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A theoretical study is made of the features of the bulk cyclotron resonance (C.R.) excited in 
metals by high frequency sound ( wt0 » 1, where w is the frequency, and to is the relaxation 
time). The form, width and position of the resonance peaks of the acoustical absorption co­
efficient are studied as functions of the frequency, the magnetic field, the temperature, the 
topology and the shape of the Fermi surface, etc. The usual cyclotron and magneto-acoustic 
resonances are closely interrelated in acoustic cyclotron resonance (A.C.R. ). In distinction 
from electromagnetic C.R., it is possible to have A.C.R. when k and H are not perpendicular 
to one another. Experimental observation of A.C.R. allows one to determine not only the ex­
tremal values of the effective masses and diameters on the Fermi surface, but also the effec­
tive masses and mean velocities on an arbitrary cross section, the direction and period of 
open trajectories, etc. The theory is in good agreement with recent A.C.R. observations by 
Roberts[ 7J on gallium. 

1. INTRODUCTION 

UNTIL recently most experimental and theoreti­
cal work concerned with the absorption of sound 
in metals in a magnetic field involved comparatively 
low acoustical frequencies, where wt0 « 1 ( u.; is 
the angular frequency of the sound and t0 is the 
characteristic relaxation time of the electrons). 
In this frequency range various magneto-acoustic 
effects occur which are associated with the spatial 
periodicity of the acoustic field in the metal.[H] 

These effects include, first, Pippard-type[ 2] 

oscillations of the absorption coefficient a, first 
observed by Bommel [ 1] and studied theoretically 
by V. Gurevich.C3J They appear when k is perpen­
dicular to H (k is the wave vector of the sound and 
H is the magnetic field) and the period in the in­
verse field is directly related to the extremal di­
mensions of the electron orbit in the propagation 
direction of sound. Second, resonant oscilla-
tions of a should occur when k and H are not 
perpendicular, owing to the drift motion of elec­
trons in the direction of k.C4J The period of these 
resonant oscillations is determinedC4J by the ex­
tremal values of vk/U, the mean electron displace­
ment in the direction of k averaged over the orbit. 
Also related are the resonant oscillations of the ab­
sorption with k perpendicular to H, due to open 
periodic trajectories; these oscillations were pre­
dicted theoretically and observed experimentally 
by Galkin and Korolyuk.C 5J Finally, the acoustic 

absorption coefficient as a function of H-1 under­
goes periodic increases (jumps) of various 
types, which have been studied in [ 3- 5]. 

In all these effects there is no change of the 
acoustic field in a time of one mean free path 
( w « v ~ 1/t0 ). The alternating field can, there­
fore, be considered as static at the electron trajec­
tory, and only the spatial periodicity need be con­
sidered. At high frequencies ( wt0 » 1) the reso­
nance conditions depend significantly on the fre­
quency of the sound. 

The present work is a theoretical study of 
acoustic attenuation at high frequencies when bulk 
cyclotron resonance ( C .R. ) is excited in the metal 
at the multiple frequencies w = on (rl is the cy­
clotron frequency). Mikoshiba[6] has considered 
the possibility of acoustical cyclotron resonance 
(A.C.R. ). Recently RobertsC 7J observed A.C.R. in 
single crystals of gallium at w/27r = 115 Me. The 
observation of A.C.R. at such a comparatively low 
frequency was possibly because of the large mean 
free path (t0 ~ 10-8 sec, wt0 ~ 5 ). Roberts used a 
very ingenious method to separate A.C.R. from 
Pippard-type oscillations: if the polarization of 
the sound is changed (with w = const ), the wave­
length changes, and thus the Pippard-type maxima 
are displaced, while the A.C.R. maxima are not 
displaced. Thus, in a single experiment, one is 
able to determine not only the extremal diameters, 
but also the effective masses. Apparently, Reneker 
also observed A.C .R. in Bi.[B] There is no detailed 
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theoretical analysis of these effects in the litera­
ture at present. 

