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The isovector electromagnetic form factors of the nucleon are evaluated in the two-meson 
approximation including the 11"11" interaction. Use is made of the amplitude of the process 
1r + 1r - N + N obtained earlier by Galanin and Grishov [8] and a new expression for the elec
tromagnetic form factor of the 1r meson which disagrees with the previously known expres
sionC1•4J for the case of the Breit-Wigner resonance of the 11"11" amplitude. It is shown that 
the case of the Breit-Wigner resonance does not lead to agreement of the nucleon form fac
tors with experiment and that results obtained earlier for this case [1•2] are in error. An 
agreement with experiment is, however, obtained for the case of a kinematical resonance 
in the amplitude around 750 MeV (the effect of the p meson). 

RECENTLY attempts have been made to evalu
ate with dispersion techniques the contributions 
due to the 71"11" resonances to the isovector nucleon 
form factor. [1•2] In contrast to similar attempts 
omitting the 71"11" interaction, [3•4] the obtained elec
tric and magnetic form factors Ff and F¥ agree 
with the experiment in the momentum transfer 
range of - 4mJ.L ~ t s 0 ( J.L and m are the mass 
of the 1r meson and nucleon). We believe, how
ever, that the expression for the electromagnetic 
form factor of the 1r meson* used in these calcu
lations, namely 

F,. (t) = qJ1 (t)/qJ1 (0), 

where the dependence on the P-phase of the 11"11" 

scattering, o1(t), is given by 
00 

[ t- to (' 1'>1 (t') dt' J 
rp 1 (t) = exp -:rt- J (t' _ t) (t' _to) , 

4p.2 

is in error, since it yields a non vanishing effect 

F" (f) = lrf(lr - f) 

(1) 

(2) 

(3) 

for the experimentally unobservable 71"71" interaction 
(infinitely sharp resonance), t where 61 ( t) is of 
the form 

(4) 

*In the following we consider the form factors without the 
factors e, e/2 and 1.85 e/2m, i.e., F7T(O) =F,v(O) =F;'(O)=l. 

tThe necessity that the effect vanish for the case ( 4) has 
been yointed out to the authors by Ya. B. Zel'dovich (see 
also L•]). 

A further drawback of the calculations in [1•2] 

is that the annihilation amplitude fi(t) was ob
tained there from the 1rN amplitude either by 
means of a numerical integration of divergent 
expressions or by using the following unproved 
approximation (see also [S, 7] ) 

f± (t) = F, (t) [f± (t)] 0 = F, (t)·cosnt, (5) 

which together with (1) gives the absorptive parts 
of the nucleon form factors 

Im Fv (t) = IF, (t) \2 [Im Fv (t)1 0 =I (j)1 (t) 12 ·canst. (6) 

Here [ fi ( t)] 0 and [ Im Fv ( t ) ] 0 are the correspond
ing quantities for the case where the 11"11" interaction 
is not taken into account. 

The method proposed by Galanin and Grashin [8] 

for the evaluation of the 11"11" interaction leads fo;r 
the Breit-Wigner model 

~1 (t) = arctg [<~xx J, X= 4~2 -I (7)* 

to the expression 

F, (t) = (Xr- x'+ r)l(xr- X+ r -v- x), (8) 

which differs from (2) by having as an additional 
factor a first order polynomial with a zero close 
to the resonance. In the limit (4) the position of 
this zero approaches the resonance point tr. As 
a result of this the effect of the 11"71" interaction 
then vanishes, i.e., F7r- 1 for y- 0. The same 
result follows from the general formulae of Gell-

*arctg = arctan 
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Mann and Zacharias en [9] which have been ob
tained on the basis of field theory considering an 
intermediate vector meson, the p meson, if one 
assumes that for the case (4), which is equivalent 
to the vanishing of the interaction of the p meson 
with all other particles, its mass renormalization 
mustvanish (om2 =m~ -m~- 0 for 'Y- 0). 
The particular case whi0ch they actually have in
vestigated, namely om~ = oo, leads to (3) and is 
incompatible with a narrow resonance 'Y and with 
a small p-meson interaction constant gp7r7r ~ h. 

The method which we are going to apply leads 
for the 1rN amplitude [8] to an analogous differ
ence from the approximation (5). In both cases 
the reason for the difference turns out to be the 
nonuniqueness of the solution of an integral equa
tion, obtained by inserting into the dispersion re
lations the unitarity condition in the two-meson 
approximation. In our method it is essential to 
retain only that particular solution of the inhomo
geneous equation, which is stable against pertur
bations at infinity and does not depend on the con
ditions at infinity at low energies. On the other 
hand, the expressions (1) and (5) are particular 
solutions of the corresponding homogeneous equa
tion and their existence is wholly due to the intro
duction of certain conditions at infinity.* We em
phasize that the criterion of the stability of the 
solutions is a necessary condition for the solu
tions of our problem (evaluation of the effects 
of the near singularities ) . Only in this case is 
it possible to obtain the amplitudes for small en
ergies without having to utilize the unknown be
havior of the amplitudes at high energies. 

