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The hypothesis is proposed that the geometric structure of x-space "in the small" and corre­
spondingly of p-space "in the large" is closely connected with weak interactions of elementary 
particles. Furthermore, a scheme is investigated in which momentum space is one of constant 
curvature [4] and x-space is quantized.[a] It is shown that there are reasons in the new geom­
etry for rejecting the requirement of invariance under space inversion and "strong" time in­
version, providing that the CPT theorem is correct. 

1. INTRODUCTION 

IN this work, as in the previous one, [1] we shall 
assume that the hypothetical "fundamental length," 
without whose introduction it is !mpossible to give 
a correct description of the physical processes 
taking place at high energies or, correspondingly, 
in small space-time scales, is simultaneously a 
constant which determines the intensity of the 
weak interaction.* This means that the geometri­
cal structure of x-space "in the small" and of 
p-space "in the large" must be closely connected 
with the weak interactions of elementary particles, t 
and possibly we now have a right to expect an ex­
planation of such unusual "geometric" properties 
of weak processes as the nonconservation of spa­
tial parityt and non-invariance under "strong" 
time inversion. It is assumed in what follows that 
the new geometry in x- and p-space should not 
contradict the basic principles of quantum mechan­
ics and the general theory of relativity, i.e., as 
before, the states of physical systems can be de­
scribed by vectors in some Hilbert space, and the 
observed quantities can be put in correspondence 
with the operators of this space; also, the invari­
ance under Lorentz transformations is preserved. 

In the mathematical methods used, the given 
research borders on the research of Snyder [3] and 
Gol'fand, [4] since the constructions carried out 

*ln[•J, lis chosen equal to the "{3-decay length" JG/fic 
= 6 x 10-17 em (G is the Fenni constant). 

tPerhaps in the spirit of the general theory of relativity 
(see[2J). 

+The possibility of nonconservation of parity in weak in­
teractions on the basis of the new representation of the struc­
ture of space in scales of the order of ,jG/fic was first pointed 
out by Shapiro. [2] 

below are equivalent to the introduction in p-space 
of a geometry of space of constant curvature. Our 
goal is a more detailed exposition of the mathe­
matical problems related thereto. 

2. A NEW GEOMETRY OF p-SPACE 

As is clear from what was said above, we shall 
call p-space the four-dimensional momentum 
space which figures in quantum field theory. In the 
usual theory, this space is pseudo-Euclidean, and 
therefore possess a 10-parameter group of mo­
tions ( L10 ), consisting of the group of Lorentz 
transformations (rotations) ( L6 ), translations 
( T4 ) and reflections. In the new geometry, defi­
nite limitations must be placed on the components 
of these 4-momenta Pm ( m = 0, 1, 2, 3 ) when they 
are near 1/Z. * By analogy with the theory of rela­
tivity, we assume that these limitations can be 
written in the form of some inequalities that con­
nect the components Pm and 1/Z. The simplest 
relativistically invariant inequalities of the re­
quired type (with account of a reasonable limit as 
l - 0) have the form 

(2.1) 

(2. 2) 

We now construct the geometry of the 4-space in 
which all the vectors satisfy either (2.1) or (2.2). t 
It will be convenient to consider the two cases to­
gether if the hypersurfaces p2 = z- 2 and p2 = -z-2, 

*The system of units is used in which 1i. = c = 1. 
tNaturally, it does not then follow that all 4-momenta in 

the theory (on the basis of which this geometry will be con­
structed) will obey one of these inequalities. For example, 
the limitation v ~ c does not extend to the magnitude of the 
phase velocity in the theory of relativity. 
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corresponding to (2.1) and (2.2), which limit the 
admissible values of the squares of the 4-momenta, 
can be described by the one equation 

p2 = ejf2, (2.3) 

where E = ±1. 
In the presence of a limiting hypersurface (2.3), 

the translation transformations T4 in the group of 
motions L 10 should be replaced by some new 
transformations 1\, which transform this hyper­
surface into itself; the remaining transformations 
of the group L10 (rotation and reflection) obviously 
transform without change into the new group of 
motions ( ':L10 ), since they leave (2.3) invariant. 

