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The method previously developed for constructing the Hamiltonian in the effective-mass approxi­
mation is generalized for the cases when spin-orbit interaction must be taken into account. 
This method is used to calculate the change of the energy spectrum when semiconductors with 
wurtzite or germanium lattices are deformed. 

1. INTRODUCTION 

In the first part of the present work,[1J a gen­
eral method was developed for constructing the 
Hamiltonian fJJ in the effective mass approxi­
mation; the method was based directly on the 
symmetry conditions and the in variance of the 
Schrodinger equation to time inversion. We 
shall consider how' spin-orbit interaction can be 
accurately included in the framework of this 
method. We retain the notation of[ tJ, and when 
referring to formulae from it we use the prefix 
I before the number of the formula. 

To calculate f)) including spin-orbit interac­
tion two procedures are possible: in the Hamil­
tonian §e the term describing the spin-orbit 
interaction for V ( r) = V o ( r) 

if s.o. =- (i/4m2c2) ([VV0 , V] a), 

can, on the one hand, be included in :it1, i.e., 
considered as· a perturbation, since the interac­
tion is relatively small; on the other hand, 
since ies.o. does not depend on :JC and has the 
same symmetry as ieo. this term can be imme­
diately included in :ie0 , and only those terms de­
scribing the spin-orbit interaction which included 
;;c are retained in ie 1• 

In the first case the spin functions will ap­
pear in the smooth functions Fi in (1.2 ), and 
the basis functions <Piko will, as before, depend 
only on the coordinates. In the second case, 
however, <Piko will include functions of the 
spin variables, and Fi will not. 

We shall consider both these methods. 

2. :ies.o. INCLUDED IN iet 
In this case the. functions Ft depend both on 

the coordinates and on the spin variable a, which 

can take the two values ±Y2 • Correspondingly, 55 
depends both on the operators !/c, which act on 
the coordinate functions, and on the operators ai, 
which act on the spin functions. The operator fJJ 
can, as previously, be expressed in terms of 
basis matrices and written in the form ( 1.9 ), but 
now f (X) will contain not only functions of the 
quantities k·, H·, E 1·)·' etc., and their products, 1 1 A 

but also linear functiOns of ui, which describe 
the spin-orbit splitting at the point ko, and func­
tions of the products of ai anq the remaining 
variables. In accord with ( 1.11) all these func­
tions must be chosen so that they transform ac­
cording to the irreducible representations of the 
point group n, corresponding to the wave vector 
group Gko. It is clear that the ui themselves 
transform as the components of an axial vector, 
and :!1) must be constructed so that the terms 
entering in it satisfy condition ( 1.10 ). The con­
stants crt for the terms containing c7i are then s 
small quantities relative to the other correspond-
ing constants-of the order {3 2, where f3 = v/c. 
Since in [t] the form of the operators appearing in 
:!1) was nowhere precisely specified, but was de­
noted by the general symbol X, it is clear that 
all the results of [1J, in particular the formula for 
determining ns taking into account the invariance 
to time inversion, and the methods for construct­
ing :!1), remain valid in the present case also. 
When determining y in ( 1.18) it must be remem­
bered that ai are odd functions, since, when 
changing t into - t in it' it is necessary to 
change ai into - ai. [2] 

To construct f)) it is convenient to choose at 
on.ce Fi ( r, a; t) in the form of products of co­
ordinate functions Fi, a ( r, t) and spin functions 
a . Then the system ( 1.3 ) takes the form 

fJJ;1 (;;c) F1• {3. ~ = iliaaF;, ,lat. 
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Hence we obtain the system of equations deter­
mining the coordinate functions Fi, a: 

fl);a.. i~ (x') F1• (3 = maF;. a.tat, (1) 

where 

f/);a., ii3 (X') =(a.\ f/);j (X) I~>-

In x' in (1) the operators iT are, of course, not 
included. 