The characteristic features of A.C.R. are asso­
ciated with the fact that the acoustic wave vector 
k has a definite value in the metal, in distinction 
from C .R. in an electromagnetic field, where, 
owing to the skin effect, waves with various values 
of k are propagated into the metal. It is obvious 
that the vector k has a well-defined value if the 
acoustic absorption coefficient a is small com­
pared with the inverse wavelength. In the absence 
of a magnetic field[s] a ~ (np.w )/ (pvs 2 ) (where 
n, Jl• and v are the density, Fermi energy and ve­
locity of the electrons, s = w/k is the velocity of 
sound, and p is the density of the metal). For an 
electron concentration of the order of one electron 
per atom, the condition a « k will be satisfied for 
metals with mass numbers 
A~ 10 (a/k ~ mv/Ms ,.... A-1, where M is the mass 
of the ion), i.e., practically always. 

The physical mechanism of A.C.R. is easily 
understood. If the vectors k and H are mutually 
perpendicular, the mean displacement of an elec­
tron along k is zero in a precession period, and 
an electron interacts most effectively with the al­
ternating field when it falls in a plane of constant 
phase of the sound wave at a suitable moment 
( w = nQ). The advancing front of the sound wave 
acts as the "skin layer" (or gap in a cyclotron). 
After a period 27T jQ of precession in the magnetic 
field the electron is situated in equivalent constant­
phase planes of the advancing sound wave, so that 
resonance occurs. The resonance is most clearly 
displayed when the frequencies Q are equal for all 
electrons, i.e. for quadratic dispersion. When the 
dispersion law for the electrons is not quadratic, 
as is usual,[to] the electrons which resonate are 
those with extremal cyclotron frequencies Qext 
= eH/cmext (i.e., extremal effective masses). 

When the vectors k and H are not perpendicular 
to each other, the resonance is complicated by the 
Doppler effect, because the Doppler frequency shift 
k · v = kHVH is different for electrons with different 
projected velocities VH (PH). Those electrons for 
which the value of ( w - kHVH )/S"l is extremal 
participate in the resonance. Resonance is asso­
ciated both with the temporal and the spatial pe­
riodicity of the acoustic field. The analysis per­
formed below shows that the experimental study of 
A.C.R. allows one to obtain information on the ex­
tremal diameters and extremal effective masses 
of electrons at the Fermi surface, and also to de­
termine the effective mass and mean velocity at 
any section of it. 

The present work is a direct continuation of 

previous work[4J which is referred to below as I. 

2. ABSORPTION OF SOUND IN ZERO MAGNETIC 
FIELD 

The acoustic attenuation when H = 0 and wt0 

» 1 was determined by Akhiezer, Kaganov and 
Lyubarskn.,[s] who calculated the quantum mechan­
ical probability of the direct absorption by an elec­
tron of a quantum of the external acoustical field. 
In order to avoid certain calculations in what fol­
lows, it is convenient for us to obtain the same 
results using the classical kinetic equation. 

The complete system of equations consists of 
the kinetic equation for the electronic distribution 
function, Maxwell's equation for the eddy fields, 
and the condition for electrical neutrality in the 
metal: 

ox!ot + (vV') x + (oxlot)st = v (V'oe + eE), 

rot rot E = - 4nc- 2ojlot, 

p' e:cc- 2eh-3 ~ d3pxof0/oe = ne div u, 

j == - 2eh-3 ~ d3pvxof0/oe. 

(2.1) 
( 2.2)* 

(2.3) 

(2.4) 

Here x af0 /8E is the non-equilibrium contribution 
to the Fermi distribution function f0 (E) 
= [ e(E -JJ.)/T + 1 r 1; V = 8E/8p is the velocity, 
E (p) is the energy, p is the momentum, Jl is the 
chemical potential, e is the charge, and p' is the 
non-equilibrium part of the charge density of the 
electrons; the energy of interaction of the electrons 
with the acoustic wave is 

oe = 'Aik (p) uik + piv,aui!ax" + pt.i. 

In distinction from the low frequency case 
( wt0 « 1, kZ « 1) where the kinetic equation is 
linearized with respect to the instantaneous state 
of equilibrium in the alternating external field,[tt] 
the equation at high frequencies is linearized with 
respect to f0 ( E ) . The coupling of the electrons 
with the sound is due to the force - V'OE acting 
on an electron. The absorption coefficient has the 
usual form[ 3 •4J. 

(2.5) 

where W is the energy flux density in the acoustic 
wave. 

Because the relaxation time does not appear in 
the answer, we replace the collision integral by a 
relaxation time t0: 

(ox!ot) st = vx (v = lito). 