Thus the new group of motions L10 can be de­
fined as the set of transformations which leave the 
hypersurface (2.3) unmoved. In the usual p-space-, 
this region was infinitely far removed from the 
region which is fixed relative to the group of mo­
tions. Therefore, it is natural to consider the 
points of the hypersurface (2.3) as infinitely dis­
tant points of p-space in the sense of the new ge­
ometry. Infinitely distant points in the previous 
sense of this word [except for those which belong 
to (2.3)] are now seen to be not at all isolated, and 
therefore must be regarded in a fashion completely 
equivalent to the rest. The so-called homogeneous 
coordinates [5] are most useful for this purpose. 
In our case, we shall introduce them in the follow­
ing form: 

(m = 0, 1, 2, 3). (2.4) 

To each choice of coordinates ( p0, Pi• P2• Pa) there 
corresponds a choice ( PT/o, PT/i• PT/2• PYla. PT/4 ), 
where p is a non-vanishing factor [and therefore 
the set of values ( 0, 0, 0, 0, 0) is excluded]. It is 
clear that the choice ( PT/o• PT/1, PT/2, PYla, 0) corre­
sponds to an infinitely distant (in the foregoing 
sense) point in p-space. In homogeneous coordi­
nates, (2.3) takes the form 

2 2 2 2 2 0 T]o - 1J1 - 1J2 - TJs - 81]4 = (2.5) 

or gll 11T/ 11T/v = 0, where Jlll = 0, 1, 2, 3, 4 and gll 11 

= 0 for 11 ;z! o, goo= -g11 = -g22 = -gaa = 1, g44 =-E. 
Equation (2.5) remains invariant for all linear 
orthogonal transformations of the form T/~ = afh v· 

These transformations form a group ( G10 ) of the 
hypersphere of the pseudo-Euclidean 5-space with 
~he variables Tl;.r As follows from (2.4), the gro~p 
L10 is isomorphic to the factor-group G10 over 1ts 
subgroup, which consists of two transformations: 
TIJl- YIJl and T/Jl- -YIJl ( J1 = 0, 1, 2, 3, 4 ). This 
circumstance makes it possible to consider the 
five-dimensional hyperspace, whose diametrically 

opposite points are identical, as a model of our 
p-space. [5, 6] Thus the p-space now represents a 
space of constant curvature. 

The transformation group G10 decomposes into 
four related components, which are distinguished 
by the following marks: [7] 

For E = +1: 

a)deta~=1, 

b) det a~= 1, 

c) det a~ = - 1, 

d) det a~ = - 1, 

For E = -1: 

a) det a~= 1, 

b) deta~ = 1, 

c) det a~= -1, 

d) det a~!= -1, 

aTJ~ I oTJ0 > 0; 

aT]~/ 81]0 < 0; 

aT]~ I a1] 0 > 0; 

aT]~ I 81]0 < 0. 

a (TJ~, TJ~) I a (TJ0 , TJ4) > O; 

a (TJ~, TJ~)Ia (TJo, 1J4) < 0; 

a (TJ~. TJ~)!a (T]o. 1]4) > O; 

a ('I]~; TJ:);a (T]o. 1]4) < 0. 

(2.6) 

(2.7) 

Because of the correspondence between the 
groups G10 and ':L10 pointed out above, one need 
use only the components a) and b) from (2.6) and 
(2. 7) for the description of L10; the components 
c) and d) need not be considered at all. All the 
transformations b) can be obtained from the trans­
formations a) if we multiply the latter by special 
transformations of the form Tlo- -T/o, T/4- -T/4 
in the case E = 1, and T/a- -T/a, T/4- -T/4 in 
the case E = -1 (a = 1, 2, 3 ). By virtue of (2.4), 
the first of these two transformations leads to the 
inversion of 3-space p- -p, the second to the 
inversion of the time axis Po - -p0. The Lorentz 
rotations are contained in the components a), cor­
responding to rotations in the planes ( T/mT/n) 
about the T/ 4 axis, and rotations in the planes 
( TI4Tim) which should obviously be identified with 
the transformations T4, wherein m is the index 
of that axis of p-space in whose direction the 
"displacement" is carried out.* Rotation in the 
plane ( TI4T/o) will be hyperbolic for E = 1 and el­
liptic for E = -1; on the other hand, rotations in 