If the matrices ~ z are formed by one of the 
methods given in CtJ, it is easy to set up fJ) in (1). 
The functions f~z (X) in fJ) are now products of 
functions of all the operators X', including unity, 
and the spin operators Ur, which are linear com­
binations of the Pauli operators or the unit op­
erator, i.e., 

f~z (X) = f~z (X') o,. 
Therefore, if 

~(X) = ~ C~' A~tf~z(X), 
t, '· s, l 

then 

fJ) (X') = ~ C~' A~f~z (X'). 
t, r, s, I 

Here ~ (X') is expressed in terms of matrices 
A~) of rank 2n · 2n, which are constructed in 
the basis (/liko ·a, with the matrix elements 

Atr At A 

sl, ia.,JI3 = sl. if o,a.i3. 

Knowing the matrices ~ z it is possible to con­
struct at once these matrices also, since Ur is 
either a unit matrix or a combination of Pauli 
matrices determined from (2). 

3. fes.o. INCLUDED IN :feo 

(2) 

(3) 

(4) 

The functions (/lia = (/1 iko ·a which are the 
basis of the matrices fl) (X') in (3) transform ac­
cording to the double-valued representation T', 
which is the direct product of the representation 
To and the double-valued representation Ti/2• 
according to which the spin functions a trans­
form: T' = To x T'1.12. This representation T' 
is in general reducible, and decomposes into the 
irreducible representations T6. If the spin-orbit 
splitting is sufficiently large, it is often not nec­
essary to consider together all these represen­
tations, and it is sufficient to set up fl) only for 
one of the irreducible double-valued representa­
tions To corresponding to the extremum point. 
Of course, this matrix can also be obtained from 
(3); however, in the present case it is simpler to 
include at once :Hs.o. in it0 , and to choose as 
basis the eigenfunctions c.olko ( r, a) of the Ham-

iltonian .ie0 =~0 + ies.o.• which transform ac­
cording to the representation T 0 • As before flJ 
can be written in the form (1.9), where X does 
not, of course, contain the operators iT. Obviously, 
it is also possible to proceed when the represen­
tation T' = To x Tt/2 is irreducible. In this case 
the n2 linearly independent matrices ~l are the 
basis for constructing fi), where n is the dimen­
sion of a representation T 0. It is obvious here 
that Eq. (1.8) remains in force, i.e., these ma­
trices transform according to the representations 
Ts contained in the product T0 x 1'0*. For x0 (G) 
in ( 1.8) must now be understood the characters 
of the double-valued representation T0• If, as 
usual,[(! a new element Q = C21r is introduced to 
the group Gko, in order to change it from a 
double-valued representation to a single-valued, 
the summation in ( 1.8 ) must be made over all the 
elements of this new group ak,. and h is to be 
understood as the number of elements in it. The 
characters of the corresponding representation 
of this group will be denoted below by X 0 ( G). 
The result of the calculations will, of course, be 
the same as when the double-valued representa­
tions of the group Gko are used. It is clear that 
the matrices Asl and fsz (X) transform accord­
ing to single-valued representations, i.e., the 
representations Ts of the point group G, for 
which Q = E, while for the representations T0 
we have x'(Q) = -x'(E). 

We now consider the additional conditions im­
posed on fi) in the present case by the time inver­
sion invariance conditions. In distinction from 
( 1.1 ), we now have ief ¢ ie.0, since :fe.0 now in­
cludes an imaginary term ~s .o.. In order to ob­
tain from it(" a Hamiltonian coinciding with it, 
it is now inadequate to :replace Hi by -Hi and ki 
by - kt• and it is necessary to pe!-"form a unitary 
transformation[ 2J S', sothat S'fe:.o. s'-1 =its 0 , 

or S'o'i*s•-t = -Uij consequently S'= ay. Here,~· 
in [1J_ the Hamiltonian S.it's-1 =it,. Here S is 
the Wigner operator. s = s$ I I where So is the 
complex conjugate operator. Therefore, the func­
tions S\}1', as well as the functions \}/, are eigen 
functions of ie, corresponding to the same eigen 
values E and k. The stroke denotes, as in (1.12) 
the replacement of Hi by -Hi and of ki by - ki; 
the change of sign for fi i in :ie* is now performed 
by the unitary transformation S'. 