The more general model of the 71"71" interaction 

[ VXQ (xl J rr (x-xkl 
~~ {t) = arctg X (x) ' ()lt (t) = X (x)k~t Q (x) V- x , 

(9) 

where X(x) and Q(x) are arbitrary polynomials 
and Xk ( k = 1, 2 .... n) are the roots of the equa
tion X(x) + Q(x)-r::x = 0, Re (-J -x)::::: 0, leads 
to the following expression for the absorptive 
parts of the nucleon form factors: 

Im F'{ (t) = _!._ e2g2 I (jl1 (f) 12 : VX7<f"=+- x) 
2 IT I X-- X k J2 

k=l 

X {X (x) - Ln (x)} {X (x) 1 ~ Zx- Ln+1 (x) } ; (10) 

*It is interesting that Federbush et at[•] based the choice 
of the solution (1) on its agreement with the iterative solution 
of the equation. However, the iterations give a vanishing ef
fect for the limiting case (4), which contradicts the result (3) 
and agrees with (8). It is clear that in the iterative solution 
for the resonance model one has to keep the exact expression 
sin8 exp(-18) in the kernel of the equation and one should not 
expand it in powers of the 7777 phase shift 8, 

v 1 eg2 J ( ) 12 x VX7(T+X) lm F2 (t) = 81.85 ()lt t rr jx- xk [2 
k=l 

x{X (x) -Ln (x)} {X(x) ::X- Mn+t (x)- Q {x) lnx}· 

(11) 

Here g2 = 14.5, e: = J-~lm = 0.15 and the polynomials 
of degree n, Ln (x ), and of degree n + 1, Ln+1 (x) 
and Mn + 1 ( x), are determined by the condition that 
they lead to the vanishing of the braces in (10) and 
(11) at the points x = -1 and Xk, and to the van
ishing at x = -1 of the first derivative of the ex
pressions which one obtains if one changes X(x) 
- -Q(x)-r::x in the second braces. 

The expressions (10) and (11) were obtained 
using the amplitudes 1r + 1r - N + N evaluated by 
Galanin and Grashin.C8J Corrections of the order 
~ e:( 1 + 2x) I 2 ..fX were dropped. We note that the 
evaluation in [8] was performed for the special 
case Q(x) = xl. However, the obtained formulae 
are valid if one replaces xZ by Q ( x). We also 
point out that the contribution due to virtual scat
tering of the 1r meson on the nucleon (the re
scattering corrections ) are contained in f!: and 
in Im F v only in the discarded corrections ~ e: ..fX . 

The expressions (10) and (11) are correct in 
the region e:x ~ 1; (t ~ 4mJ-!). We think, however, 
that the evaluation of the contributions in the re
gion t > 4mf.-! can be performed only if one takes 
into account in the unitarity conditions also heavier 
intermediate states (besides the considered two
meson states). This transcends the framework of 
the two-meson approximation.* Some restrictions 
exist also which limit the choice of the polynomials 
Q(x) and X(x) in the model (9), since it is nec
essary that the essential contribution to the inte
grals arising in the solution of the equation [which 
lead to (10) and (11)] be limited to the interval 
4J-!2 < teff ~ l6f.-!2. For this it is necessary that 

The factors (the first and second respectively) 
in the braces in (10) and (11) are responsible for 
the deviations of F 7r and fl from (1) and (5) which, 
as has been noted above, vanish in the vicinity of 
the resonance. This leads to a sharp decrease in 
the effect as compared to the earlier expressions. 

In Fig. 1 is shown the absorptive part of the 
electric form factor Im FY ( Im Fi has a similar 
appearance) for the model with scattering length 
Q(x)/X(x) = 0.2x and 0.5x (variants 1 and 2) 

*We emphasize that we consider the two-meson approxima
tion to be a consistent description only in the interval t $ 16ti 
(the closest sing~arities). This principle is, in particular, 
the basis of our criterion for the choice of the unique solution. 



THE 7T7T INTERACTION ON THE ELECTROMAGNETIC FORM FACTOR 975 

FIG. 1. Absorptive part of the electric form factor in the 
two-meson approximation for the following cases of the 1717 

interactions: 0- absence of 1717 interactions; 1 and 2- scat
tering length model with a = (0. 2)"'• and (0. 5) "'•; 3 and 4-
Breit-Wigner resonance at tr = 22.41L2 and with a width y=O.S 
and 0.1; 5- resonance at tr = 121L2 and with a width y = 0. 4. 

and for model (7) with the parameters tr = 22.4Jh 
y = 0.5 and 0.1 (variants 3 and 4) and tr = 12J,l2, 

y = 0.4 (variant 5 ). Variant 0 corresponds to ab
sence of 7T7T interactions and is obtained by putting 
X(x) = oo in (9), (10), and (11). Variant 3 corre
sponds to the 7T7T interaction discussed in [2] and 
variant 5 to the one discussed in [1, 7]. Besides, 
variants 1 and 3 agree with the experimental 7T7T 

cross section obtained by Anderson et al [10] by 
the extrapolation method. One sees that account 
of the 7T7T interaction practically does not change 
the contribution to the form factor for the case of 
a narrow Breit-Wigner line. Models with a nega
tive scattering length and effective interaction ra
dius also do not lead to a significant change from 
variant 0. Thue all these cases lead to small con
tributions to the form factors which do not agree 
with experiment. 

