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Energy losses of particles in a medium are investigated by taking into account radiative cor­
rections. It is shown that the macroscopic part of the radiative losses due to the presence of 
the medium may be very significant and comprise about 7% of the total losses. A density ef­
fect applies to the radiative corrections and occurs at energies larger than those at which the 
density effect in the main part of the losses arises. It is predicted that a decrease of ioniza­
tion energy losses of about 7-10% should occur on the Fermi plateau. The theoretical and ex­
perimental results are compared. The problem of radiative corrections to Cerenkov radia­
tion is discussed. 

1. INTRODUCTION 

1. In the analysis of ionization and Cerenkov1 l 

energy losses of a particle in a medium [t] it is 
customary to take into consideration the first per­
turbation-theory term in e2 • It might appear that 
the reason for it is that for ionization losses, and 
also for general losses, which are determined es­
sentially by ionization losses, we are dealing with 
energy transfers that are in considerable excess 
of the electron binding energy, since the relative 
contribution of the Cerenkov losses is small, i.e., 
in final analysis, we are dealing merely with radi­
ative corrections to the scattering [2J. Inasmuch as 
the c.m.s. scattering angle is small (the particle 
passes through), the radiative corrections to the 
scattering are small. For example, in measure­
ments made with photographic plates, when the only 
events recorded are those in which the energy 
transfer does not exceed Wmax2l, the maximum 
c.m.s. scattering angle is of the order Bmax 
~ .J Wmax/Ep, where Ep is the particle energy in 
the laboratory system. The radiative corrections 
to the scattering of an electron by an electron can 
be estimated from the known formulas (see the 
papers by Akhiezer and Polovin [ 2] or Redhead [ 3]). 

For the maximum value of the relative magnitude 
of the radiative corrections we obtain 

!)We take the term "Cerenkov losses" to mean energy lost 
to radiation of longitudinal or transverse Cerenkov quanta, 
i.e., both the Cerenkov radiation proper and the Bohr losses. 

2)The order of Wmax is usually 1-5 keV and at the utmost 
50 keV (ti = c = 1 everywhere). 

The quantity f, which depends on ~E-the maximum 
energy of a soft quantum [more accurately, on 
ln ( E/~E)] -is a number of the order of unity, for 
usually the experimental inaccuracy in the deter­
mination of the value of the energy is not small. 
The radiative corrections to scattering are conse­
quently of the order of (1/137) Wmax /me (me is 
the electron mass); since Wmaxlme ~ 10-1 - 10-2, 

the relative contribution of the radiative correc­
tions to the polarization losses would amount to 
one-hundredth of a percent. 

In the estimates presented above, however, we 
used for the radiative corrections a cross section 
in which integration was carried out over all values 
of the energies of the virtual quanta, including the 
long-wave macroscopic part; no account was taken 
here of the deviation of the dielectric constant of 
the medium from unity. This is incorrect, since, 
as is shown below, the macroscopic part of the 
radiative corrections greatly exceeds3l the "mi­
croscopic" part estimated above and determines 
the magnitude of the correction to the ionization 
and Cerenkov losses as being of the order of e4• 

The cause of this situation can be qualitatively 
understood from the fact that for the "microscopic" 
part of the radiative corrections the recoil upon 
scattering is appreciable and the greater this re­
coil the larger the corrections, which vanish when 
there is no scattering, whereas the macroscopic 
part of the radiative corrections does not vanish 
if recoil is neglected (just as Cerenkov radiation 
exists for a uniformly moving particle). 

3)The last statement pertains to sufficiently dense media 
(for example, photographic plates, etc.). 
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2. The macroscopic part of the radiative cor­
rections to the energy loss is due, roughly speak­
ing, to the fact that the mass of the particle in the 
medium differs from its mass in vacuum by an 
amount ~m. This question was considered in de­
tail earlier [4J. Let us call attention to the be­
havior of ~m at large energies, an important fac­
tor in what follows. In particular, the transverse 
and longitudinal parts of the change in mass ( ~m t 
and ~m l) increase linearly with increasing particle 
energy in the ultrarelativistic limit. With increas­
ing energy, however, their sum tends to a constant 
limit ~m = ~mt + ~ml = -e2w0, 4 l, a limit indepen­
dent of the natural frequencies of the medium ( w0 

is the plasma frequency). The energy range for 
which this saturation effect takes place, for the 
model with oscillators having a single natural fre­
quency Ws, is Ep/m » ws/w0 . This criterion co­
incides with the criterion for the onset of the 
Fermi-density effect in losses for the oscillator 
model. Because the mass of the particle in the 
medium is different from the mass of the free 
particle and depends on its velocity, the square of 
the four-momentum of the particle is not equal to 
m2. 