Po c Po 11 

/ 
/ 

/ 
/ 

p 

c R c 
E=l 

*It then follows that the transformations T4 do not form a 
group. 
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the planes ( 774, 77 a) will be elliptic for E = 1 and 
hyperbolic for E = -1. The product of three rota­
tions of angle 1r in the planes ( 774, 11 a) leads, for 
E = 1, to inversion of the axes 774, 77 a• i.e., in ac­
cord with (2.4), to the transformation Po- -Po· 
Similarly, rotation through 1r in the plane ( 77 0, 774 ), 
for E - 1, is a reflection of the axes 77o and 77 4, 
which is equivalent to p- -p. 

Thus, with the aid of the translation T4, one 
can transform (in continuous fashion) a right-hand 
four-dimensional coordinate system into a left-hand 
system, and conversely. Inasmuch as rotation in 
the plane ( 774, 77o) corresponds to a "displacement" 
along the Po axis, then, in the case E = -1, it is 
necessary to regard the p-space as closed on 
itself in the direction of the Po axis, and topolog­
ically equivalent to a four-dimensional Mobius 
sheet. The p-space has a similar structure for 
E = 1, only with the obvious difference that here it 
is closed on itself in the space-like direction (see 
the drawing; A and C are identical points). 

We now find the explicit form of the transfor­
mation of the vector Pm by an arbitrary vector 
km. By virtue of (2.4), the desired transformation 
will be bilinear in the components Pm· Therefore, 
~aking the requirements of relativistic covariance 
into account, we can write 

ft (k2) Pm + /2 (k2) (kp) km +/a (k2) km (2. 8) 
p~ = ,, (k2) (kp) + 1 

k2 = (kk), (kp) = koPo - k · p. The unknown functions 
f1, ••• , f4 are uniquely determined from the con­
ditions: 

1) p'2 = e[-2 for p2 = el-2 , 

2) p' = 0, for p = - k, 
3) p' = p for k = 0. 

In sum, Eq. (2.8) takes the form* 

P~ = Pm (+)km 

Pm Y 1- ek2[2 + km (1 + e (pk) [2 f [1 + y 1- ek212J) 

1 + B (pk) [2 ( 2, 9) 

The symbol ( - ) is introduced, in accord with [4], 
in the following natural fashion: p(-) k = p( + )( -k ), 
Here it is shown that ( p( +) k )(-) k = p. In con­
trast with the usual translation transformation, the 
operations ( ±) do not commute. We can establish 
the fact that 

( ( ±:) k)2 [2 = 1 _ (1- ep2£2) (1 - ek212) 
8 p (1 ± B (pk) [2)2 ' 

(2.10) 

The commutability of the operations ( ±) for col­
linear 4-vectors is evident from (2.10). For ex­
ample, if p = p0, k = ko. then, for E = 1, 

*We have used the notation of[•] for the operation T4 • 

po(-f-) ko = (po + ko)/(1 + pokol2 ). (2.11) 

As l- 0, Eqs. (2.9)-(2.11) transform into the 
corresponding expressions of ordinary geometry. 

3. QUANTIZATION OF SPACE-TIME 

In accord with the supposition made above on 
the transfer of the principles of quantum mechan­
ics over into the new geometry, we preserve the 
previous interpretation of infinitesimal operators 
of the group of motions. Then the transformation 
of the wave functions for translation by a small 
vector km in p-space has the form 

cp(p( + )k) = (1 - ixmkm) cp(p), (3.1) 

where the xm are by definition the operators of 
the coordinates and time (summation is carried 
out over the index m from 0 to 3. With account of 
(2.9), we get the following as operators of the 
scalar wave functions cp( p ): 

xa. = i (8!8pa. + el2Pa.Pm818pm), a = 1, 2, 3; 
t = i (8/apo- el2popm818pm). (3.2) 

For E = 1, (3.2) are the operators of the coordi­
nates and time, considered in the Snyder theory. [3] 

