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A quantum-mechanical method of deriving an equation of state of iron is developed. The en­
ergy bands in iron at T = 0 are first considered. A detailed analysis is made of the change 
in the nature of the dependence of energy on quasi-momentum, and of the spacing of the bands, 
at various degrees of compression. A direct formula for the pressure in solid bodies is de­
rived by use of the quantum-mechanical stress tensor and of the exchange-correlation forces 
that act between different cells of the crystal. Computed values of pressure for various de­
grees of compression 6, and a comparison with experiment, are presented. In the final sec­
tion, formulas are derived for the thermal pressure and thermal energy of the electrons; the 
methods of quantum field theory are used. The calculated values of the electronic specific 
heat agree with the anomalously large experimental value observed in iron. 

1. INTRODUCTION 

FoR calculation of the dependence of pressure on 
density in solids at high pressures, the statistical 
theory of Thomas and Fermi [1•2] and of Thomas, 
Fermi, and Dirac [1, 3] is usually used; this is a 
quasi-classical approximation to the method of the 
self-consistent field. Kirzhnits [4• 5] treated a 
Thomas-Fermi model with quantum and exchange 
corrections (the TFC model). Kalitkin [S] did 
similar calculations, based on the method of 
Kirzhnits, for a compressed material at temper­
ature T = 0. His calculation of quantum correc­
tions improved the agreement of the calculated 
values with experimental data of Al'tshuler et al. [7] 

At normal densities, and also at low compressions, 
the TFC model becomes in general inapplicable, 
because in this range it is not permissible to neg­
lect the shell structure of the atom. Furthermore, 
in the derivation of the equations for the quantum 
corrections in the TFC model, it was assumed 
that the corrections were small; but the calculation 
gave a large value for the correction terms. 

All of this indicates that it is important to re­
move the basic inaccuracy of the statistical meth­
ods, which consists in the fact that in them no ac­
count is taken of the separated bands in metals. 
In consequence, the statistical methods are unable 
to explain possible irregularities of the p( p) 
curve, phase transitions of electronic type1), the 

!)The idea of the possibility of phase transitions depend­
ent on a redistribution of electrons among shells was proposed 
by Fermi and developed quantitatively by Sternheimer[• 1 for 
cesium. The occurrence of irregularities on the p(p) curve, 
was first noted by I. Lifshitz.[• l 

anomalously large value of the electronic specific 
heat of transition metals, etc. A more accurate 
calculation of the p( p) curve, with attention to 
the individual filling up of the different bands, be­
comes indispensable. 

In the present work, a band theory is used; it 
assumes that each electron may be considered as 
moving independently in a periodic potential field, 
which takes account, on the average, of the inter­
action of an electron with the rest of the crystaL 
The wave function of the system of electrons is 
expressed in terms of one-electron wave functions, 
for which the wave equations in the self-consistent 
periodic field are written in the form 

- ,f-- 1'1 -;-- V (k, r) 'Vn (k, r) =En (k) 'Pn (k, r). { ,,., } 
_m 

(1) 

Here V( k, r) is the potential acting on the electron; 
En ( k) is the energy level of state n, k; the index n 
denotes the set of quantum numbers of the level to 
which the band goes over for relative density 6 -0, 
when we have to do in effect with a level of an iso­
lated atom; k is the quasi-momentum. The solu­
tions of Eq. (1) must satisfy Bloch's periodicity 
condition 

'\jJn (k, r + R) = e!kR1jJn (k, r), (2) 

where R is an arbitrary lattice vector. Because of 
the translational symmetry of the crystal, it is pos­
sible to limit oneself to the first Brillouin zone in 
k-space. After the function En(k), which deter­
mines the energy-band structure of the crystal, has 
been found, a filling up in energy space is carried 
out in accordance with the number of electrons in 
the crystal, and the Fermi energy EF is found. 
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It must be recognized that the solution of (1) for 
various crystal structures presents a very difficult 
problem. There are many approximate methods 
that have been developed for this purpose (see, 
for example, the review by GermanC10J). These 
complicated methods of calculation, which require 
the expenditure of enormous computational labor, 
are justified for normal densities of metals by the 
facts that, first, in this case use is made of a quite 
reasonable potential, taken from the Hartree and 
Hartree-Fock calculations for isolated atoms; and, 
second, what is being investigated is the structure 
of the Fermi surface of metals and semiconductors 
for various directions of the quasi-momentum, as 
it depends on the specific form of the Brillouin 
zone for various types of crystal lattice. All this 
is necessary for the solution of detailed problems 
connected with the electrical properties of semi­
conductors and metals. 

