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The kinetics of ordering during second-order phase transitions is investigated. It is found 
that reorganization of the lattice does not occur via uniform relaxation or by a nucleation 
mechanism, but as a result of a peculiar process of formation of web-like ordered regions 
and their subsequent swelling. The intermediate stages of this process are investigated 
and its speed is determined as a function of time and of the characteristic parameters of 
the problem. 

1. GENERAL CONSIDERATIONS 

IT is well known that in a first-order phase tran­
sition the system reorganization proceeds via 
fluctuating production and subsequent growth of 
the nuclei of the new phase. In second-order 
phase transformations the resultant equilibrium 
state can be attained, generally speaking, by suc­
cessive transitions through a continuous series of 
intermediate states, each of which is thermody­
namically more favored than the preceding one. 
This indicates that there is no need for the nuclea­
tion mechanism and that there should exist another 
mechanism for the kinetics of the system reorgan­
ization. 

On the other hand, the very nature of the order­
ing process excludes the possibility of spatially 
homogeneous relaxation, which always takes place 
when the initial and final states are not separated 
by singular lines on the phase diagram. This 
fact in itself hardly calls for special argumenta­
tion, but in order to make the considerations that 
follow clearer we shall discuss this question in 
somewhat greater detail, choosing, to be specific, 
the ordering of an alloy (AB) with two equivalent 
sublattices. 

It should be recalled that the energy and proba­
bility of each microstate depend only on the short­
range order and that all local reorganization proc­
esses are therefore connected with just the short­
range order relaxation; the occurrence of a long­
range order 71 is due exclusively to entropy con­
siderations, viz. starting with a certain critical 
value of the short-range order coefficient, the 
appearance of a superstructure becomes over­
whelmingly probable, i.e., the appearance of a 
preferred filling of each of the equivalent sub­
lattices by atoms of a definite sort. 

Indeed, if the short-range coefficient x is de­
fined in such a way that the energy of a given con­
figuration can be written in the form 

E=E0 +Nvx, 

and the number of configurations with short­
range order* x and long-range order 71 is 
exp { Na(x, 71)}, then the free energy of the non­
equilibrium state x, 71 is 

F = F 0 + Nvx- NC!Ja(x, rJ), (0 = kT. (1) 

For a given x, the equilibrium (i.e., the over­
whelmingly more probable) value 7j(x) does not de­
pend on either the temperature or on the displace­
ment energy v, and is determined only by the pa­
rameter x in accordance with the equation 

(2) 

The value x = Xc, for which (2) has a nonvanishing 
root 7j, is the critical value of the short-range 
order. We note, incidently, that the equilibrium 
value of short-range order .X =.X(®) is deter­
mined in turn from the equation 

a' (t') = v;e. a (x) ==: a (x,TI (x)) (3) 

and the character of the thermodynamic singulari­
ties at the transition point is thus determined by 
the behavior of the function a(x) (i.e., by the 
logarithm of the number of configurations for a 
given short-range order x) near the point Xc· 
Thus, for example, the Landau phenomenological 
theory of second-order phase transitions corre­
sponds in this aspect to assuming that the function 

*In the case of nearest-neighbor interaction v = z [ v AB 

- (vAA + vaa)/2] is the displacement energy (z is the co­
ordination number), and the short-range order coefficient x 
can be defined by the equation 1 + x = 4QAa/Nz; QAa is 
the number of pairs of unlike neighbors AB. 
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FIG. '1 

a(x, Tj) is analytic in the vicinity of the point 'TI = 0, 
x = Xc. Yet in the two-dimensional Ising model, 
the only case that has been accurately calculated, 
the function a(x, Tj) has a logarithmic singularity 
at the point 'TI = 0; the character of the singularity 
in the three-dimensional case has not yet been 
explained. 

It is quite obvious that in accordance with the 
symmetry of the problem there are two equivalent 
possibilities of preferred filling of the sublattices 
with atoms A and B, corresponding to the values 
± Tj of the order coefficient. At the initial order­
ing stage, when essentially the short-range order 
relaxation has already taken place, the appearance 
of a structure + 'TI or - 'TI is perfectly accidental 
and regions with both signs, ± Tj, should exist at 
different points at the crystal, thus excluding the 
mechanism of homogeneous ordering over the en­
tire volume of the crystal. 

2. KINETICS OF ORDERING IN THE PRESENCE 
OF TWOEQUIVALENT STRUCTURES (±Tj) 

We shall attempt to trace the kinetics of the 
reorganization of an initially disordered system 
(for example, a solution AB), which has been 
placed, say by hardening, in conditions for which 
an ordered structure represents equilibrium. 