We introduce the variables 17f.l into (3.2). Since, 
because of (2.4), 

a 1 a a 1 a 
'lJ4 aTJn = T apn ' aT)4 = - 1;" Pm apm ' 

then 

x" = il ( 1']4 a~a.- E'lJa. a~J , t = il (1']4 __;__ + E'l]o --}.-) • uT)o uT)4, 

These operators were first obtained in such a 
form (for E = 1) by Snyder.* 

(3.3) 

With the help of (3.3), it is easy to establish 
that when E = 1 the spatial coordinates have a 
discrete spectrum of eigenvalues of the form n l, 
where n is an integer, since the spectrum of the 
time coordinate remains continuous; for E = -1, 
the situation is reversed: the time is discrete 
while the spectrum of the operators x is continu­
ous. The commutation relations between the op­
erators of coordinates, momenta, moments and 
other features of the Snyder theory are changed in 
trivial fashion for E = -1, and we shall therefore 
not consider them. We only note that our formalism 
is free of the arbitrariness in the determination of 
the 4-momentum, pointed out by Snyder, for any E, 

since the quantities Prof( 774/77) are incorrectly 
transformed in the translations of (2. 9). 

*It is obvious that apart from a numerical factor Eqs. 
(3.3) for xm can be found immediately from five-dimensional 
consideration of the translations T4 • 
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4. SPINOR REPRESENTATION OF THE GROUP 
OF MOTIONS OF p-SPACE 

According to Sec. 2, the group L10 is isomor­
phic to the group of five-dimensional transforma­
tions 77/J = a~77 v for which det a~ = 1 [components 
a) and b) in (2.6) and (2. 7)]. Therefore, the spinor 
representation of this latter group will be the 
sought representation of the group L10. The ma­
trix of the spinor transformation S corresponding 
to an arbitrary motion 77~ = a!f77 v of the components 
a) and b) can be found from the condition 

(4.1) 

where rJ.l are five four-row matrices satisfying 
the following anticommutation relations: 

r~'-r~ + r~r~'- = 2g~'~ (4. 2) 

[ gJ.li\ is the metric tensor from (2.5)]. 
We choose for rJ.t the matrices 'Ymrfi, ..[€ 1'5 

(m = 0, 1, 2, 3 )*where 

0 (E 0) r = o -E • 

Here E = (J ~), a a are the Pauli matrices 
(a = 1, 2, 3 ). 

Let us introduce the spin tensor of second rank 
H(77) = 71J.lrJ.l, which transforms as 

H' = SHS-1• (4.4) 

It is easy to establish that det H = ( 77 2 ) 2 = det H' 
= ( 77' 2 ) 2, i.e., the matrices S actually form a repre­
sentation of the given group. We can investigate 
not only linear but also antilinear spinor transfor­
mations with the example of the spin tensor H, 
owing to the simplicity of its structure. Initially, 
we shall find all the matrices S corresponding to 
reflections of the 71J.l axes. Since det a~= 1, then 
the number of reflected axes will always be even. t 
From the form of .H •. it is e~sy to prove [7] that 
the matrix s = i\r 11r 12 ... r 12k, where im is the 
number of the coordinate axes and i\ is the phase 
factor, corresponds to the axes 77i1' 77i2 •.. · .77i2k· 

The matrices obtained in this fashion are shown 
in Table I. As phase factors in the case of ma­
trices of the time inversion for the case E = 1, and 
of space inversion for E = -1, imaginary units 

*Yu. A. Gol'fand pointed out the necessity of the choice 
of the basis rp. in such a form. In this case, as l -> 0, the 
five-dimensional spinor representation considered transforms 
into the usual four-dimensional spinor representation in the 
basis ym. 

tThe matrix S corresponding to transformations with det 
a~=- 1, for example, ar. = - Bp., does not generally exist, 
since it is impossible to find six anticommutirtg four-row ma­
trices. 

Table I 

I 
E = 1 E=-1 

T)o-+ - T)o To iTo 
T)4-+- 1)4 

T)IX-+ - T)IX 
iTOT5 T"T" 1)4-+-1)4 

TJm-+ -~TJm iT" iT5 

were chosen so that the square of these transfor­
mations are rotations through 21r (see Sec. 2). 
The remaining phase factors in the first two rows 
of the table are omitted for simplicity; in the third 
row, i again appears, since the latter transforma­
tion is a product of the first two. 