For highly compressed metals, the Hartree 
potentials of separated atoms cannot be used, be­
cause they are very different from the actual po­
tential that acts on an electron in the compressed 
crystal. Furthermore, the pressure is a quantity 

that obviously depends little on the precise form 
of the cell in k-space for crystals with a high de­
gree of symmetry. Therefore it seemed to us to 
be expedient to use the method of spherical cells 
in the calculation of the pressure in a compressed 
crystal. It is expedient to use as the potential act­
ing on an electron the Thomas-Fermi potential of 
compressed atoms. 

2. ENERGY BANDS IN IRON 

In the spherical-cell method of Wigner and 
Seitz [H], each elementary polyhedron is replaced 
by a sphere of equal volume. We seek a solution 
of Eq. (1) in the form of a series in spherical har­
monics (eight harmonics are used): 

I 

'\jl= ~ ~ Arm (k) ft (E, r) Yrm ('fr, cp). (3) 
l=Om=-l 

The Schrodinger equation (1) for the case of a 
Thomas-Fermi potential has the form 

L'l'ljl + [ 2a2Z='1' En (k) + 2az'!, CD ;x) J'ljl = 0, 

0 <X <xu. (4) 

Here a = 1,12 ( 371/4 )213, x0 is the dimensionless ra­
dius of the cell, r = az-113 aoX, a 0 is the Bohr ra­
dius, and <I>(x) satisfies the Thomas-Fermi equa-

The series (4) satisfies Eq. (5) if fz( x) satisfies 
the equation 

d~: (xf) + [ 2rL2Z-'f, En(k)+ 2cr~'/, <I> (x)- 1 (l t 1) J xf1 (x) = 0. 

(5) 

In the case being considered, the direction of 
the quasi-momentum k is distinct; therefore the 
projection M of the moment is a conserved quan­
tity. The whole moment is not conserved; there­
fore the solution of (4) is a sum (3) in which func­
tions of different l are mixed. Nevertheless it 
is reasonable to assign to each definite band an 
index Z, if we understand by this the value of l 
for the level to which the band goes over when o 
approaches zero (hereafter we use the band des­
ignations 4s, 3d, 3p, 3s, etc.). The boundary con­
ditions (2), for our case of spherical cells, take 
the form 

'ljJ (x0, {}, cp) e-ikcosf> = 'ljJ (Xo, :n: _ {}, cp + :n:) eikcosf>, 

'ljl~(Xo, {}, cp) e-ikcosf> = -'ljl~ (Xo, :r _ {}, cp + :n:) eikcosf>. (6) 

We multiply (6) by YLM( J., cp) and integrate 
over the angular variables. We get 

~Arm t; (x0) arLM (k) = 0 for even L, 
l,m 

~Arm fr (x0) GtLM (k) = 0 for odd L, (7) 
I, m 

where 

~ Y~M ('fr, cp) YrM ('fr, cp) e-ikcosf> dQ = GtLM (k). 

Since the integrals differ from zero only for M 
= m, the sum over m in the system (7) disappears, 
and for each value of M we get a separate system. 
An eigenvalue En ( k) is found from the condition 
that the determinant of the system (7) must van­
ish, by numerical calculation on an electronic 
computer. 

Equation (5) was also solved numerically, and 
·· the values of fz( E, x0 ) and f[( E, x0 ) were obtained 

in the form of a table with E as parameter. After 
the branches En ( k) have been found, the filling 
of the bands is carried out up to the Fermi energy 
EF, on the basis of the normalization condition 

{ 1, if M=O 
Xn = 2, if M>O" 

(8) 

The Thomas-Fermi potential is different for every 
density of iron; the energy levels En ( k) are also 
different. In the next section it will be shown that 

tion: 

x'/, <I>" (x) = <1>'1• ( x); <I> (0) = 1, 
in the calculation of pressure, only the top bands 

Xo<l>' (x0) =<I> (x0). 4s, 3d, 3s, and 3p play a role. Because of the M-
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splitting, the 3d band breaks up into three 3d sub­
bands M = 0, M = 1, and M = 2, and the 3p band 
into two 3p subbands M = 0 and M = 1. 

Figure 1 shows the E ( k) curves up to a maxi­
mum k0 = 27r(% 1r ) 213 = 2.418 for relative compres­
sions 1.07, 3.03, 4.3, and 8.57. Also shown is the 
Fermi energy E F (each energy is expressed in 
atomic units e 2/a0 = 27.23 eV). 