3. As usual, in calculations in the higher per­
turbation-theory approximations expressions arise 
which diverge logarithmically on the lower limit 
( i.e., the infrared divergence). If the process 
takes place without a medium, then as is well known 
it is sufficient to consider a process with emission 
of soft quanta down to a certain frequency ~E , the 
width of which is specified by the experimental ac­
curacy with which the energy of the particles par­
ticipating in the process is determined 5l. The 
infrared divergence vanishes then, but the result 
contains ~E. In the presence of the medium, no 
such compensation of the infrared divergence by 
soft quanta can occur. This can be understood by 
recognizing that the emission of a "soft" quantum 
occurs only in the presence of recoil, albeit small, 
whereas the main process can be regarded at zero 
recoil. 

A good illustrative example is that of radiative 
corrections to Cerenkov radiation C7J. Assume that 
the Cerenkov radiation condition n(w)v > 1 is satis­
fied in the entire low-frequency region of interest 
to us, down to w = 0, so that any soft quantum 

4l An essential dependence of ~m on the energy of the par­
ticle as the latter moves along the axis of a hollow channel of 
radius a can appear if aw0 » 1. 

5lwe do not concern ourselves here with cases of very 
small ~E or large particle energies, when it is necessary to 
sum the perturbation-theory series (see Abrikosov's paper[•]). 

satisfies the Cerenkov-radiation condition. The 
emission of a soft quantum accompanying the main 
Cerenkov quantum is a process in which two Ceren­
kov quanta are emitted but there is no infrared di­
vergence, since expansion in the number of quanta 
is perfectly permissible for the Cerenkov radiation 
(unlike bremsstrahlung). This is seen from the 
classical formula for Cerenkov radiation, which 
contains the factor w ( n = c = 1): 

(1) 

The emission of two Cerenkov quanta is therefore 
a quantum effect proportional to e4u;2/m2, which is 
neglibibly small compared with the radiative cor­
rections to the Cerenkov radiation. 

The infrared divergence in the radiative correc-. 
tions, however, can be readily eliminated if it is 
recognized that for a particle moving in a medium we 
have p2 ¢ m2 or that E ¢ Ep = -../ p2 + m2 (com­
pare with Sec. 2). Therefore elimination of the 
infrared divergence in radiative corrections to the 
Cerenkov radiation has much more in common with 
the corresponding problem for the Lamb shift 
( p2 ¢ m2 as a result of interaction), than with the 
problem concerning radiative corrections to scat­
tering. 

2. MACROSCOPIC PART OF RADIATIVE COR­
RECTIONS TO ENERGY LOST BY PARTICLES 
IN A MEDIUM 

1. For the sake of simplicity we disregard the 
exchange effect and assume that the particle is not 
identical with the particles of the medium. Let the 
field of the particles (electrons) of the medium be 
described by an operator 7p, the field of the inves­
tigated particle by an operator -$-, and the electro­
magnetic field by A. Introducing the external 
sources of these fields, in analogy with the con­
ventional technique (see, for example [BJ), we ob­
tain a system of equations in functional derivatives 
for the Green's functions R(x1 , x2), G(x1 , x2) and 
D(x1 , x2) of the fields cp, -.Jt, and A. Here R is de­
fined as the average over the ground state of the 
system of particles of the medium, and G is de­
fined as the average over the vacuum; the D-function 
takes into account the polarization of the medium. 
Renormalization reduces to a choice of the con­
stants in the multiplicative transformation 

6lWe take account here of the fact that Z1 = Z2 and Z~ = z;. 
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where r and r' are the vertex parts of the ~ and 
cp fields. Inasmuch as the change in the electromag­
netic mass of the particle in the medium and its 
energy losses are observable effects, the choice of 
the constants Z1 , Z' 1 , and Z3 , for example, should 
be carried out in such a way as to eliminate only the 
unobservable vacuum quantities. For example, Z1 

must be chosen from the condition that G have a 
pole when ip - ip0 = me (me is the experimental 
mass also in the absence of the medium. From the 
equation for G 7l (in analogy with what was done 
in [8] in the absence of the medium) 

{Z1 (ip + m) + M (p)} G (p) = I, (2) 

it follows that when ip- me and the density of the 
medium tends to zero we have 

(3) 

where the subscript "v" indicates that the corres­
ponding quantity pertains to the vacuum (no medium). 
From (3) and (2) follows an equation for the renor­
malized G: 

(ip +me+ MR (p)) G (p) =I, (4) 

1WR (p) == M (p) -Mv (Po)- (iP +me) aMv (Po)laiPo, (5) 

M(p) =-(~4 ~ Zrrp.G(p + k) 1\ (p + k, k) Dp.v (k) d4k; 
(5a) 

z3 is obtained from the requirement that the 
Green's function of the photon have a pole as 
k2 - 0 and the chemical potential - 0. We do not 
write out the remaining equations. 