From the conjugate equation we again obtain 
the system (1.12 ), but now the functions ... :;/ * S (/liko ( r, a) = v 1y(/liko ( r, a) are the basis of ~'* 
in·( 1.12 ), whilst the functions (/likt( r, a) are the 
basis of fl) in ( 1.3 ). For brevity in what follows, 
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we shall not write out the arguments of these 
functions. 

If a linear relationship exists between the 
functions S<Pi and <Pi, then, as previously, ad­
ditional conditions are imposed on CJ). According 
tor2J for double-valued representations such a 
relationship occurs in case c; in cases a and 
b1,2 additional degeneracy occurs. If k 0 and -ko 
belong to different stars (i.e., in case b3 ), then, 
as previously, no additional conditions, apart 
from (I .6 ) , are imposed on fl). 

We now consider separately all the cases when 
time inversion imposes new conditions on g). 

The methods of derivation are basically the 
same as in Sec. 3 [t]; without presenting details 
we emphasize only the points where there are 
differences. 

Case c: the representations To and To* 
complex and equivalent. 

1) c1; ko equivalent to -ko. 
In this case, analogously to ( !.14 ), the func­

tions S<Pi can be expressed linearly in terms of 
<Pi: 

However, in distinction from ( !.15) we now have 
SS = -1; therefore, 

s = - s·-l = - s. 

(5) 

(6) 

Hence, it is apparent that in the present case fl) 

satisfies the relations ( I.16) and ( !.17 ), and Ail 
the relation ( !.19 ). However, since now, accord­
ing to (6), SG*S* = -SG*S-1 = - G, then from (!.19 ), 
instead of ( I.20 ), we obtain 

ns = 2~ ~ Xt (G) [X~2 (G)- rx~ (G2)J. 
GEG~, 

(7) 

Consequently, for even functions ('Y = 1) the quan­
tity ns is equal to the number of representations 
Ts contained in the antisymmetric product {To"2h 
and for odd ( 'Y = - 1 ) in the symmetric product 
[To'2J. 

2) c2; ko not equivalent to -k0 • 

In tMs case, analogously to ( I.21a ), the func­
tions RS<Pi are linearly expressed. in terms of cp~i, 

and since ft commutes with S, and 82 = -1, then 
RS<Pi = Ri'i <Pi'; but 

R~, =- R;.,s~r-

Now, therefore, in distinction from ( !.23 ), 

(R-1)tJ = - R;i1 = - R1t· 

(8) 

(9) 

Consequently,_ fl), as previously, satisfies (!.22 ), 
and ~l satisfies (I .24 ) , but, since now ( R 2 >u = 

RiJRJi = - RijRfi• the quantity ns, in distinction 
from ( !.25 ) , is equal to 

ns = 21h ~IXs (G) I x~:,(G) 12 - YXs (RoG) ~ (RoG)2 ]. (10) 
a€(i'k, 

Cases a and b: the representations T~ and 
To* real or complex non-equivalent. 

1) a1 and b1; ko equivalent to - ko 
In these cases the functions <Pi and Scpi are 

linearly independent and are united in a single 
representation. The matrix D is constructed 
on the basis <Pi and <PI= Scpi, but D'* is con­
~tructed on the basis ~i = Scpi and ~I = Scpi = 
S2cpi = -<Pi . Therefore, in distinction from 
( I.26b), now 

Correspondingly, instead of ( !.27) 

Ast, 11 =- r Ast, Ji· 

(11) 

(12) 

Therefore, for the "non-diagonal" terms ns is 
now determined by (7), and for the diagonal ones, as 
before, by ( !.8 ) . 