The above-considered models of the 1T7T inter
action have the common characteristic that the 
phase o ( t) < 1T for small energies. The case of 
the kinematical resonance (Fig. 2) leads to a com
pletely different result. There the phase exceeds 
the resonance value o(t0 ) = 1T (the p-meson ef
fect). The simplest model of such a type is ob
tained by putting in (9), (10), and (11) 

Q(x)=x0 -x, X(x) = (Xr-X) (x0 + x)ja, (12) 

where x0 is the position of the zero of the scatter
ing amplitude and y = a(x0 - xr )/ ( x0 + xr) is the 
analog of the width in the model (7). 

For the model (12) the absorptive parts (10) 
and (11) have a 6-function like form and independ
ently of the position of the resonance 

O'rz 

FIG. 2 

Im Fi (tr) ~ I .4 Im F~ Ur). 

This leads to a definite ratio of the two-meson 
contributions to the electric and magnetic form 
factors and in fact leads to the ratio of the mean 
square radii (r~)v/(r~)v = 1.4. We remark that 
in the earlier phenomenological analysis of the 
experimental data (see, e.g., [12]) 6-function like 
absorptive parts have been used with 

Im F'{ (tr) = Im F~ (tr), 

but the latest data [11 ] give a different curvature 
for the electric and the magnetic form factors, 
which can be obtained only in the case 

Im F'{ Ur) ~ 1,5 Im F~ (tr). 

For tr =28M2 (mass of the p meson m 0 = ,ft; 
= 750 MeV) and for various full widths r ~ 100 
MeV, model (12) leads to the form factors 

Fv (t) - 1 + t f31.21 
1.2 - 0(1.2 tr-1 + 4fl" ' 

a1 = 1,8, a2 = 1.28 

~1 = -0.025, 
(a1/a2 = 1 ,4), 

~2 = 0,003, (13) 

which virtually coincide with the experimental 
curves of Hofstadter et al [11 ] in the interval - 40J.l 
::s: t ::s: 0. It turns out that the parameter a and the 
distance D. = x0 - Xr between the zero of the scat
tering amplitude and the resonance point are func
tions of the width r as shown in Fig. 3. The ex
pression (13) has been obtained by integrating the 
absorptive parts with two subtractions. However, 
the additional contribution from the more distant 
singularities ( {31, 2 ) to the first derivative at t = 0 
is ~ 10% of the two-meson contribution. We note 
that model (12), like model (7) for the case of an 
infinitely sharp resonance, goes over into the lim
iting form (4) for which the effect of the 7T7T inter
action must vanish. For this to be true we must 
have a/ D.- 0 if r- 0, while in order to main-

FIG. 3. Parameters 
of the model of a kine
matical resonance at 
750 MeV which a_gree 
with experiment L11] as 
a function of the total 
width r of the p meson. 
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tain the needed effect it is necessary that a/~ 
- 0.2 (see Fig. 3). However, in contrast to the 
Breit-Wigner model, there exists here a suffi
ciently wide region of finite widths in which one 
can obtain agreement with experiment. 

The results obtained in the present paper allow 
us to draw the following conclusions. 

1) The isovector electromagnetic form factors 
of the nucleon evaluated in the two-meson approx
imation with account of the 1r1r interaction do not 
agree with experiment for a Breit-Wigner (dy
namic) resonance. Furthermore, here the effect 
of the 1r1r interaction practically does not change 
the results as compared to the case of absence of 
this interaction. Analogous results are obtained 
with other models of the 7r7r interaction for which 
the 1r1r phase for small energies is 6 ( t) < 1r. 

2) One can obtain agreement with experiment [11] 

in the case of a kinematical resonance at the en
ergy -it;= 750 MeV (p-meson effect) for an ar
bitrary width r ~ 100 MeV. The considered posi
tion of the resonance is, however, already on the 
boundary of the applicability of the two-meson ap
proximation. Therefore the results obtained for 
this case have mainly a qualitative character. 

3) In the papers [1•2•4] an incorrect method was 
used to evaluate the contributions due to the 7r7r 

interaction to_ the amplitudes of the processes 
1r + 1r- N + N and 1r + 1r- y. This is equivalent 
to a wrong choice of a solution of the previously 
discussed integral equations. The question of a 
correct formulation of the problem which will 
lead to ~ unique solution will be discussed in more 
detail separately. 

The authors are grateful to A. D. Galanin, Ya. 
B. Zel'dovich, Yu. P. Nikitin, I. Ya. Pomeranchuk, 
and D. V. Shirkov for discussions and useful re
marks. 
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