There is a significant change in the character 
of the filling up of bands with change of the degree 
of compression 6. In the case of almost normal 
density ( 6 = 1.073, Fig. 1 ), the 4s band is com­
pletely filled; the 3d subband M = 0 is filled com­
pletely; but the 3d subbands M = 1 and M = 2 are 
filled only partly. At threefold compression, the 
4s band as well as the 3d is only partly filled 
(cf. Fig. 1). The same is true at 6 = 4.3, though 

in this case the 4s band is almost unoccupied. On 
further increase of density the 3d band is lowered 
and becomes filled, the 4s band is completely 
empty, and the 3p band is partly filled and con­
tains four electrons instead of six. The fact that 
at large 6 the 3p band is not full in iron is very 
interesting in this connection: that in nickel, which 
has two electrons more, complete filling of the 3p 
band is to be expected. This means that nickel 
may lose its metallic properties under high com­
pression. At present the corresponding calculation 
for nickel is being carried out in order to find the 
value of 6 at which this peculiar phenomenon can 
first occur. 

Figure 2 shows, for iron, the variation of the 
minimum and maximum energies of the various 
bands with degree of compression 6. The Fermi 
energy is plotted as a heavy line. At the points of 
intersection of the line EF( 6) with the band limits, 
various anomalies are possible; we will speak of 
these in the next section. 

8 9 /0 II IZ!i 

FIG. 2 

3. DEPENDENCE OF PRESSURE ON DENSITY 
FOR IRON AT T = 0 

To find the dependence of pressure on density 
in solid bodies, it is usual first to calculate the 
energy of the body, and then to find its change with 
a change of configuration of the body (for example, 
a change of the distance between the nuclei). Such 
a method requires knowledge of the energy of the 
body for two neighboring configurations. Since the 
change of energy, even at high compression, is in­
significant in comparison with its absolute value, 
such a method of calculating the pressure requires 
a very high accuracy in the energy calculation. 
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Our aim is therefore to obtain a direct formula 
for the pressure in a solid body. 

An expression for the force acting on a nucleus, 
in the form of an exchange integral in the wave 
functions of the configuration being considered, 
was obtained by Feynman [12] for the case of 
molecules. It turns out that for solids it is also 
possible to obtain an expression for the pressure 
in terms of wave functions of the system in the 
state being considered. Here one obtains a more 
complicated expression, containing an integral 
over the surface of an elementary cell of the 
crystal and the Coulomb (basically the exchange­
correlation) interaction between electrons located 
in different cells; on the other hand, Coulomb in­
teraction within a single cell is eliminated. 

We use the general quantum-mechanical for­
mula for the derivative of a current with respect 
to time [13], 

iF aT fap. - ~ ap., ),•J Hf* Hf au 
nz~ -- - - LJ - r r -- , at ),, v aq,,., aqap. 

(9) 

Here qall means the J-L-th coordinate of an arbi­
trary particle a. We integrate Eq. (9), written 
for the J-L-th coordinate of the n-th particle, over 
the configuration space of all the other particles, 
dTn: 

The first integral on the right side is equal to 
zero if the index does not refer to the n-th par­
ticle; the expression on the left is the J-L-projection 
of the force density fn, acting on the n-th particle; 

We introduce the notation 

\ 11f 12 d'tnm = fn, m (q, q'), 

where dTnm is the configuration space without the 
coordinates q = qn and q' = qm of two particles. 
We have for the complete force density fll( q) 

f ( ) =-"" aTiJ.v (g) 
1'- q L; aq,, 

v 

- LJ e 2ZnZi ~ fnj{q, q') a~ -
1 
q ~ q'/ dq', 

n, j Q P· ' 

Tp.v (q) = LJ [~ Tnl', nvdtn] _, 
n qn-q 

where Q is the volume of the whole crystal. The 
whole force acting on any distinct volume w, for 
example on an elementary cell of the crystal, is 

F~'- =~f~'- (q) dq =- ~LJfr-v(q)nvdS 
w w v 

- LJe2 ZnZJ ~ dq \dq' rn1 (q, q') _a _ __ 1_, dq. (10) 
n,i ~ n aq~'- lq-q I 

r nj ( q, q' ) is the probability that the n-th par­
ticle is at the point q and the j -th at the point q'; 
Yn(q) =]I>¥ 12 dTn is the probability that the n-th 
particle is at the point q. The difference 
rnj(q,q')- Yn(q)yj(q') = -rfij(q,q') charac­
terizes the phenomenon of exchange. The charge 
density is p(q) = l':neZnYn(q). 

The whole force F Jl = 0. But it is possible to 
separate from (10) the force F~gh) that is exerted 
on the given cell g by an arbitrary other cell h, 
and also the surface forces. For this purpose it 
is useful to separate the electrostatic interaction 
into two parts-classical and exchange. Further­
more, we separate the integral over Q in (10) 
into two parts: 

~ dq' = ~ dq' + ~ dq'. 
Q fl-w 

The first gives zero, since on interchange of the 
designations of the variables q and q' the inte­
gral changes sign. We have 

LJ e2 ZnZ1 ~ dq ~ dqT nf (q, q') a:p. I q ~ q' I 
n, j (I) n-w 

= ~ P (q) dq ~ P (q') a: I q--=- q' I dq' 
(I) n-w 1-L 

+ Yn(q) Yi(q')}. (11) 

We now go over to the approximation of immov­
able nuclei, attached to definite sites. Then the 
components of the tensor Tllv(q) that are due to 
nuclei may be neglected. The first, classical 
electrostatic term in (11), for neutral nuclei with 
sufficiently high symmetry, may also be neglected. 
Seitz [tt] made an estimate of the contribution of 
the deviation from spherical symmetry in a charge 
distribution for a body-centered lattice of ions with 
a smoothed uniform distribution of negative charges·; 
he obtained a very small correction to the energy. 