For a plane monochromatic wave 
X = g (v- iw + ikvt1 , g = v (V'oe -~- eE). (2.6) 

*rot =curl. 
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From (2.3) we find the longitudinal component of 
the field, E · k/k, and from (2.2) and (2.4) the eddy 
part. We use the relation 

(v - iw + ik,-t1 = :rto (w - kv) + iP (w - kv)- 1 

( P signifies the principal part), because 
lw- k·vl » v. 

We find after straightforward calculation: 

'Y. = h31tW ~ d3 pO (e- f!) 0 (w - kv) I oi- (os) - eE j_ v j_ [2 , 

(2.7) 
where the brackets < > imply averaging over the 
Fermi surface: 

The components of the eddy field are determined 
from the system of equations 

( (kc)2 ' ) E 2ie p \ d3 1 ( ) (' · · ) 
\4niw - G J. J. = fi3 J P kV V 1_ 6 e - fl r-.;kUik - ( 6s) . 

(2.8) 

It is apparent that the absorption is determined 
only by the symmetrical part of the tensor 8ui /8xk. 
The components of the electrical conductivity ten­
sor O"l have the form 

a,0 = 2:rte2h-3 ~ d3po (e- f!) o (w - kv) v,_v~. (2.9) 

It follows from (2.8) and (2.9) that the contribu­
tion to the absorption from the eddy fields depends 
markedly on the ratio between the acoustical wave­
length A. = 27rk-1 and the effective length of an elec­
tromagnetic wave in the metal o = (c 2/47rw0")1f2• 

This circumstance has been remarked upon by 
Gurevich and Pippard. If 

~ = (kc)2/4:rtwa ~(vis) (o0/'A) 2 (og = mc2/4:rtne2 ) (2.10) 

is small compared with unity, the contribution of 
the electrical fields to a can be neglected. In the 
converse limiting case the eddy fields make a 
contribution to the absorption comparable in order 
of magnitude with the deformation absorption. For 
"good" metals, the inequality wt0 » 1 is satisfied 
only for frequencies w/27r ~ 109 to 1010 cps and {3 

already becomes of the order of unity for w/27r 
~ 108 cps (n ~ 10 22 cm-3, v/s ~ 10 ). It is clear 
that under these conditions the eddy fields can be 
neglected. 

3. ACOUSTIC CYCLOTRON RESONANCE WHEN 
k AND HARE MUTUALLY PERPENDICULAR 

We consider the absorption of sound in an ex­
ternal magnetic field. In the system (2.1) - (2.4) 
only the form of the kinetic equation changes: 

I - i (w -- kv) + v] X -t- ox!oT = v (voe + cE) + iJoejiJT. 

~'.).1) 

Here 8/8T = eHc-1 (V X 8/8p,] T describes the 
time of motion of the electron in its orbit in the 
magnetic field. The appearance of the term 
86E/8T is associated with the fact that the Lorentz 
force ec-18E/8p x H is determined by the total ve­
locity v + 86E/8p. This term must be retained in 
the resonance region w ~ Q (Q = eH/mc is the 
cyclotron frequency, m = (27r t 18S/8E is the ef­
fective mass [ 12] ). We denote the righthand side 
of (3.1) by g (E, pz, T). We will not calculate the 
electrical fields, because their contribution to the 
absorption is the same as, or less than that of 
terms in OE, which, in their turn, are known only 
in order of magnitude. The resonance effects con­
sidered below are determined only by the kinematics 
of electrons with an arbitrary dispersion law in a 
magnetic field. The magnitude of the attenuation 
depends only on the magnitude and explicit form of 
g. Because the electrons absorb sound when k · v 
= w, we take I g I ~ loE: I ~ IJ.Wku. 

Using the results of I, it is not difficult to write 
down the expression for the absorption coefficient: 

a ·--a0 =eH (h3 Wct 1 Re~dp2 {1-exp (2:rtiB -2:rty)r1 

(3.2) 

where 

cx0 =:rt (h3 UJ't1 ~d3p[g2 [o (e -f!) o (w -kv), 

f1 = (kv- w)/Q, y = v/Q, T (pz) = 2n/Q, (3.3) 

CD 

J"- = ~ dt exp [+ i (kv~) t 2 + + i (kv:) t 3]. (3.4) 
-oc 

The index a signifies that the function is evaluated 
at the point T = T a (pz) ( T a is the root of the 

equation kv (T, Pz) = w in the range 0 < Ta < T). 
The bar signifies averaging over the period: 

T 

\j) = r-1 ~ dt'!J (t). 
0 

The term in k · v'& can be neglected if I k · Va 1 2 

« I k · v~ 13• In formula (3.3) we have used the 
identity 

and replace Ja by the expression 

J,_ = {2n/ !kv'z [)'' exp (Tni (sign kvJ). 

