the plane containing the 
trigonal and binary axes. The angle between the 
lines drawn in Fig. 6 is equal to the projection of 
the angle between the major axes of the ellipsoids 
on the symmetry plane ad of the crystal. The 
angle of inclination of the major axes of the ellip­
soids to the basal plane turns out to be 6° ± 15'. 

The results of the investigations of the quantum 
oscillations of the surface impedance of bismuth 
are in good agreement with the model proposed by 
Shoenberg [2•3] for the electronic Fermi surface of 
bismuth. To evaluate the accuracy attained and the 
degree of detail in the measurements, and conse­
quently the degree of accuracy and reliability of 
the quantitative conclusions made in comparison 
with the available experimental data, Fig. 6 shows 
the results of Weiner [8] and Brandt and Ventsel'[H]. 
It is possible to make an analogous comparison on 
Fig. 5, since this crystallographic plane was not 
investigated so far by anyone. On the other hand, 
a comparison of the results of the experiments 
obtained by measuring the de Haas -van Alphen 
effect [3•8•11] in the bisector symmetry plane ad 
of the bismuth crystal (which was not investigated 
in the given work) discloses an even larger scat­
ter of the experimental points and greater discrep­
ancies between data of different authors, than is 
the case for the plane of Fig. 6. Therefore a com­
parison of the quantitative results of the present 
work with the literature data can serve only as a 
check on the latter. 

In constructing his model for the electronic sur­
face, Shoenberg [3] assumed that the angle of in­
clination of the major axes of the ellipsoids to the 
basal plane of the bismuth crystal is 5° 45'. Further 
experiments [8•9• 12 ] were in good agreement with 
the values of the angle of inclination, within a range 
5°41'- 6°10' (the numbers are cited without an ac­
count of the measurement errors ) . These values 
practically coincide with the angle measured in 
the present work, namely 6°00' ± 15'. The value 
of the limiting electron energy is in worse agree­
ment: ShoenbergC4J gives a value 2.8 x 10...:14 erg, 
whereas in our work we obtained a limiting energy 
of (2.5 ± 0.1) x 10-14 erg. 

CONCLUSION 

In order to make a detailed quantitative inves­
tigation of certain singularities of the Fermi sur­
face of bismuth, we investigated two effects that 
manifest themselves in changes of the surface im­
pedance of single crystals of pure bismuth at 
microwave frequencies, namely cyclotron reso­
nance and quantum oscillations. The quantum os-
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cillations of the surface impedance of the metal 
have not been investigated experimentally here­
tofore. 

An investigation of both effects was made on 
the same specimens by a common method, essen­
tially in one and the same experiment, which makes 
the quantitative deductions obtained by comparing 
the results of the measurements of these two ef­
fects quite reliable. The high accuracy and the 
degree of detail of the data obtained was guaran­
teed by the high resolution and sensitivity of the 
measurement method. 

Investigations of cyclotron resonance gave de­
tailed information on the anisotropy of the effective 
masses of the current carriers in the bismuth in 
two crystallographic planes. An investigation of 
the quantum oscillations made it possible to study 
in detail the dependence of the cross section areas 
of the electronic ellipsoids of the Fermi surface of 
bismuth on the direction in a region adjacent to the 
binary axes in the two crystallographic planes. An 
analysis of the experimental results pertaining to 
electrons has shown good agreement with the elec­
tronic model of the bismuth Fermi surface, pro­
posed by Shoenberg. The limits of the validity, 
within the precision of the experiment, of the quad­
ratic dispersion law for the electrons were deter­
mined and it was established that this law is not 
satisfied outside these limits. The accuracy and 
degree of detail of the experimental data greatly 
exceed the corresponding information existing in 
the literature. 

It must be particularly emphasized that the 
simultaneous study of two phenomena most sensi­
tive to the geometry of the Fermi surface by using 
the same specimens is methodologically highly con­
venient. Although this is an obvious consideration, 
no such experiments have been carried out until 
now. 

The authors are grateful to P. L. Kapitza for 
interest and attention to the work, and to G. S. 
Chernyshov and V. A. Yudin for technical help. 
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