Finally we obtain an expression for the force 
acting on the g-th nucleus: 
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F~) = T 2J T,,., (q) nv dS + ~' F~gh), 
{J)g v h 

F~gh) = e2 \ dq ~. dq' {f (q, q') - r (q) r (q')} a~". 1 q _ q'! 

(12) 

Here 

r (q) = 2J ~~ (q) = N ~I'¥ (q, q2, ... 'qN) [2 d-rv 
n • 

where N is the total number of electrons; 

r (q, q') = 2J r~i (q, q') 
n, i 

N (N -1) r 
1 
n.· ( , ) '2 d . = 2 J I q, q ' q3 . .. qN I -rl,2, (13) 

+ iJ2r (q' I ~) J , 
i)qp. iJq,, q'= ~ 

r (q' 1 q) = N ~ w· (q', q2, ... , qN) w (q, q2, ... , qN) d-rl. 

(14) 

To calculate the pressure, it is necessary to 
find the work by the forces between nuclei in a 
uniform dilatation of the body in all directions in 
the ratio ( 1 + E ) . The change ~E of the energy 
of the system, found in this way, must be divided 
by the change of volume ~V = 3Ew. 

The work by the Coulomb forces F<gh) is ex­
pressible in the form EF<gh)Rgh• where Rgh is 
the distance between centers of neighboring nuclei 
and may be different in different directions. The 
work by surface forces is equal simply to the 
mean of T J..tY over the cell surface, multiplied by 
the change of volume. We get as the final formula 
for the pressure 

P = Pkin + Pcou!; (15) 
(' dQ 

Pkin = .\ Pkin (q) 4n , 

- iJ2y (q' I q) 2 iJ2y (q' I q) J . 
iJn'2 + iJn'iJn q'=q' 

(15a) 

(15b) 

The index zero designates the cell being consid­
ered; n is the direction of the normal to the cell 
surface. 

A paper by Dmitriev [t4J contains a detailed 
derivation of the work by the forces between nu­
clei in uniform dilatation of the body. The results 
obtained are derived by another method, without 
use of the concept of the momentum of the system 
of particles, by calculating directly by perturba-

tion theory the infinitesimal change of energy in 
an infinitesimal dilatation. 

All the calculations of the preceding section 
were carried out in the one-electron approxima­
tion, in which the wave function of the system is 
exhibited in the form of a determinant of one­
electron functions 1/Jj ( q). In this case 

N N 

r (q' I q) = 2J '!J; (q') ~·, (q), r (q) = L ['!J; (q) 12, 
i=l i=l 

r (q, q')- r (q) r (q') = - I r+ (q' I q) \2 - I~- (q' I q) 12 , 

(16) 

where y+ ( q'l q) is the part of the density matrix 
corresponding to electrons with one spin direction 
and where y- ( q'l q) is the part corresponding to 
electrons with the opposite spin direction. Then 
Pkin ( q) takes the form 

li} N [ • i)2t~J. (q) 
Pkin = 4m 2J -'!J;(q) ~ 

i=l 

-.h. ( ) iJ2t!J; (q) ' 21 iJt!J; (q) \2] 
'~'' q iJn2 I iJn2 • (17) 

In the spherical-shell method that we have used, 
we get, after substitution of (3) in (17), the follow­
ing formula for the kinetic pressure in atomic 
units (e 2/a~ = 293 x 106 atm): 

f7km= 6~. (C(z~'')5 2Jxn \ k2dk(±IA~\I(k)/2 
n En(k)~EF l=M 

7 -1 

X wt (k, Xo)l 2 - t? (k, Xo) tt' (k, Xo)} )[ 2J I AIM (k) 12] • 

l=M 

(18) 

Here n is the number of the band. For each band, 
M is given. It is evident from (18) that the contri­
bution of the inner electrons to the pressure is in­
significant, since the wave functions of these elec­
trons on the cell surface are very small. 