All the resonance effects are associated with 
the presence of the resonance multiplier B, which 
is 

B (Pz) == [ 1 - exp (- 2:rty - 2:rti~) )-1 . (3 .5) 
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1) A.C.R. should appear most clearly when the 
wave vector k is perpendicular to H. In this case 
for closed trajectories k · v = 0 and 

B (Pz) = [1- exp {- 2n (iw + v)/Q (p2 )}]-t. (3.6) 

For a quadratic dispersion law E (p) 
= 1-'ikPiPk/2, the cyclotron frequency 
~ = eHc-1 (~-txxl-'yy - J.L!y )V2 does not depend on 
pz, and if the scattering is due to impurities, then 
v (pz) is also constant. In this case B does not 
depend on pz, and can be taken outside the integral 
sign to obtain the result 

a = a 0 Re cth [n (iul + v)/Q]. (3. 7)* 

Resonance occurs at the multiple frequencies w 
= ~. Near to resonance 

For w = n~ 

(3. 9) 

A.C.R. is modulated by the usual magneto­
acoustic resonance of the Pippard type L 2•3] (or, 
as it is still called, geometric resonance) asso­
ciated with the presence of oscillating exponents 
in the cross terms ( Ta ~ Tf3) under the integral 
in (3. 2). For an ellipsoid 

a = CXo Re cth [n (iw + v)i Q] 

+ :a';~k ReB~ dpz \ g1g2IJ v~1v~2 [-'/, sin(~' (kv - w) d-r:). 
~. 

(3.10) 

Gurevich showed[3] that the last term causes os­
cillations of a, the period of which is determined 
by the extremum with respect to pz of the phase 

~· dT (kv --w) = (kcleH) (Pu ('t2)- py (-r:1)) 

~. 

( k is along the x axis, H along the z axis ) . The 
relative amplitude of these oscillations is of the 
order (kDtV2, where D = cdmax/eH (dmax is 
the maximal diameter of the Fermi surface). 

2) It is well known that most metals have a 
complex non-quadratic dispersion law. In this 
case the effective mass depends significantly on 
Pz, and resonance is "smeared out." We shall 
consider the case when there are only two points 
T1, T2, where k · v ( T) = w on the curve € ( p) = 1-', 
Pz = const. We write a as 

where 

*cth = coth. 

(3.11) 

:t2 = :.::c Re ~ dpzB (Pz) Re {g~g2J~J2 exp li ~· (kv- w) d-r: ]}. 
~. 

(3 .12) 

The expression for a 1 can be transformed if 
Eq. (2.10) of I is used for Ja; in fact, we have 

rr R \d 1 iw +v Y.1=h"W e.) 3P g 2 lb(c-[t)b(kv-w)cthn-Q-

- _rr - R \. d I 21 1 th iw + v 
- h3Wk e ) cp g Kv c Jt -Q-' 

kV"=w 

(3 .13) 

where cp is the azimuthal angle in velocity space, 
with the polar axis along k; integration proceeds 
along the curve w = k · v on the Fermi surface, 
and K is the Gaussian curvature. 

The values of cp close to the extremum 
~-1 (cp) ~ m (cp) make the principal contribution 
to a 1• If wand Hare such that w::::; n~ext> then 

- 2:rt "'' ( I g2 I ) G:lres--h"Wk .LJ -K M(~,b,£), 
(ext) V ext 

£ = v/w, ~ = (w- nQext)lw, b = (2m)-1 (a2 m/acp2 )ext· 

(3.14) 

The symbol ~ext signifies summation of the ex­
pressions at all points Cfl~-t for which ~ ( Cfl~-t ) 
=~ext; 

00 

1 • 1 
M(~, b, £) == ---Re \ e .. (Ll, b 2 ) dcp 

:rtn .l ; -t- t -;· (jl 
-00 

__ _1_ I (~2+ Ll2)'/,- Ll sign b \'/, 
--- n \ b (~" + ,!l2) . 

(3 .15) 

Formula (3.15) describes the form of the reso­
nance line. The maximum of M, which is 