2. Let us consider the low-frequency correc­
tions to the low-frequency part of the losses. In 
first order in e2 it is known that an account of the 
recoil [s] makes a negligibly small contribution 
~ w/Ep. Let us also neglect terms with w/Ep in 
the next order of perturbation theory in e2 • We can 
obtain simple rules for the construction of the 
Green's functions of the particle in any order of 
perturbation theory, if we neglect in each pertur­
bation-theory order the terms of order w/Ep com­
pared with unity, i.e., if we neglect, roughly speak­
ing, the recoil in all orders of perturbation theory. 

Let us consider the equation for the non-renor­
malized G(E, p), Pf.J. = { p, iE}: 

(ip + m + M) G (E, p) = I. (6) 

In the construction by iteration of the mass operator 
M zero-order Green's functions 

G0 (E- ~wi, P-~ ki) 
I I 

7lThe medium is assumed homogeneous and isotropic (trans­
lational symmetry exists). 

will appear. In the limit w/Ep « 1 we can neglect 
in G0 the positron 8 l part: 

G0 (E, p) =-A; (E- ep + i6) ~. Ai/= = (m + ip0)/2ep, 

(7) 

and consequently also the vacuum polarization in 
the D-function. Therefore the D-function is deter­
mined only by the dielectric constants Et and €1 
of the medium (see [4l ). In addition, Ap-~kj can 

be replaced by Ai). As a result, in each term of the 
perturbation series for M there appear factors of the 
type YiA~ykA~ysA~Yj ... They can be rewritten 

in a form that contains Ap to the left, and all the 
'Yi'Yk ... to the right. This expression for M can be 
substituted into the expansion for G : 

G = Go- GoMGo + GoMGoMGo- .. • , (8) 

recognizing that G0 is specified by (7). Then the 
terms containing Ap will vanish by virtue of 
ApAp = 0, and the terms containing 'Yi will enter 
in the form ApYiAp = - iviAp, where v = p/Ep is 
the velocity of the particle. Thus, the entire de­
pendence on the matrices y u of the function G is 
determined by the factor AiJ : 

G (E, p) = A;g (E, p). (9) 

Substituting (9) in (6) and taking the trace of the 
y-matrices, we obtain 

[E-ep-~(E,p)lg(E,p)= I, (10) 

where 

(11) 

Calculating the trace in accordance with the well 
known rules [ 5] and using the dispersion relations 
for the D-functions, which we express in terms of 
the imaginary parts of the retarded D, directly 
connected with the dielectric constants €1 and Et, 
we obtain 

00 

~ (p) = e2 ~ dw ~dk g (p + k) y (p + k, k) d0 (k), (12) 
0 

00 

y (p, k) = I+ e2 ~ dw' ~ dk'g (p + k') 
0 

X y (p + k', k) g (p + k' - k) 

X y (p + k'- k, k') d0 (k') + Oy, (13) 

B)For the sake of simplicity we assume that we are con­
sidering a 'P-field particle with E '> 0. 
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2 {[vk] 2 t 1 } d0 (w, k) = (2:n:)4 ~ Im D, (w, k)- Im D, (w, k) , (14) 

k~'- = {k, iw}. 

We use here the gauge obtained in our previous 
work [4]. 

(15) 

Expansion of the mass operator E(E, p) in 
powers of e2 can be determined by the usual 
graphic method using the rules previously formu­
lated [7]. Thus, in first order in e2 

00 

2e2 (' (" 1 
~1 (£, p) = (2:rt)4 .\ dw .l dk E- sp-k- w 

0 

{ rvk]2 t l } > ~ImD,(w, k)-ImD,(w,k) , (16)* 

we obtain ( E = Ep + io, Ep - Ep-k ~ k·v) for the 
real part the expression of [ 4] for t.m and the 
classical expression for the imaginary part (see 
[10]). 