Calculation of the exchange pressure by for­
mulas (15b), (12), and (16) is very complicated, 
because it requires a sixfold integration over two 
neighboring cells and also a further twofold inte­
gration over the quasimomentum. At present a 
procedure for such a calculation is being devel­
oped, but it is not yet complete. For the case of 
a free-electron gas, formula (15b) should lead to 
the known expression for the exchange pressure, 

(19) 

Actually, (15b) and (12) lead to this result if the 
radius of the spherical shell shrinks to zero. 
Therefore as a first approximation for the ex­
change pressure it is expedient, especially at 
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large compression o, to use formula (19), sub­
stituting in it the calculated value of the electron 
density Pe on the cell boundary (in (19) the quan­
tity Pe is dimensionless; to obtain the electron 
density in em - 3 it is necessary to divide Pe by 
[ az-t/3aol3). 

A correlation correction to the pressure was 
also made by Wigner's formula, 

_ c~ 0.288 _ 6.72 6 
Pcorr - - 4 o - - , _ [10 atm], 

a0 4nx; (x5 +5.1)2 x;(x5 +o.1)2 

(20) 

Table I shows the results of the calculation of 
pressure in iron at various o's (in 106 atm ). For 
o > 2 the correlation correction may be disre­
garded. 

In Fig. 3 the calculated function p( o) is com­
pared with the experimental curve of Al'tshuler 
et al [7] and also with Kalitkin's [6] curve (the 
TFC model). The results obtained are closer to 
the experimental data than is the TFC curve. 
Although the T FC method is strictly inapplicable at 
small o, Kalitkin made an estimate of the density 
of uncompressed iron and obtained Po= 5.15. The 
quantum-mechanical method described gave Po 
= 6.44, which is appreciably closer to the normal 
density of iron, 7. 8. 

The method described in principle gives a re­
gion of negative pressure. However, in this range 
the role of the exchange and correlation effects is 
important, and a higher accuracy of calculation is 
required than is required for a compressed ma­
terial. 

For o ::::: 2 the contributions of the 4s and 3d 
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FIG. 3. The function p(O) 
according to data of various 
authors: curve 1, calculation 
of Kalitkin[•] by the TFC 
model; curve 2, present work; 
curve 3, experimental dataJ'] 

bands to the pressure are approximately equal, 
and therefore the contribution of the 3d band plays 
an important role. For o 2:: 6 the contribution of 
the 3p band is appreciable. The 3s band makes 
an insignificant negative contribution to the pres­
sure. 

In the previous section it was noted that at 
points of intersection of the EF( o) line with band 
edges, anomalous properties are possible. One of 
these points is 60 = 4.4, where an edge of the 4s 
band finally breaks away from the Fermi surface. 
I. Lifshitz [9] first called attention to the possibil­
ity of such anomalies. Formula (18) can be written 
in the form 

Pkin = 33.6 ~ Xn 
\ 3k2dk \ f n (k) --3 - atomic units, 
• k n En(k)<EF 0 

The value of fn ( k) is different for the 4s and for 
the 3d bands. According to calculation in the 
neighborhood of o0 = 4.4, the value of f( k) is 
0.00920 for the 4s band near k = 0, and 0.00305 
for the 3d band. When some of the electrons from 
the 3d band go over to the 4s band (upon decrease 
of the density from o0 = 4.4 ), the pressure changes 
by an amount .6.p ~ k3• But .6.E ~ ( 60 - o) ~ k2, so 
that .6.p ~ ( 60 - o ) 3/2. Calculation gave the result 
that near o0 = 4.4, the pressure changes accord­
ing to the law 

p = 1.2762 ' 70 + 0.27 [(4.4 - 6)/0, 1]'1' for 6 < 4.4, 

p = 1.2762.70 for 6 > 4.4. (21) 

The curve of the speed of sound, c 2 ~ dp/do, 
has a vertical tangent at 60 = 4.4. Figure 4 gives 
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Table I 

Pkin I Pexch I Pcorr I P o I Pkin I Pexch I Pcorr I p 

0,7465 1.040 -1.147 -0.064 -0.171 4.301 86.70 -22 - 64.7 
1.073 2.96 -2.15 -0.10 0.71 6.051 201.5 -40,15 - 161.3 
2.072 16.28 -7.54 - 8. 74 8,570 463 -73.9 - 389 
3,033 39.10 -12.1 - 27 11.840 968 -130 - 838 
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the calculated curve p ( o ) in the range 3 < o < 5; 
it has a characteristic kink, described by (21). 

It must be mentioned that the sufficiency of 
eight spherical harmonics has been verified in 
the case of absence of a potential; then the de­
pendence of pressure on density has the form 
p = Ap513, where A is the well known constant of 
a free Fermi gas. Pavlovski1 and Tarasov (pri­
vate communication) have shown that upon use of 
the method of spherical cells with eight harmon­
ics, the calculated coefficient A agrees to within 
5% with the exact value for a free electron gas. 
This result provides additional confirmation of 
the reliability at large o of the method used here. 
The sufficiency of eight harmonics also follows 
from the fact that in our calculations the coeffi­
cients AzM ( k) are small for large l. 