33/ 4 ( 2n I ~b 1112 )-1, is attained when l!!. =- 3-! ~ sign b. 
At resonance the absorption is ( w/v)V2 times 
smaller than for a quadratic dispersion law: 

(3.16) 

The line has an asymmetrical shape; in fact, 
for ll!!.l » ~ and .6-b < 0 the value is 
M ::::; f2 n-1 I l!!.b I-V2, whereas for ll!!. I » ~, l!!.b 
> 0, the value is M ::::; ~ [ n I 2b I V2 ll!!.l 312 r 1 which is 
significantly smaller (in the ratio ~ ~/ ll!!.l) than 
on the other side of the line. The asymmetry mani­
fests itself on the resonance curve in the fact that 
the absorption is different at different minima. 

An effective-mass extremum with respect to cp 
is attained at least at a central section and a point 
of contact. When studying cyclotron resonance at 
a point of contact some caution is required, be-



158 E. A. KANER 

cause, when k is perpendicular to H, the quantity 
k · v tends to zero, and the use of formula (3.2) ob­
tained by the method of stationary phase with re­
spect to kr requires justification. Analysis shows 

f T2 
that close to this point the phase . Tt k · VdT is 

of order kr lopz /Pmax 11/2• The relative width of 
the interval lopz /Pmax I, which produces reso­
nance, is, of course, of order v/w. Therefore, for 
kr » ( wto )112, the results given are also valid for 
a contact point of elliptic type. At a hyperbolic 
(saddle ) contact point (such points can occur 
only on a non-convex Fermi surface), where the 
effective mass tends to infinity,[12J there is no 
C.R. In the inverse limiting case there is no reso­
nance at the frequency corresponding to the elliptic 
contact point. 

When evaluating a 2, which causes modulation of 
the C.R. by oscillations of the geometric resonance 
type, we must consider the competition between the 
two "sharp" functions under the integral; the reso­
nance function and the rapidly oscillating exponen­
tial function. Close to the central section the 
"sharpness" of B (pz) is characterized by the 
quantity 

I6Pzl ~ Pmax (vjro)'lz, 

and the "sharpness" of the exponential by the 
quantity 

I6Pzl- Pmax (kr)-'f, ~ Pmax (s/v)'iz. 

Because under actual conditions at frequencies 
w/2rr ~ 109 - 1010 cps and v ~ 108 - 109 cps the 
ratio ws/ vv is small, the exponential must be 
considered a "sharper" function than B (pz ). 
Therefore, the contribution from pz = 0 has the 
form 

2 (2n)'!. eH ( I gi I ReB ) . ( n ) 
!X2 = h3Wc I kv' I kD" 1'/, - SID kD- T 

1 Pz-0 

~ ~ R.e B sin (kD- _.::_) , 
(kD)';, 4 

(3.17) 

where D = cd/eH, d = 2Pmax is the central diam­
eter of the Fermi surface in the direction k x H 
and D"= ( 82D/opi )pz= 0· The relative value of 
the second term (a 2 ) is small in comparison with 
a 1: close to resonance it is of the order ( sw/vv )112 

« 1 (by hypothesis), and far from it, of the order 
(kD)-112 .... (s/v)112• 

When the resonance function B (pz) is sharper 
than the oscillating exponent, the absorption coef­
ficient is 

2neH I g~ I ( . nw J a= h•Wc kv: 1 +sm(kD--n) M(6,b,~), (3.18) 

where b = (2m r 1 a2m/opi. The values of all func­
tions are taken at the central section Pz = 0; M is 
determined by formula (3.15). In this case the 
modulation is very pronounced, and geometric 
resonance can cause the absorption to fall almost 
to zero (see also [ 4] ). However, to observe the 
effect extremely high acoustic frequencies and 
very pure specimens are required in order to 
satisfy the condition wt0 » v/s ~ 102 - 103 .1> 

When C.R. occurs at the central section or at a 
contact point, the oscillating exponential in (3.12) 
is the sharpest function ( I6Pz exp/OPzB I 
~ ( wt0 )112/kD « 1 ) and the absorption coefficient 
a 2 is given by a formula of the type (3.17). 