Now let the spinor of first rank lfJ be given, 
transformed according to the law lfJ' = SlfJ for mo­
tions from L10 . We shall determine how the co­
variant quadratic forms of the type 1/J+Ol/J can be 
constructed from lfJ and 1/J+ (the "plus'' indicates 
the Hermitian conjugate). We shall first prove 
that for E = 1, 

ros+ro = s-1 

ros+ro = - s-1 

and for E = -1, 

for the transformations a), 
for the transformations b); (4.5) 

(if0f4) s• (if0f4) = s-1 

(if0f4) s+ (if0f4) = - s-1 

for the transformations a) 
for the transformations b), 

(4.6) 

The proofs of the relations (4.5) and (4.6) are en­
tirely similar, and we shall therefore carry out 
discussions only for the case E = -1. Inasmuch as 
H' = SHS-1, we get H+ = ( s-1 )+H+s+. But it follows 
from (4.3) and Table I that 

Therefore, 

or, 

H' = (if0f4) (S-1t (if0 f4) H (ifOP) s+ (if0f4). 

Thus, ( ir0r 4 ) s+ ( ir0r 4 ) = as-1, where a is a 
numerical factor. The matrices S, corresponding 
to the transformations a), can be reduced by a 
continuous change in the group parameters to the 
unitary matrix E, as a result of which we find 
( ir0r 4 ) E ( ir0r 4 ) = aE, i.e., a = 1. If now S cor­
responds to the component b), then such matrices 
can be reduced to a transformation of time inver­
sion, whence a= -1. 
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Instead of the spinor 1/J +, it is convenient to 
consider the quantity 1jj = I/J+L0, where L 0 = r 0 for 
E = 1 and L0 = ir 0r 4 for E = -1. Obviously, for 
transformations of the type a), the law for the 
transformation of ljj will be the following: ljj 1 

= ljjs-1, and for the transformation b): 1jj 1 = -ljjs-1• 

As can easily be seen, only three independent 
quadratic forms can be constructed from the quan­
tities 1/J and ljj, which are covariant under the 
transformations a): 

1) scalar -lj)'ljl, 2) vector 1jif~'-'ljl, 3) tensor 'i)f~'-[v'ljl. 

(4. 7) 

If we introduce the usual definition of a conjugate 
spinor, i.e., if we set ljj = lf!+y0, then the quantities 
1)-3) from (4. 7) are written (for E = 1) as ljjy 5lf!, 
ljjy 5rf.li/J, 1fjy 5rf.lr vlf!, respectively, and for E = -1, 
they keep their own form. For Lorentz rotations 
(rotations about the 774 axis), five components of 
the vectors ( ljjlf! for E = 1 and 1/i'Y 5¢ for E = -1 ) 
are transformed independently of the first four 
components (ljjymi/J for E = 1 and 1ftymy 51/J for 
E = -1 ), i.e., the 5-vector decomposes into an 
ordinary 4-vector (pseudovector) and a scalar 
(pseudoscalar). Similarly, the 5-tensor decom­
poses for Lorentz transformations into an ordinary 
4-tensor and a 4-vector for E = -1, or a 4-pseu­
dovector for E = 1. 

Concluding the consideration of linear transfor­
mations of the spinors of p-space, we shall give 
(without derivation) the expressions for the opera­
tors xm in the case when the wave function is a 
spinor:* 

xcz = i (aJapcz + el2PaPmaJapm) + +g v=B lya., 

(4.8) 

In order to find all the antilinear spinor trans­
formations, it is necessary to determine such a 
matrix K that, for an arbitrary transformation 
1/J 1 = Slf! the following relation holds: 

(K'Ijl*)' = SK'i'*. (4.9) 

It then follows from the equality I/J 1 * = S*lf!* and 
(4.9) that 

x-lsK = s·. (4.10) 

With the aid of (4.4), we find 

W' = S*H* (S-1)*. (4.11) 

*The reason for the appearance of the matrices ym in (4.8) 
is clear if we take into consideration the obvious circum­
stance that the infinitesimal operators of the spinor represen­
tation group G,0 are proportional to the expressions (r~-'rv 
- rvr~-'). 