In accordance with the statements made above, 
the short-range order is essentially relaxed over 
the entire volume of the crystal within microscopic 
time (on the order of the time of heterodiffusion 
over atomic distances). As a result, the ordering 
of each microscopic infinitesimally small volume 
element is either + 'TI or - 'TI· The kinetics of this 
first stage is very difficult to describe and its de­
tails are apparently quite individualized. From 
the macroscopic point of view, however, this proc­
ess occurs instantaneously and is not decisive in 
the formation of the ordered structure. The "ini­
tial" state in the macroscopic picture is, as fol­
lows from the foregoing, a state for which each 
infinitesimal volume element of the crystal can 
have with equal probability an ordered structure 
+ 'TI or - Tj, and there is no correlation between 
neighboring elements. Since, however, neighbor­
ing elements with identical structures must be 
regarded as a single ordered domain, it is easy 

to understand that all of space will consist pre­
dominantly of mutually intertwined web-like re­
gions with + 'TI or - Tj; the total volumes of the 
regions of each type should be equal in the mean. 

A two-dimensional model of such a structure 
is shown for the isotropic case in Fig. la. The 
characteristic linear dimension of this structure 
(which determines both the average diameter of 
the "filaments" or "islands" and their curva­
ture) is the average radius of curvature of the 
boundary between the regions. The radius of 
spatial correlation R of the ordered regions is 
obviously of the same order of magnitude.* It is 
clear that to be able to speak of ordered regions 
this characteristic dimension should be consider­
ably greater than atomic; however, in accord with 
the foregoing, we shall assume that in the macro­
scopic picture the initial correlation radius R is 
equal to zero. 

Since the structures ::1: Tj are thermodynamically 
equivalent, there are no reasons for regions of 
one type to grow predominantly at the expense of 
the other. The kinetics of ordering should con­
stitute "swelling" of the web-like regions of 
both types and an increase in the correlation 
radius as the boundaries of these regions move 
in such a way that the total volumes become of 
equal magnitude. The ''moving force" displacing 
the boundaries and swelling the regions is the 
surface energy on the interfaces between the re­
gions. 

As is well known, the change in thermodynamic 
potential accompanying the displacement on of a unit 
area of phase boundary in the normal direction (in 
the isotropic case ) is 

a> ( ) 2ct 2 1 + 1 (4) 6 = <Jl2- <Jll 6n + r 6n, r = ft --,;:. 

r 1 and r 2 -principal radii of curvature on the 
boundary; cp 1 and cp 2 -thermodynamic potentials 
per unit phase volume. In our case there is no 
volume term (cp2 -cpl)on and oci> is determined 
by the change in the surface energy 

tla>!tln = 2a/r. (5) 

Since r »a (a -lattice parameter), the rate of 
motion of the boundary on/ ot is proportional in 
first approximation to oci>/on"' 1/r: 

f:Jn!M = - x!r. 

To estimate the constant K it is necessary to 
take it into account that (5) is the normal force 

(6) 

*We can define the correlation radius R by means of the 
probability q(~x) = ~/R that two points an infinitesimal 
distance ~x apart have opposite signs of TJ (i.e., are sepa­
rated by an interface), 
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acting on a unit area of the boundary; on the other 
hand, to move a unit boundary area over an atomic 
distance in a normal direction it is necessary to 
perform "' I TJ l/a2 acts of relative transfer of pairs 
of neighboring atoms AB on the boundary in a suit­
able direction (a -lattice parameter, the long­
range order coefficient TJ is defined for the solu­
tion AB in the usual fashion as 

'11 = (N~ -N~)INA; 

NA and N~ are the numbers of A atoms in each of 
the equivalent sublattices]. Therefore the rate of 
motion of the boundary is expressed in terms of the 
diffusion mobility u of the solid-solution atoms* 

(7) 

Comparing (6) and (7) and taking into account 
the Einstein relation between the mobility and the 
diffusion coefficient, u = D/kT, we obtain the es­
timate 

(Here D -diffusion coefficient connected with 
the mutual eX'Change of the neighboring atoms AB ). 
Finally, the interphase surface tension a can be 
expressed in terms of the displacement energy v 
(see the first footnote) and the long-range order 
coefficient TJ by means of the estimate aa2 "' vry2• 

This yields ultimately 

(8) 

In principle, knowing the initial form of the sur­
face we can determine its time variation from (6). t 
However, it is in general not necessary to solve 
so complicated a problem, since we are interested 
only in averaged characteristics, and primarily 
the average radius of curvature I r I "' R. From 
dimensionality considerations it is clear that 
on "' ±or and consequently we can write, in order 
of magnitude, 

M/M=±xjr. (9) 

The minus sign in (8) corresponds to the "erosion" 
of the convex region (see, for example, Fig. 2a), 
while the plus sign corresponds to a straightening 
of the boundary (Fig. 2b). For our purpose there 

*The dependence on TJ is given in this and following 
formulas only qualitatively, i.e., only in order of magnitude, 
for TJ « 1 and TJ - 1. 

tThus, for example, in the two-dimensional case, if 
y = y(x, t) is the equation of the boundary at the instant t 
and y(x, 0) = y0(x), then the determination 'Of y(x, t) reduces, 
in accordance with (7), to a solution of the equation 

' " '2 
Yt = "Yxx /(1 + Yx ), Y lt=O = Y0 (x) • 
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is no need for a more detailed study of the charac­
ter of the deformation of the boundaries; in par­
ticular, in the three-dimensional case discontinu­
ities in the "neck" will also fit qualitatively with­
in this scheme. 