4. CYCLOTRON RESONANCE WHEN THE 
VECTORS k AND HARE NOT MUTUALLY 
PERPENDICULAR 

a) We now study the resonance features of the 
acoustic absorption when the angle between k and 
H differs significantly from a right angle, and 
k · v is not zero. In this case combined cyclotron 
and magneto-acoustic resonance should be ob­
served when I w ± k ·vI = n~. If ~ is changing 
relatively slowly, then, on a closed convex Fermi 
surface, the phase of the resonance index 
(w- k·v)/~ has no extremum with respect to 
Pz in the range of values of pz where k · v ( T, Pz ) 
= w. The resonant contribution to the absorption 
is provided by electrons close to the limiting 
values Pz = Pz lim ( Pz lim is the value of Pz for 
which the two points T1 and T2 merge into one 
another). Using the results of I we can at once 
write down an expression for the attenuation: 

alim= 6h~;~ f~~ I (1 k:" I r· r 2 ({) { 1 + 2si~n W arc tg Llfr}, 

where 
(4.1)* 

f3 = (kv ± w)}Q, [3' = d?>jdp2 , 

!l = I 131 - n is the "detuning" of the resonance. 
The multiplier in front of the curly brackets is of 
order a 0 (kr )-:Y3• Formula (4.1) describes period­
ically occurring increases of a. For /3' !l > 0, 
I lll » y the expression in the curly brackets is 
equal to two, and for 13' D.< 0 it is small ( ~y/1 lll ). 
The variation of aum on H is shown schemati­
cally in the figure. The curve has a saw-toothed 

1) An analogous situation can occur also in the electromag~ 
netic field. Averaging over the wave vector due to the skin 
effect leads in this case, as shown by Azbel',['•] to resonance 
spreading of the field into the bulk of the metal and a number 
of other interesting effects. 

*arctg = tan -i 
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a 

I 

·----~--~Z--~J---q~~5-n~ 

The schematic form 
of the variation with the 
absorption at the limit­
ing point alim with the 
magnetic field when 
d(3/dpz > 0. 

form. The magnitude of an individual jump is 

eH I g2 / I 6 1'/a 2 ( 1 ) k )-'' ~IX=3h"Wclf3'1 kv" f 3 ~1Xo( r "· (4.2) 

The absorption increases with increasing mag­
netic field when {3' < 0, and decreases when {3' > 0. 
The derivative curve da/dH should show resonance 
spikes of Lorentzian form: 

da!d!nH ~ a0 (kr)'J, sign W ·r /(~2 + y2). (4.3) 

In distinction from the low frequency case 
w « v, when the quantity w was neglected in the 
expression for {3 = I k · v - u.: I /rl, and both the 
limiting points Pz = ±pz lim gave equal absorption, 
at high frequencies the resonance spikes from both 
limiting points are split up and give two systems of 
resonance peaks. Their position and periods are 
different: 

(~H-1)± =elm lim c I kv ± w lnm• ~± = n. (4.4) 

From the splitting of the resonances it is possible 
to determine directly the effective mass m and 
k · v /k at the limiting point for a given orientation 
of the vectors k and H. In other words, by chang­
ing the mutual orientation of the vectors k and H, 
one can, in practice, find the effective mass and 
the mean velocity (over the period) at any section 
of the Fermi surface. 

b) When the Fermi surface is not convex, the 
function {3 (pz) = (k · v ± w )/rl can attain an ex­
tremum with respect to Pz inside and at the limit 
of the range of integration in (3 .2), which is defined 
by the values - Pz lim < Pz < Pz lim. For values 
of w and H such that f3ext is close to a whole 
number, resonant oscillations arise: 

IX= neH l ~ 1 kv' 1-'/, go. exp (f" (kv ~ w) dT)J2 nM (~. b, y); 
h·1W c L.J " J ext 

" 0 

/';. = f3ext -- n, f3ext = (kv ± w)jQ [ext. 

I~ I. r ~I. (4.5) 

A simple calculation leads to the result 

'[ (r2+f';.•)'i•-/';.signb ]'/, (4 . 6) 
IX = IX r2 + /';.2 ' 

a' ~ a 0 (kr)-'1•. (4. 7) 

The relative width and shape of the resonance 
curve is the same as in the case of A.C.R. for 

non-quadratic dispersion [see (3.14) and (3.15) ]. 
The difference between resonant oscillations of 
this type and those which occur at low frequencies 
w « vPJ lies in the splitting of the resonant fre­
quencies at symmetrical points (similar to that 
treated above for limiting points). 