3. Let us consider the question of renormali­
zation for g(E, p). The equation for the renormal­
ized g(E, p) can be obtained in analogous fashion 
by using Eq. (14) for the renormalized G(p). It is 
simpler, however, (with the same result) to carry 
out the renormalization directly in (10) 9l : 

(E- Bp- ~R (E, p))g (£, p) = 1, (17) 

R ~ ~ 

k (E, p) = k (£, p) -~B (E, p) [E=•p 

aY.B (£, Pl I 
- (E - 8 P) ae E=•p ' 

(18) 

00 

~ (E, p) = e~~ dw ~ dkg (p + k) y (p + k, k) d0 (k) Z1, (19) 
0 

00 r (p, k) = Z1 + e2e~ dw' ~dk'Z;g (p + k')r (p + k', k) 
0 

X g (p + k'- k) y (p + k' -k, k') d0 (k') + 6y. (20) 

The factor 

aY.B (E, Pl I 
Z1 = 1 + ae E=•p 

(21) 

serves for the elimination of the overlapping diver­
gences (as was shown by Fradkin [B]). As was 
noted in the introduction, to eliminate the infrared 
divergence it is essential to have E "" Ep in the 
medium. However, in the renormalization the 
vacuum values of k and a~/aE for E = Ep are 

91lere Ep contains me• 
*[vk] = v x k. 

subtracted from ~. Let us see how to eliminate 
this difficulty. 

We introduce for this purpose the photon mass 
A and expand successively all the quantities in 
(17) -(21) in series in terms of e2• All the terms 
of the series are finite, in view of the presence of 
A. We can then verify that all the terms of the 
series contain only d0 - dov. (It is simplest to 
verify this directly, for example for the terms e4 

and e6 • ) The same series can be obtained from 
the non-renormalized equation (10), if we use 
d0 - d0v in ~ in place of d0 • Actually this reduces 

l . tb t t h t to rep acmg Dr y Dr.- Dr,v, w ere Dr,v 
= D~ I , since ImDf v = 0. 10 l Thus, all the cor-

Et=1 ' 
rections vanish when Et = EZ = 1. The result is 
easy to understand. If we neglect recoil in all the 
orders, there is no effect in the vacuum. Our prob­
lem is to solve Eq. (10) with d0 = d0v (henceforth, 
unless specially stipulated, we shall take d0 to 
mean the indicated difference) by a method dif­
ferent from the series expansion employed here. 

4. If we do not assume E = Ep, then the term of 
the mass operator ~2 , proportional to e4, does not 
contain an infrared divergence: 

00 00 

2: 2 (E, p) = e4 ~ dw 1 ~ dw 2 ~ dk1 dk2 d0 (w1 , k1) d0 (w2, k2) 

0 0 

(22) 

Therefore the correct solution of Eq. (10) with ac­
count, say, of only ~ 1 and L: 2 does not contain any 
difficulties of the infrared divergence type. For a 
practical solution of the dispersion equation it is 
convenient to use the iteration method. For the 
zeroth approximation we have E = Ep. We substi­
tute this value into the mass operator which con­
tains only the first term of the expansion in e2, 

namely 

~1 (£, p) = ~l (ep, p), 

as a result of which we obtain the first approxi­
mation 

To obtain the next iteration approximation we sub­
stitute E1 in 

~1 (£, p)- 2:1 (ep, P) + ~2 (E, p) 

10)It must be noted that the dispersion relations are gener­
ally speaking true for D~ - D~, v (con vergence on the large 
semi-circle is essential). However, by virtue of renormaliza­
tion only this difference enters into the result. 
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and carry out the calculations in the first nonvan­
ishing approximation. We obtain terms of the type 

e4 and e4 ln e2 • The obtained value of E2 is sub­
stituted into the difference of the mass operators 
of the preceding orders and the mass operator of 
the next order is evaluated, etc. The use of such 
a procedure gives an expansion of the effective 
energy spectrum of the particles in the medium in 
terms of e2 , with the expansion coefficients con­
taining ln e2 • The terms of the series decrease 
successively if the density of the medium is not 
very small (see below), i.e., if the polarization 
effect is sufficiently large. 

We introduce 

6~1 (E, p) 
6£ 

~1 (E, p)- ~1 (sp, p) 

E- Ep 

We then obtain from (16), (22), and (23) for 'Yp 
= - 2 ImE ( p) 

r =" y< 1l (I ~ Re 6~ 1 ~ Re 8~') 
? p 6£ (1£ 

~ ( Im ~~1 ~ lm ~~') Re (£1 ~ Ep). 