Accordingly, in the first case r 2 = r~- Kt, i.e., 
all the "inclusions" with maximum dimensions 
r 0 < Kt should vanish, with overwhelming proba­
bility, after a time t. 

In the second case the radius r increases, 
r 2 = r~ + Kt. In both cases this means that the 
characteristic dimensions of the remaining re­
gions (correlation radius or average radius of 
curvature ) increase as* 

R ~ V xt (R0 = 0). (10) 

A progressive picture of the growth of the regions 
via straightening of the boundaries and erosion of 
the "inclusions," using a two-dimension example, 
is shown in Fig. 1. When the dimensions of the 
regions become comparable with the dimensions 
of a single crystallite, the conditions on the crys­
tallite boundaries may bring about a predominant 
growth of one of the regions, and this leads in final 
analysis to a single ordering over the entire crys­
tallite. 

It should be pointed out that the initial non­
nucleation stage of relaxation of the short-range 
order (on going through the Curie-point line) can 
be expected with certaintyonly when the interval 
between the initial value of the short-range order 
x 0 and the final equilibrium value x( e) is not too 
large, i.e., when the free energy F (x) = vx 
- ea(x) [see (1) and (3)] in this interval is a 
monotonic function of x; in this case the possi­
bility of transition from x0 to :X via a continuous 
series of states is assured (although in principle 
a transition through a different series of interme­
diate non-equilibrium states is also possible). 

In the case of the nucleation mechanism, the 
regions grow as R "' t, since the rate on/ ot 
"' o<P/on contains a volume part that is independ­
ent of r [cp 2 -cp 1 inEq. (4)]. 

*Relation (10) can be derived from (6) directly by dimen­
sionality considerations; the arguments .given above are 
aimed at explaining the swelling mechanism. 
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FIG. 3 

In the case of the two equivalent types of order­
ing ± 7J, however, even in the presence of a first­
order discontinuous transformation, the regional 
structure described above will arise at a later 
stage of the process, after all the ordered por­
tions formed as a result of the growth of the nu­
clei have come in contact. Further increase in 
the ordered regions will continue as in the case 
of a second-order transformation, the only dif­
ference being that the initial correlation radius 
R0 is no longer zero but equal to the average dis­
tance between nuclei. 

The described ordering pattern is, of course, 
essentially qualitative, primarily because of the 
oversimplified assumption that the surface ten­
sion a and the kinetic coefficient K have no 
anisotropy. 

3. POSSIBILITY OF FORMATION OF A "DOMAIN 
STRUCTURE" DURING ORDERING 

An essentially different situation can arise 
when the number of thermodynamically equivalent 
methods of realizing the ordered structure is 
p =?: 4. This is precisely the situation in many 
antiferromagnets, where p = 4 and p = 6. In this 
case the initial relaxation stage does not lead to 
the formation of intertwined web-like regions, 
since each small element with ordering 7Jk (k = 1, 
... , p) is surrounded, with high probability, by 
elements of several different types 7Ji. This means 
that the initial structure of the ordered domain is 
similar to the structure of a polyerystalline body, 
and the role of the individual crystal is played by 
the region with the given type of order 7Jk· Fig­
ure 3a shows schematically such a two-dimen­
sional structure with p = 3 (such a structure oc­
curs in the two-dimensional ca.se even when p = 3 ). 

Since each of the structures 7Jk is thermody­
namically equivalent, any further relaxation re­
duces, as before, to a movement of the boundaries, 

leading to a decrease in the surface energy. This 
brings about a gradual straightening of the region 
boundary; however, the junction of three regions 
and, most important, the junction of four regions 
presents an essentially different situation. The 
conditions for the minimum surface energy call 
for definite angles to arise along the lines of junc­
tion and on the junction points. The first condition 
makes the displacement of the junction lines very 
difficult once the optimal angles are attained. The 
second condition makes in fact impossible any dis­
placement of the junction point after the optimal 
angles on all the junction points have already been 
attained in a finite macroscopic volume (see Fig. 
3b). Such a displacement without an external 
stimulus calls for fluctuations on a macroscopic 
scale and has of course a low probability. 

This should therefore cause the regions of or­
dering to acquire a domain structure which is not 
the most favorable from the thermodynamic point 
of view but is stable from kinetic considerations. 
Such a domain structure is not similar to the domain 
structure of ferromagnets, where the presence of 
the spontaneous moment and the field associated 
with it make the domain thermodynamically stable. 

A similar situation should obtain in antiferro­
magnets without weak ferromagnetism, however, 
in the case of structures with p = 4 and p = 6 
(for example, U02 or MnO), and the domain 
structure of such antiferromagnets should be of 
kinetic origin. Its annihilation, in accord with the 
foregoing, can be brought about only by external 
factors (for example deformation), which make 
some of the 71k structures thermodynamically 
preferred. 

An essential modification in the situation can 
be brought about by a sharp anisotropy in the rates 
of the reorganization processes. Thus, for exam­
ple, the limiting case of lamellar growth should 
result in so-called crystals of alternating struc­
ture, consisting of alternating differently ordered 
layers. In this case stratified "domain" structure 
arises even if there are only two ordering possi­
bilities. 

Translated by J. G. Adashko 
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