Certain interference phenomena in $\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$ SYSTEMS

V. I. OGIEVETSKIĬ and M. I. PODGORETSKIĬ

Joint Institute for Nuclear Research
Submitted to JETP editor April 11, 1962
J. Exptl. Theoret. Phys. (U.S.S.R.) 43, 1362-1364 (October, 1962)

The nature of the Pais-Piccioni type of beats in decays of a $\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$ pair is studied. These beats turn out to depend essentially on the relative weights and phase difference of the states of the $\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$ system with even and with odd orbital angular momentum.
$I_{\text {NGLIS }}{ }^{[1]}$ and Day ${ }^{[2]}$ have remarked on certain peculiarities of the Pais-Piccioni process for $\mathrm{K} \overline{\mathrm{K}}$ pairs. ${ }^{1)}$ The present work deals with a further development of this problem, the discussion following closely the results of a previous paper, ${ }^{[3]}$ in which the connection was pointed out between the orbital angular momentum of the $K \bar{K}$ pair and the allowed modes of decay (see also ${ }^{[4]}$).

Let us suppose that in the proper frame of referance of the $K \bar{K}$ pair its angular momentum is odd. Then the wave function of the system at the time of production is antisymmetric. It can be written in the form

$$
\begin{align*}
\psi_{a}= & -i 2^{-1 / 2}\left\{K _ { 1 } (\mathbf { p }) K _ { 2 } (\mathbf { q }) \operatorname { e x p } \left[-i\left(m_{1} \tau+m_{2} \theta\right)-\lambda_{1} \tau / 2\right.\right. \\
& \left.-\lambda_{2} \theta / 2\right]-K_{2}(\mathbf{p}) K_{1}(\mathbf{q}) \exp \left[-i\left(m_{1} \theta+m_{2} \tau\right)\right. \\
& \left.\left.-\lambda_{1} \theta / 2-\lambda_{2} \tau / 2\right]\right\}, \tag{1}
\end{align*}
$$

where p and q are the momenta of the particles considered, τ and θ are their proper times, m_{1} and m_{2} are the masses of the K_{1} and K_{2} particles, and λ_{1} and λ_{2} are their decay constants.

If K_{1} and K_{2} are expressed in terms of K and $\overline{\mathrm{K}}$ then it is an easy matter to obtain with the help of Eq. (1) the probability for, for example, one of the particles to be at the instant τ in the state $K(p)$ [or $\bar{K}(p)]$ together with the other particle to be at the instant θ in the state, say, $\bar{K}(q)$ [or $K(q)]$. The indicated probabilities are given by ${ }^{[2]}$
$w\{K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}=w\{\bar{K}(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\}$
$=1 / 8\left\{\exp \left(-\lambda_{1} \tau-\lambda_{2} \theta\right)+\exp \left(-\lambda_{1} \theta-\lambda_{2} \tau\right)\right.$
$\left.-2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)(\tau+\theta) / 2\right] \cos [\Delta m(\tau-\theta)]\right\}$,
$\omega\{K(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\}=\omega\{\bar{K}(\mathbf{p}), K(\mathbf{q}), \tau, \theta\}$
$={ }^{1 / 8}\left\{\exp \left(-\lambda_{1} \tau-\lambda_{2} \theta\right)+\exp \left(-\lambda_{1} \theta-\lambda_{2} \tau\right)\right.$
$\left.+2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)(\tau+\theta) / 2\right] \cos [\Delta m(\tau-\theta)]\right\} .\left(2^{\prime}\right)$

[^0]Thus in this case as well beats are present, analogous to the beats in the conventional Pais-Piccioni process.

If we are interested in the probability for one of the particles to be in the state $K(p)$ [or $\bar{K}(p)]$ regardless of what state the other particle might be in, then the corresponding probabilities will be of the form
$w\{K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}+w\{K(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\}$

$$
\begin{align*}
& =w\{\bar{K}(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}+w\{\bar{K}(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\} \\
& =\frac{1}{4}\left\{\exp \left(-\lambda_{1} \tau-\lambda_{2} \theta\right)+\exp \left(-\lambda_{1} \theta-\lambda_{2} \tau\right)\right\} . \tag{3}
\end{align*}
$$