We might remark that for some angle of inclin­
ation the limiting point coincides with an extremum 
of the function {3 (Pz ). Then formula (4.6) retains 
its form, but the value of a' is increased: 

a.'--- eH I g21 I_!__ 1'/, f2 (_.!:__ \ ~ ~~ . (4.8) 
- 3h3Wc I b I'J, kv" :; J (kr)';, 

Finally, the extremum of the function f3 ( pz ) 
can be attained in the range of values of Pz where 
there are no solutions of the equation k · v ( T, Pz) 
= w. Straightforward analysis shows that in this 
case the distribution function of the electrons, and, 
consequently, the coefficient of absorption, have no 
resonance features (there is no resonance multi­
plier B (pz) in the expression for a). 

c) We consider briefly the anisotropy of the ab­
sorption for small departures of the vectors k and 
H from the condition of mutual orthogonality. In 
the low frequency case w « v the attenuation is 
markedly anisotropic for small departures of the 
vectors k and H from mutual orthogonality.C4J 
For A.C.R. this anisotropy is no longer significant. 
Let 1r /2 - cp be the angle between k and H ( cp « 1 ) . 
For cp « (kl )-1 the terms in k · v can in general 
be neglected. For the range of angles ( k l ) -t 
« cp « s/v the Doppler frequency shift k · v 
causes a small displacement of the resonance posi­
tion and a small broadening of the line. For exam­
ple, when there is an arbitrary dispersion law and 
there is resonance at the central section, the fre­
quency shift is of order (cpv/s )2, and the additional 
broadening is ....., (cpv/s )4• On further increasing 
cp, (cp .2: s/v ), the Doppler shift k · v becomes of 
order w, and we use the preceding analysis in its 
entirety. 

We emphasize that the existence of resonance 
when k and H are not perpendicular is essentially 
related to the fact that the vector k has a definite 
magnitude. The indeterminacy of the vector k ex­
plains the absence of electromagnetic C .R. in an 
inclined magnetic field [ 9•14]: the averaging of the 
Doppler shift over k causes the resonance to dis­
appear. Therefore, at high frequencies w » v and 
in a strong magnetic field when the attenuation in­
creases, A.C.R. when k is perpendicular to H 
should be sharper than when k and H are not per­
pendicular. 
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5. SINGULARITIES OF RESONANCE ON OPEN 
PERIODIC TRAJECTORIES 

The presence of trajectories of such a type 
greatly influences the singularities of the magneto­
acoustic effects and leads to oscillations of a new 
resonance type.[4 •5J The peculiarity of these oscil­
lations is that in open periodic trajectories the 
mean displacement of an electron along the propa­
gation direction of the sound k · v /rl = k11 nc/27TaeH 
is not zero when k is perpendicular to H, and, 
significantly, does not depend on Pz· (The axis of 
1) is perpendicular to H and to the mean direction 
~ of the open trajectory, a-1 is the reciprocal lat­
tice period in the ~ direction.) Because the tran­
sition (when Pz is changed) from open periodic 
to closed trajectories takes place through a hyper­
bolic contact point (for example, on a corrugated­
cylinder-type surface) it can be expected that the 
effective mass at the axial section pz = 0 will be 
minimal. If the angle f) between the vector k (in 
the plane k 1 H) and the direction of the open tra­
jeCtory ~ is not very large ((} < (} 0; see Fig. 3a 
in 4] ), so that the line k · v = w passes through the 
axial section pz = 0, then C .R. is described by the 
resonance function 

B ( ) { [ ( v- iru . k,, nc )J}-1 Pz c~ 1 - exp - 2n ---- ± z -- • 
Q (pz} eHa 

(5.1) 

Resonant absorption should occur when 
I w/Omin ± ~ nc/eHa I = n and is given by (3.14) 
- (3.16), in which the frequency w should be re­
placed by the quantity I w ± kn sinfJ /am min 1. As a 
function of H-1 there will be observed beats of two 

first component does not depend on pz and I f3' I 
~ w I drl-1 /dpz 1. Therefore da/dH also increases 
by a factor of approximately kr as compared with 
the case of closed trajectories: 

da/d In H ~a0 (kr)'f, sign~' ·ri('r2 + ~2). (5.3) 

Resonance of this type apparently allows us to 
determine the effective mass not only on an axial 
section, but also in practice on any open periodic 
trajectory (except in the immediate neighborhood 
of a saddle point, where 0 = 0 and there is no 
resonance). Knowing m we can also determine v 
for these trajectories. y 

Resonance at Pzo disappears on increasing (} 
as Pzo approaches the saddle point ( IJ = f) k). 
When IJ > fJk the curve k · v = w changes com­
pletely into closed trajectories, and we use the 
analysis made for closed trajectories. For exam­
ple, in the case of the "corrugated cylinder" there 
will only be C.R. at an elliptical contact point, 
when fJ > fJk and k 1 H. 