(23) 

(24) 

where 'Yp is the probability of energy loss with ac­
count of the e4 terms, while ri}) is the value in the 
e2 approximation only. It can be shown that the 
imaginary parts of o~tfoE and o~tfaE coincide 
within the limits of the required accuracy, i.e., 
their difference is proportional to e4: 

r p = r~l) ( 1 - ~ ~), (25) 

where l:i describes the radiative correction. 
5. The same factor describes the macroscopic 

part of the radiative corrections to short-range 
collisions. To prove this we write out the exact 
expressions for the mass operators of first and 
second order, M1 and M2 , and solve the exact dis­
persion equation by perturbation theory, assuming 
a low frequency for one of the quanta and a high one 
for the other ( w ~ Ep). Then, neglecting the sec­
ond approximation of perturbation theory for M1 , 

which contains the matrix element of the transition 
to states with negative energy and is therefore 
small, we obtain 

X (w2 , k2) (£- W1 - Ep~kJ- 2 {(£- W 2 - Ep~k,)- 1 

x <r1,A;r/~;-k,r,A;r) + (E + w2 - Ep~k,)- 1 

x <r~'-A;r"A~~k,r,.A;r)} + (£1 - Ep) <aM,!aE); 

PI~ = {p, ± iEp}. (26) 

Here Dr is the imaginary part of the retarded 
Green's function and < ... > denotes averaging 

over the solutions of the free equation. Using the 
relations 

<r,A;r"At-k,r~.A;r1> =- v,v1 <raAt~k,r~.>. (27) 

<r4A;IoAt~k,r~.A;r4> = <roAt-k,r~.>. i, j =I, 2, 3, (28) 

we obtain for the imaginary part of E2 relation 
(25), in which E1 = Ep. Expression (25) is obtained 
by perturbation theory using unperturbed functions 
that take into account the mass operator in the e2 

approximation (they were obtained in [4]). 

6. We assume that the medium is transparent 
and neglect spatial dispersion in the corrections. 11 ) 

The quantity l:i can be resolved into transverse and 
longitudinal parts l:i t and l:i l (corresponding to the 
nt and nl terms in ~1): 

~ = ~t + ~1• (29) 

Then fll = 0 under the assumptions made. In­
deed, from 

l 4:rt2""' I anz (ws) 1~1 ImD,= -F"7 ~ b(w~w5), (30) 