We see that in this case the beats disappear.
In the case when the orbital angular momentum of the $K \overline{\mathrm{~K}}$ system is even, the wave function is symmetric and analogous relations are valid, namely ${ }^{[2]}$
$\psi_{c}=2^{-1 / 2}\left\{K_{1}(\mathbf{p}) K_{1}(\mathbf{q}) \exp \left[-\operatorname{im}_{1}(\tau+\theta)-\lambda_{1}(\tau+\theta) / 2\right]\right.$ $\left.+K_{2}(\mathbf{p}) K_{2}(\mathbf{q}) \exp \left[-i m_{2}(\tau+\theta)-\lambda_{2}(\tau+\theta) / 2\right]\right\}$,
$w\{K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}=w\{\bar{K}(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\}$
$=\frac{1}{8}\left\{\exp \left[-\lambda_{1}(\tau+\theta)\right]+\exp \left[-\lambda_{2}(\tau+\theta)\right]\right.$
$\left.-2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)(\tau+\theta) / 2\right] \cos [\Delta m(\tau+\theta)]\right\}$,
$w\{K(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\}=w\{\bar{K}(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}$
$=\frac{1}{8}\left\{\exp \left[-\lambda_{1}(\tau+\theta)\right]+\exp \left[-\lambda_{2}(\tau+\theta)\right]\right.$
$\left.+2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)(\tau+\theta) / 2\right] \cos [\Delta m(\tau+\theta)]\right\}$
$w\{K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}+w\{K(\mathbf{p}), \bar{K}(\mathbf{q}), \tau, \theta\}$
$=w\{\bar{K}(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}+w\{\bar{K}(\mathbf{p}), \bar{K}(\mathbf{q}), \tau, \theta\}$
$=\frac{1}{4}\left\{\exp \left[-\lambda_{1}(\tau+\theta)\right]+\exp \left[-\lambda_{2}(\tau+\theta)\right]\right\}$.
Let us consider the general case when the wave function is of the form

$$
\begin{equation*}
\Psi=\alpha \psi_{c}+\beta \psi_{a}, \quad|\alpha|^{2}+|\beta|^{2}=1 \tag{6}
\end{equation*}
$$

In what follows we put

$$
\alpha=a e^{i A}, \quad \beta=b e^{i B}, \quad C=A-B
$$

where a, b, A, and B are real quantities dependent on, generally speaking, p and q as well as on the momenta of the remaining particles produced together with the $K \bar{K}$ pair.

Calculations fully analogous to those carried out above show that in this case $w(K, K) \neq w(\bar{K}, \bar{K})$ and $w(K \bar{K}) \neq w(\bar{K} K)$. Thus, for example,

$$
\begin{align*}
w\{ & K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}=\frac{1}{8} a^{2}\left\{\exp \left[-\lambda_{1}(\tau+\theta)\right]\right. \\
& +\exp \left[-\lambda_{2}(\tau+\theta)\right]-2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)(\tau+\theta) / 2\right] \\
& \times \cos [\Delta m(\tau+\theta)]\}+\frac{1}{8} b^{2}\left\{\exp \left(-\lambda_{1} \tau-\lambda_{2} \theta\right)\right. \\
& +\exp \left(-\lambda_{1} \theta-\lambda_{2} \tau\right)-2 \exp \left[-\left(\lambda_{1}+\lambda_{2}\right)\right. \\
& \times(\tau+\theta) / 2] \cos [\Delta m(\tau-\theta)]\} \\
& +\frac{1}{4} a b\left\{\exp \left[-\lambda_{1} \theta-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C-\Delta m \tau)\right. \\
& +\exp \left[-\lambda_{1} \tau-\left(\lambda_{1}+\lambda_{2}\right) \theta / 2\right] \cos (C+\Delta m \tau) \\
& -\exp \left[-\lambda_{1} \tau-\left(\lambda_{1}+\lambda_{2}\right) \theta / 2\right] \cos (C-\Delta m \theta) \\
& \left.-\exp \left[-\lambda_{2} \tau-\left(\lambda_{1}+\lambda_{2}\right) \theta / 2\right] \cos (C+\Delta m \theta)\right\} \tag{7}
\end{align*}
$$

whereas the expression for $\mathrm{w}\{\overline{\mathrm{K}}(\mathrm{p}), \overline{\mathrm{K}}(\mathrm{q}) ; \tau, \theta\}$ differs from Eq. (7) in the sign of the term involving the product ab .