We again emphasize that for accuracy of the 
pressure calculation, it is essential to be able 
to eliminate the Coulomb interaction within a cell 
and to reduce the exchange pressure to an inter­
action between neighboring cells (it is described 
at large o by the formula for a free electron gas). 

4. THERMAL ENERGY AND THERMAL PRES­
SURE OF ELECTRONS 

The rigorous treatment of a many-particle 
system at nonvanishing temperatures musl be 
carried out by the methods of quantum field theory, 
which were first developed in a form suitable for 
problems of statistics by Matsubara [sJ. Further 
generalization and development of Matsubara's 
method is contained in the papers of Abrikosov, 
Gor'kov, and Dzyaloshinskil [l6], Fradkin [t7], 

Luttinger [lB], and others. 
The thermodynamic potential Q of a system of 

electrons is expressed in the form 

(22) 

Here ( ) denotes a thermal statistical mean in the 

H = ~ ,~· (x) [ ;,: + U (x) J \j; (x) d3 x 

+ ~ ~ T [~'(y)~ (!f) J (y- z)~' (zH'(<I ]dydz 

1. c, 

- 2 J (0) ~ ~· (y) '); (y) dy, 

J (y - z) = v (y - z) o (y0 - 20), (25) 

where v(y- z) is the Coulomb interaction energy 
of two particles, and 1/J( x) is the field operator. 
The first term in (25) is naturally regarded as a 
free Hamiltonian and the last two as an interaction 
Hamiltonian. 

In the case of a free electron gas, when there 
is spatial homogeneity, one can successfully seek 
simplification through a calculation by perturba­
tion theory, with use of a diagram technique. In 
the case of a crystal, there is an essential inhomo­
geneity, connected with accumulation of electrons 
near ionic residues. The free Hamiltonian in (25), 
which describes the behavior of the electrons in 
the absence of interaction, is very far from the 
actual first approximation of "independent par­
ticles," moving in some self-consistent field of 
the nuclei and of all the electrons of the crystal. 
Therefore it is very important to introduce the 
self-consistent field, with a change in the concept 
of the free Hamiltonian H0• 

We write H0 in the form 

Ho= ~~· (y) [:in:+ U J ~ (y) dy + ~~· (y) <D (z, y) ~ (z) dydz. 

(26) 

Then 

H1 ={ ~ T [¢* (y) ~ (y) J (y- z) 1p" (z) ~ (z)l dydz 

-+J (0) \~· (y)~ (y) dy -~'111' (y) <D (z, y)~ (z) dydz. 
~ .I (27) 

The field operator 1/J(x) is represented in the form 

~· (x) =):a~ u~ (x) eEixo. (28) 
,;......}, l l 

sense of 

<S> = Sp {e-fl(H,-p.N) S}/Sp {e-fl(H,-p.N>}, 

{l 

In the second-quantization representation, the 
(23) free Hamiltonian H0 must have the usual form 

S = T ~ exp {- ~. H 1 d-r} = T ~ ~ (24) 
0 

( H0 is the free Hamiltonian, H1 is the interaction 
Hamiltonian, and T T denotes the time-ordering 
operator in imaginary time T [l6] ; (3 is the inverse 
temperature; r20 is the thermodynamic potential 
in the absence of interaction. 

The complete Hamiltonian for a system of elec­
trons for given potential U( x) of the nuclei is ex­
pressed in the form 

(29) 

It is not hard to see that to satisfy (29) the functions 
Ui(X) must be eigenfunctions and the Ei's eigen­
values of the equation2> 

[ ;: + U (x)J u, (x) + ~ <D (y, x) u, (x) dy = E, u, (x). (30) 

2 >Here Ui(x) = Ui(x) exp 1-EiXo l. Since even without homo­
geneity <ll(y, x) is a function of the time difference (x, - y0), 

Eq. (30) does not depend on the time x0 • 
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It is easy to find the free Green's function G0( x, x') 
= (T[I{!*(x) l{!(x' )] ) : 

G0 (x, x') = h u; (x) U; (x') exp {£1 (x0 - x~)} <a; a1) 

i 

= h f;u; (x) U; (x') exp { E; (x0 - x~)} for x0 > x~, 

G0 (x, x') = - h u1 (x) u; (x) exp {£; (x0 - x;,)} (a;a) 
i 

= h(f;- 1) u; (x) U; (x') exp {£1 (t0 - x;,)}, 

(31) 

The function <P ( z, y) has not yet been defined. 
It is natural to define it by the condition that the 
Green's function G( x, x') of an electron, with al­
lowance for the interaction H1, shall coincide with 
the free Green's function G0( x, x'). This condition 
G( x, x') = G0( x, x') can be satisfied to a definite 
order in the Coulomb interaction constant e 2, since 
for G( x, x') we can get only a power series in e 2• 