where ws are the zeroes of the refractive index 
n ( w), it follows that 

~~~i = a~i = _!!!.__ ~ w-11 anz (ws) 1-1. (31) 
1\E aE v LJ s aws 

s 

The fact that (31) is imaginary proves our state­
ment. Further, from the equation 

Im D~ = 4:rt2b (k2 - w2n2 (w)) 

it follows that 
co co 

(32) 

~ = ~t = Re ~ ~~ dw - Re ~ ~~. B dw, ~~. B = ~~ ln=1 • 

n2 >o o (33) 

t v ( 1 ) w- (£1- sp) (1 - nv)-1 3 
~ .. = I-- In +-

2 (£1 - sp) n2v2 w- (£1 - sp) (1 + nv) 1 wn 

4w- 3 (£1 - sp) £ 1 - sp- w (1 - nv) 

+ 2w2n2vz In £ 1 - sp- w (1 + nv) · 

3. EFFECT OF DENSITY IN THE RADIATIVE 
CORRECTIONS 

(34) 

1. It is well known that a density effect is ex­
pected for the energy losses calculated in the e2 

ll)For ultrarelativistic particles, for example, this is pre­
cisely the region of frequencies and wave vectors that makes 
the greatest contribution to the corrections, as will be shown 
later. We emphasize that the approximation employed in the 
corrections can be useful for a strongly absorbing medium, 
where the absorption must be taken into account in y~) but 
not in !'.. This is connected with the fact that the regions of 
frequencies that are essential for ygl and !'. can be different. 
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approximation, namely that the losses should ex­
hibit a plateau. For the oscillator model 

n2 (w) = 1 - w~ I (w2 - w~), (35) 

which was calculated by Fermi [1 J, the criterion 
for the onset of the density effect is 

(36) 

where ~ ~ 1. With account of the radiative correc­
tions, the energy losses have the form 

w = w(1> (1 - e2 !!/n), (37) 

where w(1 l are the losses in the e2 approximation. 
At large energies saturation, the value of which 

depends on the density of the medium, also sets in 
for 6,. (the density effect). The criterion for the 
appearance of the density effect in radiative cor­
rections is more stringent, namely that ~ in (36) 
must greatly exceed unity in this case ( ~ is pro­
portional to e- 2 = .137). Actually it turns out that 
~ ~ 10 - 40. This means that after "reaching" 
the Fermi plateau, a decrease in the losses should 
be observed. Inasmuch as !:!. can reach relatively 
large numbers-up to 50 12 l, the radiative correc­
tion can reach 5-10%. 

2. For the simplest oscillator model, described 
by formula (35), the integral expressing the quan­
tity 6,. cannot be calculated in terms of known tabu­
lated functions. Only the limiting cases Ws « Wo and 
w » w0 can be considered. In the former case 
o~e can put in the limit ws = 0. We then obtain the 
result of [BJ. The value of !:!. as a function of Ep/m 
is plotted in the figure for two values of I A. I 
= w01 I E1 - Ep I , namely I A. I = 1/10 and I A. I 
= 1/50. In the limiting case of nonrelativistic 
energies t:, t is small, !:!. t ~ v2 (the square of the 
ratio of the particle through the velocity of light): 

t 2 2 I 4 /', =3V nfn. (38) 

In the untrarelativistic limit when Ep/m « 1/ I A. I 
we have 

t, 1 (ep)=21n2 ~+2(ln 2,:V-1)(ln s~~~ 1.-1) 
+2ln2(2-ln2)- ~2 , (39) 

and when 
(40) 

(41) 

l2lThis expression is suitable only if the radiative correc­
tion e2 /',/ 17 is itself small, for in the opposite case it is 
necessary to sum perturbation-theory series. 

0'-'--7.;:o,--'--4-;;;0-'----r6'no ~llo /oo ' 120 14/J 1;0 Y 

!!= Ce/m -t 

In this case the criterion for the onset of the 
density effect in the radiative corrections is Eq. 
(40). If ws > w0 , l:!.t can be expressed in the non­
relativistic limit in terms of elliptic integrals. In 
the limit ws » w 0 and v « 1 we have 

1',1 = 4
3 v2 {21n -;L-- 1}. (42) 

ro0 I 'A I 

In the ultrarelativistic limit when Ws » wo the 
greatest interest is attached to the dependence of 
the radiative corrections on the energy in the region 
of the "Fermi plateau," Ep/m » Ws/Wo. 13 l When 
the last inequality is satisfied, it is possible to 
carry out calculation with logarithmic accuracy, 
discarding terms of order of unity, compared with 
the large logarithm. The characteristic logarithm 
is in this case ln ( 1/ I A. I ) . It reaches values on the 
order of 5-6 (see below). This means that for 
the radiative corrections, which reach an order of 
8-10% in the vicinity of the "plateau," the result 
is accurate to 2-3%. This, for example, is suffi­
cient for a comparison of the theory with the ex­
periment. It is important that in calculating with 
logarithmic accuracy it is possible to obtain a re­
sult for any n ( w), since the main contribution to 
the integral is made by frequencies for which n is 
close to unity, and consequently n ~ 1 - w~/2w2 , 
and the region of angles of greatest importance in 
the integration is X = cos e ~ 1. Using this fact, 
we can replace the exact expression for A by the 
approximate expression 

00 1 

/', = v2 R.e~ dy~dx (1- x) {4y3 [2y2 (1- v + 1- x) 

+ 1]-1 [2'Ay- 2y2 (1 - v + 1 - x)- 1]-1 