One may also calculate the probability for one particle to be in a given state regardless of the state of the other particle. In this case one obtains, for example,

$$
\begin{align*}
& w\{K(\mathbf{p}), K(\mathbf{q}) ; \tau, \theta\}+w\{K(\mathbf{p}), \bar{K}(\mathbf{q}) ; \tau, \theta\} \\
&=\frac{1}{4} a^{2}\left\{\exp \left[-\lambda_{1}(\tau+\theta)\right]+\exp \left[-\lambda_{2}(\tau+\theta)\right]\right\} \\
& \quad+\frac{1}{4} b^{2}\left\{\exp \left(-\lambda_{1} \tau-\lambda_{2} \theta\right)+\exp \left(-\lambda_{2} \tau+\lambda_{1} \theta\right)\right\} \\
&+2 a b\left\{\exp \left[-\lambda_{1} \theta-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C-\Delta m \tau)\right. \\
&+\exp \left[-\lambda_{1} \tau-\left(\lambda_{1}+\lambda_{2}\right) \theta / 2\right] \cos (C+\Delta m \tau) \\
&+\exp \left[-\lambda_{1} \theta-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C-m \theta) \\
&\left.+\exp \left[-\lambda_{2} \theta-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C+\Delta m \tau)\right\} . \tag{8}
\end{align*}
$$

Thus in this case there persist beats connected with interference between states corresponding to orbital angular momenta of different parity.

The beats manifest themselves in a cleanest way if the problem is formulated somewhat differently; this formulation also leads to a situation which is easier to realize experimentally. Suppose that the state of one of the particles is classified
in terms of K_{1} and K_{2}, and the state of the other in terms of K and \bar{K}. In order to obtain the corresponding probabilities we must substitute into Eq. (6) the expressions (1) and (4), express $\mathrm{K}_{1}(\mathrm{p})$ and $K_{2}(p)$ in terms of $K(p)$ and $\bar{K}(p)$, and calculate the modulus squared of the coefficient of products of the type $K(p) K_{1}(q), \bar{K}(p) K_{1}(q)$, etc.

We list, as an example, the following two expressions:

$$
\begin{align*}
& \left.\omega\left\{K(\mathbf{p}), K_{1}(\mathbf{q}) ; \tau, \theta\right)\right\}=\frac{1}{4} \exp \left(-\lambda_{1} \theta\right)\left\{a^{2} \exp \left(-\lambda_{1} \tau\right)\right. \\
& +b^{2} \exp \left(-\lambda_{2} \tau\right) \\
& \left.+2 a b \exp \left[-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C-\Delta m \tau)\right\}, \tag{9}\\
& w\left\{\bar{K}(\mathbf{p}), K_{1}(\mathbf{q}) ; \tau, \theta\right\}=\frac{1}{4} \exp \left(-\lambda_{1} \theta\right)\left\{a^{2} \exp \left(-\lambda_{1} \tau\right)\right. \\
& +b^{2} \exp \left(-\lambda_{2} \tau\right)-2 a b \\
& \left.\times \exp \left[-\left(\lambda_{1}+\lambda_{2}\right) \tau / 2\right] \cos (C-\Delta m \tau)\right\} .
\end{align*}
$$

We note that in Eqs. (9) and (${ }^{\prime}$) the variables τ and θ are "separable." This makes it possible to utilize, while studying the beats in τ, all events without regard to the instant θ at which the decay of the second particle takes place.

In conclusion we wish to emphasize that the determination of the magnitude and sign of C is essential for a complete analysis of the $K \bar{K}$ interaction. The relations (9) and (9^{\prime}) permit the determination of the phase difference C if the magnitude and sign of $\Delta \mathrm{m}$ is known. The inverse problem could also be posed (the determination of the magnitude and sign of $\Delta \mathrm{m}$), if an independent method could be devised for the determination of the phase difference C.

[^1]Translated by A. M. Bincer
235

[^0]: ${ }^{1)}$ Here, and in the following, we consider only neutral K mesons.

[^1]: ${ }^{1}$ D. R. Inglis, Revs. Modern Phys. 33, 1 (1961).
 ${ }^{2}$ T. B. Day, Phys. Rev. 121, 1204 (1961).
 ${ }^{3}$ Ogievetskiĭ, Okonov, and Podgoretskiĭ, JETP 43, 720 (1962), Soviet Phys. JETP 16, 511 (1962).
 ${ }^{4}$ Ogievetskiĭ, Okonov, and Podgoretski1̆, Preprint Joint Inst. Nuc. Res., R-960 (1962).