The anisotropy of the absorption at open peri­
odic trajectories relative to the inclination of the 
vector k from the plane k 1 H has the same 
character as for closed trajectories. 

When there are open non-periodic or greatly 
extended closed trajectories (for example, H 
almost perpendicular to the axis of the cylinder), 
the contribution from them, which depends on the 
magnetic field, is insignificant.[4J 

6. CONCLUDING REMARKS 

frequencies, from which can be determined both The temperature variation of the absorption 
the mass at the axial section and the direction and coefficient involves the temperature variation of 
period of the open periodic trajectory. Resonance, the collision frequency v. In zero magnetic field 
as in the case of closed trajectories, will be lightly v disappears from the expression (2.7) for a. In 
modulated by oscillations from the central section _[4] the resonance region electrons absorb sound only 

For some angle e = e0 (Fig. 3b in [4]) two when they move with the wave: w = k· v. When 
closed non-intersecting lines k. v = w come to- such electrons collide with phonons, it is most 
gether, and with further increase in e, become probable that they will leave the region of phase 
two open periodic curves (Fig. 3c in [4] ). In the space k· V = w, and the phonon part of the collision 
range of angles f) > e 0 c .R. occurs at frequencies frequency is, therefore, vf ~ T3 (and not the usual 
0 (Pzo), where Pzo separates the range of values Vf ~ T5; see also [3 '15] ). If electron-phonon colli-
of pz for which k. v - w tends to zero from those sions dominate over impurity scattering ( Vd 
regions for which k · v ;.o w. If Pzo falls on open = const) and over electron-electron collisions 
periodic trajectories, the contribution to the ab- ( ve ~ T 2 ), the temperature variation is of the form 
sorption from Pzo is given by (4.1) - (4.3), and v = Vf ~ T3• These conclusions are, of course, 
C.R. will be observed on the curve da/dH (the valid in the non-quantum range nw, nrl « T. When 
absorption shows jumps). However, the order of the quantum conditions nO » T are satisfied, hy-
magnitude estimate (4.2) for ~a is essentially persound can excite bulk quantum C.R. of the type 
altered; in fact predicted by I. Lifshitz.[16] 

f'>l.rt.. ~ a 0 (kr)'l•, (5 .2) 

because in the expression f3 = (k · v ± w )/0 the 

It should be remarked that "Fermi-liquid" 
effects are only important when w » v in the 
A.C.R. region (when w « v they play no part). 
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The "Fermi-liquid" properties of the electrons 
cause an additional broadening of the resonance 
only in the very high frequency region, when wt0 

~ (kr )2 (for non-quadratic dispersion) and wt0 

~ kr (for quadratic dispersion); this is in com­
plete analogy with the case of electromagnetic 
C.R.[17] 

Comparison of the theory developed above with 
Roberts' experiments [ 7] shows that there is good 
agreement. Even at a comparatively low frequency 
( w/21!" = 115 Me) the cyclotron maxima are clear­
ly resolved and the modulation of the C.R. by oscil­
lations of the Pippard type is clearly displayed. 

Undoubtedly, further experimental observation 
and study of A.C.R. will allow a number of impor­
tant properties of the dispersion law of electrons 
in a metal to be determined. With the aid of A.C.R. 
it is possible to determine simultaneously in the 
same experiments the extremal diameters, the 
effective masses, and the mean velocities of the 
electrons. These data are by themselves adequate 
to determine completely the Fermi surface and 
the electron velocities on it. However, in addition, 
the study of resonance when k and H are not per­
pendicular to one another makes it possible to find 
not only the extremal effective masses and mean 
velocities, but also their values at any section of 
the Fermi surface. A.C.R. can be used to discover 
and determine the characteristics of open periodic 
trajectories. 

In conclusion I take the opportunity to express 
my sincere gratitude to I. M. Lifshitz and V. N. 
Kontorovich for valuable consultation and discus­
sion of the results of this work. 
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