Since the matrices r 0' r 1' r 3' r 4 for E = 1 and 
the matrices r 0, r 1, r 3 for E = - 1 are pure 
imaginaries, the operation of complex conju­
gation, applied to H, means, in the first case, the 
reflection of the axes 77 0, 77 1, 77 3, 774, and, in the 
second, the reflection of 770, 771• ••• , 773· That is, 
one can write that for E = 1 

(4.12) 

and for E = -1 

W = _ (f2f4) H (f2f4)-1. 

Substituting (4.12) in (4.11), we shall have, for 
E = 1, 

PH' (Pri = ST2H (P)-1 (S-1)*; 

and for E = -1, 

(4.13) 

(f2f4) H' (Pf4t1 = S*[2[4H (F2F4t 1 (S-1)*. (4.14) 

Comparing (4.13) with (4.14), we finally obtain 

K = (f2t1 = y2y5 for e = 1, 
K = (f2f4t1 = iy2 for e = - 1. (4.15) 

In the case E = -1, the transformation 1/J' = Klf! + ( p) 
= Kr 01fj(p) = -iC"ijj(p), where C = y 0yz, is identi­
cal with the ordinary operation of charge conjuga­
tion. 

For E = 1, we have, correspondingly. 

(4.16) 

That is, one can show that in this variant the role 
of charge conjugation should be filled by the new 
transformation (4.16). 

We now write out (see Table II) all the antilinear 
spinor transformations for reflections of the co­
ordinate axes ( E = ±1; the phase factors in the 
operations of charge conjugation are omitted). 

To complete consideration in this section of the 
group of motions of p-space, we shall show on 
what basis, within the framework of the new geome­
try, one could remove the requirement of invari­
ance of the theory under space inversion and 
"strong'' time inversion (see Sec. 1). The discus­
sions which we shall give apply fundamentally to 
transformations of a displacement in p-space. In 

1]o-+ -l]o 
1)4-+ -l]4 

lJa.-+ - Tia. 
l]4-+ -l]4 

lJm-+ -l]m 

Table II 

• = 1 

<)!' =- ir°C~(-Po) 

<)!' = -iC~ (- p) 

E =-1 

<)!' = r"r"C~(- Po) 

<)!' = iy5C~(- p) 
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the ordinary theory, these transformations are not 
connected with any physical symmetry, and there­
fore their invariance is not required. It is natural 
to assume that even in the given scheme, there 
should not be requirements of invariance under 
displacement in momentum space. Then, in accord 
with what was pointed out above, the theory will 
not be invariant relative to the transformations* 
1/J 1 = iy 0y 51/J ( -p0 ) in the case E = 1 ("strong" 
time inversion) and 1/J 1 = iy0lf! ( -p) in the case 
E = -1 (space inversion). If the CPT theorem re­
mains valid, i.e., if invariance under the transfor­
mation 1/J 1 = iy 51/J ( -p) is preserved, then in the 
case E = 1 this will mean the absence of invariance 
under space inversion and, correspondingly, for 
E = -1, invariance under "strong" time inversion. 

5. TRANSFORMATION OF TRANSLATION IN 
x-SPACE AND THE ADDITION OF MOMENT A 

In the ordinary theory of commuting operators 
xm = io/Bpm, the common eigenfunctions have the 
form e-Hpa) where am are the eigenvalues. If 
one gives the quantities am the meaning of para­
meters of the translation group, i.e., if we assume 
that X 1 m = xm +am, then, as is well known, one 
can regard the corresponding set of exponentials 
e-Hpa) as a representation of this group realized 
by the wave functions w(p ): 

'¥' (p) = e-i(pa)'¥ (p). (5.1) 

Any other arbitrary wave function 4> ( q) will be 
similarly transformed in a displacement by am: 

<t>' (q) = e-i(qa)<l> (q). (5. 2) 

If the systems described by w( p) and 4> ( p) are 
regarded as non-interacting, and as a single inte­
gral system, then the product X = w ( p) 4> ( q) will 
be the wave function of the compound system that 
is obtained.t It follows from (5.1) and (5.2) that 

X' = e-t<p+q. a> X, (5.3) 

i.e., the four-momentum of the compound system 
is a vector with components Pm + qm. 