- 4y2 [2'Ay- (1 - v + 1 - x) 2y2 - 1)-2 

- (1 - v + 1 - x)-1 ['A- (1 - v + 1 - x) y]-1 

+ y ['A- (1- v + 1- x) y)- 2}, (43) 

13)The last inequality can also be obtained by a simple 
estimate The characteristic frequencies correspond to the 
fact that. 1- nv still differs from 1- v. For n- 1- cv~/2cv2 
we obtain cv - cv0 Ep/m. In conjunction with cv » CVs this 
yields E p '» mws/ W 0 • 
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where y = w/ w0 and the values of the lower limits 
are inessential, inasmuch as the main contribution 
is made by integration near the upper limits. In 
the limit Ep/m « 1/l AI we obtain 

eP m 
!J. (ep) = 2Inm-In epJA.J•, (44) 

which coincides with (39) with logarithmic accu­
racy. In the limit Ep/m » 1/l A I we have 

!J. (Ep) = 2 In2 m, (45) 

which coincides with (41) with logarithmic accuracy. 
The dependence on the specific characteristics of 
the medium is only via I A I . 

3. The value of I AI is determined by the effec­
tive energy spectrum of the particle in the medium 
in the first order in e2• The real part of A ( see 
the introduction) is small in the region of the Fermi 
plateau Ep/m » ws/w0• Thus (see [i1] ), 

e• r I t lA! = ffio (2Jt)" ~ dw ~ dk() (w- Ep + Ep-k) [2 Im Dr (w, k) 
0 

(46) 

For a transparent medium, neglecting the spatial 
dispersion, we obtain in the case of the oscillator 
model (35) 

I A I= I A1 I+ I A1 1; 

and when Ws » w0 and v - 1 we get 

I A I = e2 ffio In ?}:max . 
ros 00o 

(49) 

In the case of an arbitrary number of oscillators 
we have 

and if the different natural frequencies are suffi­
ciently well separated, then 

2k f I A I= e2 ~o In~, _1 = 2] -'-. (50) 
ros roo ros ,.rosi 

Thus, I AI decreases with increasing ws/ w0, while 
ln (1/l A I) increases. 

The parameter kmax in ( 4 7) -(50) is chosen to 
permit the neglect of spatial dispersion. However, 
an analysis of (46) shows that the main contribution 

to (46) is made by relatively small k, unlike the 
analogous calculation for energy losses given in 
[it J .14l To find kmax it is essential to take into ac­
count spatial dispersion, a factor which is important in 
the classical region. By way of an example we can 
cite the calculated I AI for a degenerate electron 
gas. An account of spatial dispersion for the clas­
sical El and Et (see [to]) yields for ultrarelativistic 
velocities 

I A I= e2 (In!!_+ l't y:3 + J16it) = e2 In ~_.!l3 v . (51) 
v0 8 dffi0 

Comparing with (47), we obtain kmax = 0.93/d for 
Ws = 0, where d = v0/f3w0 is the Debye radius and 
v0 is the particle velocity on the Fermi surface. 
Inasmuch as kmax enters under the logarithm sign, 
we can approximately assume that in the general 
case kmax = < w >/vav, where vav is some mean 
velocity of the electrons of the medium. 

4. Let us estimate the influence of bremsstrah­
lung on the radiative corrections. Bremsstrahlung, 
as is well known, is influenced by multiple scatter­
ing (see the paper of Landau and Pomeranchuk [i 2]) 

and by the polarization of the medium (see Ter­
Mikaelyan [i3 l). The most detailed investigation of 
bremsstrahlung with account of both effects was 
made by Migdal [i4]. From f1 4J we find that it is 
necessary to add to the calculated value I A I the 
term 

(52) 

where 

_1_ = ffioZe4 In~ 
ffio L (s) l'tm z'/, 5'/,' 

and Es = m ..J4rrje2; G ( s) and q.b s) are Migdal 
functions [i4J. As estimate of I A I can be obtained 
by approximating (52) in various regions of w: from 
zero to w*, from w* to w**, and from w** to Ep, 
where 

The integrals I A b 11, I A b 12 , and I A b 13 over the 
first, second, and third regions respectively have 
the following estimates: 

14lQualitatively this follows from the fact that m is close 
to unity in the quantum region, so that the result should be 
proportional to n - 1 (or lmE), i.e., to w~; from dimensional­
ity considerations !AI is proportional to w0 e2/m, which is 
small compared with (SO). 
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I').. b/ = Zwoe4 (w0Lm3 ) •;,In 190, 
1 m £2 z~ 

eP s 

b 4 ( m4L 5) I'J.. Ia= 3wL In -2--S ; 
o 8£5 e., 

bl 16 p, 2=-L' 
Wo 

L=L(l). (53) 

The integral over the second region vanishes when 
Ep/m < w0 Lm2/8E~. A comparison of IA.b I with 
the values of lA. I calculated above shows that even 
for elements corresponding to the end of the peri­
odic table lA. b I is approximately two orders of 
magnitude smaller than lA. I . 

5. Let us estimate the influence of multiple 
scattering on the radiative corrections to the 
particle energy losses. For the main part of the 

losses, as shown by Ter-Mikaelyan [t 5], multiple 
scattering does not come into play, owing to the 
presence of the Fermi density effect. The density 
effect cuts off precisely those impact parameters 
for which multiple scattering can play any role. 
Let us show that multiple scattering does likewise 
