REFINEMENT OF THE INFORMATION ON THE 0⁺ → 0⁺ TRANSITION IN Ce¹⁴⁰

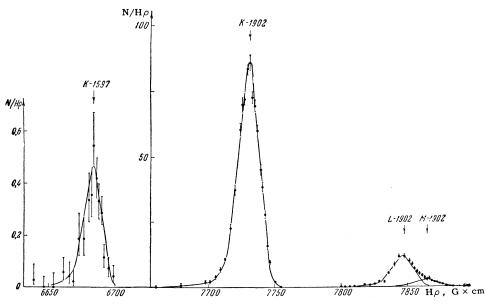
V. A. BALALAEV, B. S. DZHELEPOV, A. I. MEDVEDEV, A. MESHTER, and I. F. UCHEVATKIN

All-union Metrology Institute

Submitted to JETP editor June 30, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 43, 2019-2020 (December, 1962)

The \Pr^{140} conversion electron spectrum is measured with a high resolution and low background β spectrometer. As a result more accurate data have been obtained on some characteristics (energy, K/L ratio) of the $0^+ \rightarrow 0^+$ transition in Ce^{140} .


The $0^+ \rightarrow 0^+$ transition in Ce¹⁴⁰ is treated in several papers^[1-4]. Some details, however, still remain unclear. The investigation of the conversion spectrum of Pr¹⁴⁰ with the aid of a β spectrometer with double focusing at an angle $\pi\sqrt{2}$, with a resolution of 0.2% and a very low coincidence background ^[5], makes more precise some of the information on the $0^+ \rightarrow 0^+$ transition in Ce¹⁴⁰. The Nd¹⁴⁰ + Pr¹⁴⁰ compounds were prepared, as before ^[3,4] from Ta bombarded with fast protons (600 MeV).

Two series of measurements were made on the Pr¹⁴⁰ conversion spectrum regions with energies 1543—1561 and 1841—1907 keV. In the first series the half-value line width was 0.33%; in the second series (with a thinner source) it was 0.24%. The line broadening is governed by the quality of the sources.

The measurement results are listed in the table.

1. Energy of $0^+ \rightarrow 0^+$ transition. Comparison with the K1597 line of Ce¹⁴⁰ and the K1452 and K1481 lines of Yb¹⁷⁰ shows the transition energy

_	First series	Second series	Weighted mean of two series	[4]
$(K + L + M)_{1902/\beta+}$ $(K + L + M)_{1597/\beta+}$ $(K/L)_{1902}$ $(M/L)_{1902}$		$(2.28\pm0.17)\cdot10^{-3}$ $(11.4\pm1.8)\cdot10^{-6}$ 7.40 ± 0.65 0.23 ± 0.07	$(2.10\pm0.11)\cdot10^{-3}$ $(9.9\pm1.2)\cdot10^{-6}$ 7.40 ± 0.34 0.27 ± 0.03	$ \begin{array}{c} (2.1 \pm 0.1)10^{-3} \\ (14 \pm 5) \cdot 10^{-6} \\ \\ \end{array} $

1425

to be 1902 ± 3 keV. The previous values were $1902 \text{ keV}^{[1]}$ and $1904 \pm 5 \text{ keV}^{[4]}$.

2. Ratio $(K/L)_{1902}$. This ratio was first determined by Dzhelepov et al^[2] in a study of the La¹⁴⁰ \rightarrow Ce¹⁴⁰ decay who found it to be K/L = 8.2. Inasmuch as these measurements were made under difficult conditions (the lines were observed against the β -spectrum background), we redetermined this ratio. Our measurements gave similar results:

$$K/L = 7.40 \pm 0.34$$
.

This is in good agreement with the theoretical value K/L = 7.7 obtained for the $0^+ \rightarrow 0^+$ transition by Church and Weneser^[6].

As can be seen from the figure, L and M are satisfactorily resolved and the ratio M/L amounts to 0.27 \pm 0.03.

3. Ratios $(K+L+M)_{1597/\beta^+}$ and $(K+L+M)_{1902/\beta^+}$. These ratios enable us to establish somewhat more precisely the 1597- and 1902-keV level populations in the Pr^{140} decay:

1597 keV: $\sim 1\%$ (previously $\sim 2\%$ of the decays ^[4]).

1902 keV: $\sim 0.1\%$ (previously 0.1% of the decays ^[4]).

We take this opportunity to thank S. A. Shestopalova for a useful discussion of the measurement results, and V. D. Vitman, K. M. Shperling, and G. A. Mtvralashvili for help in the measurements.

Translated by J. G. Adashko 345

¹ Dzhelepov, Prikhodtseva, and Khol'nov, DAN SSSR **121**, 995 (1958), Soviet Phys. Doklady **3**, 803 (1959).

² Dzhelepov, Prikhodtseva, and Khol'nov, Izo-barnye yadra s massovym chislom A=140 (Iso-baric Nuclei with Mass Number A=140), AN SSSR, 1960.

³Dzhelepov, Uchevatkin, and Shestopalova, JETP **37**, 857 (1959), Soviet Phys. JETP **10**, 611 (1960).

⁴ Dzhelepov, Uchevatkin, and Shestopalova, Transactions of Second Conference on Nuclear Spectroscopy of Neutron-deficient Rare-Earth Isotopes, vol. 4, 50, Dubna, 1959.

⁵S. A. Shestopalova, Izv. AN SSSR ser. fiz. **25**, 1302 (1961), Columbia Tech. Transl. p. 1312.

⁶ E. Church and J. Weneser, Phys. Rev. **103**, 1035 (1956).