The operators xm from (3.2) do not commute 
with one another and therefore do not have a com­
mon set of eigenfunctions. It then follows that in 
quantized space-time it is not possible to carry 
out a translation by an arbitrary 4-vector am.[3] 
But displacements in the direction of any one of 
the axes are possible, since each of the operators 
xm separately has eigenfunctions. For example, 
for the operator t (at E = 1 ), the eigenfunction is 
exp ( ia tanh-1 p0Z ), where a is the characteristic 

*We write out these transfonnations here in spinor fonn. 
tFor simplicity, it is assumed that p and q are the only 

dynamic variables in the states II' and <I>. 

number (see [3] ). If w( p) is the wave function, 
then for t' = t + a, we have* 

'¥' = exp (- ia Arth p0l) 'I" (p). 

Similarly, we can write for (5.2) and (5.3) 

<l>' = exp (- ia Arth q0l) <D (q); 

X'= exp [-iaArth (Po+ qo) 11 X, 
1 -t- Poqol2 ~ 

where X = w<I>. Thus, in the compound system, 
Po ( +) q0 appears as an invariant quantity under 
time translations [see (2.11)]. It can therefore be 
assumed that the four-dimensional "sum" p (+) q 
[see (2. 9)] is in correspondence with the sum p + q 
which figures in (5.3), i.e., one can regard p(+)q 
as the analogue of the total 4-momentum of the 
system. The noncommutability of the components 
in this sum and the non-singlevaluedness of its 
determination (which follows therefrom) correspond 
to the impossibility of an arbitrary transformation 
in quantized x-space pointed out above. We shall 
also show that, although the components of the 
4-momentum Pm are not now infinitesimal opera­
tors of the displacements in x-space, the permuta­
tion relations among them remain as before: 
[ Pm• Pn1 = 0. Together with the relations of the 
structure group of Lorentz rotations, they form the 
usual system of permutation relations of the in­
homogeneous Lorentz group (see, for example, [aJ). 

CONCLUDING REMARKS 

As was shown in Sec. 2, after the introduction 
of the new group of motions L10, p-space can be 
regarded as a space of constant curvature. In this 
case, it is shown that the distance between two of 
its points ( ~o· p) and ( q0, q) is determined by 
the formula 5] 

p(p, q) = [-1 ArthlYe(p(-)q)2 • (6.1) 

The idea of the replacement of the ordinary 
pseudo-Euclidean space of momenta by a four 
dimensional space of constant curvature was re­
cently expressed by Gol'fand.[4J For a description 
of the processes of interaction, Gol'fand proposed 
a Feynman diagram technique, generalized in the 
manner of the new geometry, while for writing 
down the laws of conservation of energy-momen­
tum, use is made of the addition rule (2. 9) (in [4] 

the case E = 1 was considered). Also, as in the 
theory of Snyder, invariant integration was intro­
duced in p-space with the volume element dQ 
= -[g d~, where g is the determinant of the metric 
tensor. For arbitrary E, 

*Arth = tanh-1 • 
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(6. 2) 

The method of taking integrals in curved p­
space [4] leads to a finite result only for E = 1. In 
connection with going out into the region p 2 ~ z-2, 

which is accomplished in this case, we note the 
following. The motion group L10 which we ob­
tained by starting from the inequalities (2.1) and 
(2.2), transforms into itself not only the external, 
but also the internal, region, relative to the hyper­
surface (2.3). * Therefore, the new geometry also 
appears in the internal region. [5] All the necessary 
formulas can easily be obtained from those set 
down above. It is then clear that going beyond the 
limit of the inequalities (2.1) and (2.2) has at least 
a geometric meaning. The physical meaning of 
this operation can be revealed only in the process 
of the further development of the theory. 

The author is deeply indebted to the participants 
in the seminars of Acad. N. N. Bogolyubov and 
Acad. I. E. Tamm, and also to V. I. Grigor'ev, I. S. 
Shapiro and I. A. Shishmarev for fruitful discus-

*A region is called external in relation to the finite cross 
section if one can draw from it a real tangent plane to this 
cross section. 

sions of the above research. The author also ex­
presses his deep appreciation to Yu. A. Gol 'fand 
for stimulating criticisms and valuable advice. 
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