The equality G(x,x') = G0(x,x') can be trans­
formed on the basis of lemma (3.25) of Matsu­
bara's [15] paper, and also of the commutation re­
lation (5.5) of the same paper. Without presenting 
the calculations, we write the equation for the deter­
mination of <I> ( y, z): 

\ d J ( , _ ) (T {ljl (x') ljl* (x) ljl* (z) 1jl (z) 6) 
J Z X Z (S) 

+ ~ J (0) G0 (x, x') =- ~ dz<D (x, z) G0 (z, x'). (32) 

The first approximation to <P ( x, z ) in terms of 
e 2 is obtained by replacing 6 by unity in (32). 
After some calculations that make use of Wick's 
theorem and with the notation 

(1jl* (y) 1jJ (y)) = p (y) = L f; u; (y) u; (y), 

o (y, z) = ~ l; It~ (y) u;(z), 
' .1.- I 

(33) 

we get for the first approximation 

<I\ (x, z) = 6 (x - z) ~v (x - y) p (y) dy - J (x -z) p (x, z). 
. ~~ 

On substituting (34) in (30), we get an equation 
of Hartree-Fock type for the one-electron func­
tions ui ( x) at arbitrary temperature: 

[~;z + U (x)J U; (x) + ~ V (x- ~) p m d ~ U; (x) 

- ~ v (x- y) p (y, x) u; (y) d y = E1u; (x). (35) 

By solving Eq. (35) it is in principle possible 
to get complete information about the system of 
electrons at T "" 0, with allowance for exchange 

effects. In practice, however, the rigorous solution 
of Eq. (35) for a solid body is a task difficult to 
perform. It is desirable to restrict oneself to the 
simplest approximation. It seems most natural at 
the start to omit the exchange terms in (35) and to 
solve the resulting "hot" equation of Hartree type 
by a method of successive approximations, after 
taking as a first approximation the statistical po­
tential at T "" 0. With the aid of the wave func­
tions Ui ( x) and eigenvalues Ei thus found, one 
can then find the contribution of exchange terms 
to the thermal energy and thermal pressure of 
the electrons. The future carrying out of calcu­
lations of the equation of state of iron at T "" 0, 
on the basis outlined above, is under consideration. 

We pass on now to the derivation of a formula 
for the thermodynamic potential Q in the first ap­
proximation in A. = e 2• From (22) and (27) we get 
the exact equality 

,aQ (aS!a1-> 
·0 a"A =-----;;:~ 

1 \' . 1 
= 2I <) dydzT {t!J*(y) 1p (y) J (y- 2)1)/ (z) \)' (z) 6) <S> 

t r 1 ·· 
- 21. J (0) ~ p (y) dy ----;: ~ <!> (z, y) G0 (y, z) dy dz. (36) 

We get the first approximation rz1 by replacing 
6 by unity and <P by <P 1 and using Wick's theorem. 
After slight transformations we get 

i)Q 1 (' 
'A-~= -c- \ p (y) v (y- z) p (z) d3yd3 z ot. 2 • 

Since the Coulomb function v - A., we finally 
get Q in first approximation: 

Ql = Q1o - ~ ~ p(y) p (z) v (y - z) d3yd3z 

1 \' -i- --;;- \ p (y, z) p (z, y) v (y - z) d3yd 3z. 
~ .. (37) 

Here rl10 = - {3-1 ~i ln [ 1 + exp { ( JJ. - Ei) {3} l is the 
thermodynamic potential in the absence of interac­
tion. (It must be recalled that Ei is an eigenvalue 
of the energy of an electron in a self-consistent 
field that contains within itself a part of the Cou­
lomb interaction. ) The chemical potential JJ. is 
found from the condition 

N = (oWcJftlr. v­

on differentiating (37), we get 

N = L f1 ( 1- a:;) + \ ar~ (y) p (z) v (y- z) 1PycPz 
i ft • ft 

- f ~ ~fl_ ~~~ y) p (y, z) v (y- z) d 3yd'3z. (38) 
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If we differentiate Eq. (30) with respect to JJ., 
we get after simple transformations the important 
equality 

"'· fi ~~i = ~ a~~) p (z) v (y- z) d"yd3z 
l 

(39) 

Similarly, by differentiating with respect to (3 we 
have 

i)£. (' i)p (y) 
'Y fi a~' = ~ ~ p (z) v (y- z) d3yd3z 

(40) 

On substituting (39) in (38), we get an obvious 
equation, which serves to determine the chemical 
potential J.J.: 

(41) 

The sum in (41) reduces to an integral over the 
quasimomentum within a band and a sum over all 
bands, if the eigenvalues Ei ( k) are known. 