not influence the radiative corrections to the losses. 

The reason for it is the density effect considered 
here for the radiative corrections. The large values 
of the corrections come from the region where the 
following quantity is small [see (43) ] : 

X= COS 6. (54) 

Using multiple-scattering theory [16] we get 

<8 2)=£; l/e~L. 

Let us assume that l is equal to the path on which 
the particle's own field is formed, l ~ E~/ wm2 • 

Taking into account the fact that w ~ w0Ep/m, we 
find that < e2 > for multiple scattering becomes 
comparable with the angles e2 which are signifi­
cant in (54) when 

~ L - - 1 -_!7!_ In ~ . . sc I 90 
m > m - 4Ze2 w0 z /, (55) 

This quantity exceeds appreciably the value at 
which the density effect sets in for the radiative 
losses. For example, for electrons the criterion 
(59) has the form Ep;:, 10 Bev, whereas the density 
effect for the radiative corrections occurs when 
Ed.e ~ 200 Mev. Therefore multiple scattering 
dges not influence the radiative corrections 15 l. 

!5)The estimate can also be obtained with logarithmic accu­
racy by calculation, if, following [ 12 J, we replace <f (8 2)'> by 
f(<8•>). The corrections for multiple scattering reach a maxi­
mum when E =(Esc Ed'e)v'. Then their contribution to !\ p p p 

reaches a value on the order of unity, which should be dis­
carded in calculations with logarithmic accuracy. Here Eg.e 

is the value of the energies at which the density effect sets 
in in radiative corrections. 

4. DISCUSSION OF RESULTS 

1. Ionization losses are frequently investigated 
experimentally in photographic plates, where the 
main substance is AgBr. For AgBr it is possible 
to estimate the value of 1/ ws from the known ioni­
zation potentials. We get w0/ ws ~ 0.2-0.3. There­
fore the drop in the ionization-loss curve should 
occur for electrons at Ep/m ~ 200. The radiative 
corrections after saturation is reached should be 
,.... 5-10%. 

It turns out that the predicted drop in the ioni­
zation losses for ultrarelativistic electrons has 
already been observed experimentally ( see [ 1 1l). 
Comparison [ 1BJ of the experimental data with the 
theoretical results developed above shows that 
agreement exists between theory and experiment 
within the limits of experimental error and the 
accuracy of the theoretical calculations. We note 
here that agreement exists in the values of the 
corrections and in the values of the energies for 
which saturation in the corrections sets in. Both 
quantities are determined by the single parameter 
lA. I . The theoretical value of !A. I can be ob­
tained from a model, the choice of which is always 
connected with a certain approximation. The 
model of several oscillators or of a group of non­
overlapping absorption bands (due to the transition 
of the electron from the bound state to the con­
tinuum [! 9]) gives a value of .\ which is in good 
agreement with the experimental results. If the 
absolute value of the radiative correction increases, 
the characteristic saturation energy of the radia­
tive corrections should also increase. The experi­
mental material is so far insufficient for a check 
on this statement. 

2. The macroscopic part of the radiative cor­
rections depends only on Ep/m, and for heavy par­
ticles, say mesons, we can predict theoretically an 
ionization vs. momentum curve analogous to that 
observed for electrons. An estimate of the "micro­
part'' of the radiative corrections from known for­
mulas [ 5] shows them to be of the order of 
e2wmax /2rrme and they are consequently always 
small if the experimental apparatus registers only 
events with energy transfers wmax small compared 
with the electron rest energy me. Corrections of 
the type considered here should be taken into ac­
count in interpretation of data obtained with bubble 
and cloud chambers. 

3. To verify the calculated radiative corrections 
to the intensity of the Cerenkov radiation it is nec­
essary to measure rather accurately the spectral 
intensity of the emitted Cerenkov radiation. 

The literature data on the observed deviations 
of the intensity of the Cerenkov radiation from the 
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classical Tamm-Frank formula [20lwere apparently 
in error [ 2i]. 

4. We summarize: 1) the radiative corrections 
to the energy losses are far from small ( ~ 5-10% ); 
2) a density effect exists for the corrections and 
sets in at energies larger than those for which the 
density effect in the main part of the losses is 
reached; 3) the theory of radiative corrections to 
the ionization losses is confirmed by experiment, 
and 4) the radiative corrections to the Cerenkov 
radiation can be experimentally observed. 

I am sincerely grateful to V. L. Ginzburg and 
E. L. Feinberg f9r useful discussions. 
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