The entropy s = - ( 8Q/8T )J.J., v = (3 2( BQ/8(3) J.J., V· 
On differentiating with respect to (3 and using (40), 
we find 

The heat capacity at constant volume, Cy, is 

C - T (~) - ""'E· (~) (43) v- i:IT N.V-...:::.,; ' i:IT N,V· 

Formula (43) permits calculation of the electronic 
heat capacity if the eigenvalues Ei and their vari­

. ation with temperature are known. In addition it 
is necessary to find J.1. and dJ.J./dT. 

A very important fact is that the eigenvalues 
and the value of the chemical potential J.1. as func­
tions of temperature are sufficient for finding the 
electronic thermal terms in the equation of state. 

The thermal energy ET and the thermal pres­
sure PT are found by the usual thermodynamic 
formulas 

T 

Er = ~CvdT, 
0 

T 

- I_!_ (i:IET) 
Pr - T ~ P 1 av r dT. (44) 

At low temperatures, T < 10000° ("" 0.03 atomic 
units ) , the dependence of Ei on temperature may 
be neglected. In this case it follows from (43) that 
ET = ~fiEi li- The calculation of the heat capacity 
is of the same nature as for a free electron gas, 
but with one important difference. For densities 
close to the normal density, the top edge of the 3d, 

m = 2 band is very close to the Fermi energy J.J.o· 
In connection with this, one needs an accurate car­
rying out of the Sommerfeld expansion at low tem­
peratures, and in some cases simply an accurate 
numerical integration. 

We give without derivation the formula for cal­
culation of the thermal energy, 

u. 

Er = )~ Xm {~gm (e) (e- [!)de 
Ill V-u 

~ g (Lt -'- Tx) + g ("·- Tx) 1 
-'- T2 \ "' , , m r xdxf' 

I ,., t +ex 
u 

co 

. y·' ·\· (x + l1 + llf.t/T) g. (E,- Tx) d 
-.L. X - . . X. 
' • 1 + e-"+-"t' r e" 

I) 

(45) 

The chemical potential J.1. is found from the condi­
tion 

00 

=XT~ 
0 

g(£2 -Tx) d 
1 + eC.+C.fLfT ex X. 

(46) 

Here m is the index of the normal band; gm (E) 
= ( 6k2 /kg) ( dk/ dE )m is the density of levels in 
band m; E2 is the top edge of the anomalous 3d, 
m = 2 band; K = 2 for bands 3d, m = 2 and 3d, 
m = 1; Km = 1 for band 3d, m = 0; f::>.JJ. = J.1.- J.J.o 
=aT; f::>. = (J.J.-E2 )/T. 

At low temperatures, an expansion of the func­
tion g( E) as a series can be made in formulas 
(45) and (46). We get 

m 
00 

+ :2 xg (£2) [~ XmgmUto) rl ~ 1 ~~y J, (47) 
m C.+a 

IX~Xmgm(!lo)=xg(E~) In [1 +e-<t..+a>]. (48) 
m 

We find that the thermal energy is proportional 
to the density of levels at the Fermi edge; the con­
tribution of the anomalous band is important. 

Table II gives the function cp for iron, at vari­
ous densities and temperatures, calculated both by 
the exact formula (45) and by the approximate (47). 
A very important fact is the following: the large 
absolute values of cp ( o, T) obtained at densities 
close to the normal are characteristic of the elec­
tronic heat capacity of the transition metals (to 
obtain cp/2 in erg/g deg2 it is necessary to mul­
tiply the table values by 4. 7 ) . 



DERIVATION OF AN EQUATION OF STATE OF IRON 

Table II 
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s ~ o.746G 1---~s-~_l_.o_n__ o ~ 2.022 
<e/2 I <e/2 ---l-~-~---'f>/_2 __ _ 

A~:t~xi-1 Exact I T I Ar:::::::exi-1 Exact T Ap:~~:i-1 Exact T 

0.001 I 
0.003 
0.009 
0.018 
0.030 
0.050 
0.090 

85.42 
82.08 
81.54 
81.31 
81.50 
81.50 
81.50 

85.46 
81.24 
90.66 
90.29 
69.08 
35.05 
20.95 

0.001 
0.003 
0.009 
0.018 
0.030 
0.060 
0.090 

It is impossible to obtain correct values of the 
electronic heat capacity of the transition metals by 
any statistical method, because the anomalously 
large value of the heat capacity is connected with 
the large density of levels in the d band. 

In closing, I express my sincere thanks to Ya. 
B. Zel'dovich and N. A. Dmitriev for interesting 
discussions and for their interest in the work, and 
also to V. A. Tarasov, who developed useful meth­
ods of calculation and who did much of the compu­
tational work. 
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