2) a2 and b2; k 0 not equivalent to -k0 

Here the functions cpi and <PI = RoScpi are 
united into a single representation. The matrix 
fl) is also written in this basis. Then $'*is 
written in the basis ~i = Scpi and ~I = Scpi = 
- R0cpi; therefore, instead of ( !.29 ), ~I = 
( RoRh'i fPi'• and <Pi= -(RR-1 li'i ~I'· Corre­
spondingly, instead of (I.30b) and (!.31 ), we 
obtain 

and 

A~t. 11 =- r (RR;-1};·1 (RoR)n R;!,A~t·. rr· (14) 

Hence, it follows that for the "non-diagonal" 
elements ns is determi~d from (10), while for 
diagonal elements ( !.8 ) is retained. 

From ( I.8 ), (7), and (10) the formulae derived 
previously by Sheka['J are obtained for determining 
the points of zero slope for the double-valued 
representations. 

We shall deal briefly with the methods of con­
structing the basis matrices ~.l and the matrix 
flJ for double-valued representations. 

These methods do not differ from those de­
scribed ~n[t]- Sec. 4. It is clear that each of the 
terms in flJ must satisfy condition ( 1.10 ). If the 
group Gko is equivalent to the point group fi, 
the basis for A,L can be chosen to be the eigen 
functions of this group, which can consist of the 
eigen functions of the space group Df with the 
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Table I. The distribution of J (X) and cp( J) over 
the representations r and K ( wurtzite) 

Repre- f (X) "' (J) sentation ----

r I K Odd I Even For equation{lS) I For equation (20) 

r1 kz k~; k~; 8zz; E j_; cr+ k -cr k I, J; -
K1 - - + 

r4 - - - J~- J~ 

r2 crz cr2 k2 , cr+ k_ + cr_ k+ Jz J3 
K2 z 

r" - - - J!- J~ 

r, k!,k:;e+,e_; 
J!.J2_ [JzJ!J, [Jz J_:) - cr+ k+, cr_ k_ 

Ka 

fa 
0:+,0:- k+ k2 , k_ k2 ; 8+z' E_z; J+' J_ 

[J + J;J, [J- J!J k.t' k_ cr+ k2 , cr _ kz; crz k_, cr2 k_ (J+Jz), [J_Jz J 

Note: k± = kx ±i ky, J ± = (J x ± iJy)l lf2• 
.e±z = Bxz ± iByz• e j_ = Bxx + Byy. 

corresponding half-integral values of j, and the 
matrices As z can be chosen to be the matrices 
of the functions of the components of the axial 
vector <Psz<ji), which transform according to 
the representation Ts, constr.ucted in this basis as 
was shown in Part 1, Sec. 3 of [tJ. The additional 
conditions associated with time inversion must be 
included separately. In case c1, ( 1.38) is now 
satisfied, since here also s' = 1; consequently, 
iJ can contain only even products of f (X) and 
cp(J), which do not change sign when changing 
the signs of ki, Hi and Ji. In the other cases it 
is necessary to use the general formulae given 
above. 

If the representation To is two-dimensional, 
fl) can be constructed by the method discussed in 
Part 4, of Sec. 4 of [1]_ When necessary, D can 
also be constructed here for a combined represen­
tation which includes several irreducible represen­
tations. However, if all these representations 
arise as a result of the spin-orbit splitting of 
one representation T0, i.e., are contained in 
T' = T0 x T1t 2, then the first method is more 
convenient for their simultaneous consideration. 
This method is especially convenient when the 
double-valued representation-reducible or ir­
reducible~arises from a two-dimensioaal 
single-valued representation, since then the 
construction of the matrices As z is performed 
in the simple way as described in Part 4 of 
Sec. 4CtJ_ The defect of the second method is 
the difficulty in determining the order of the 
coefficients c~r. Whereas in the first method 
the coefficients of the first order of smallness 

in {3 2 are determined at once (the coefficients 
in f (X) containing O'i ), to do this by the second 
method requires as a rule additional compari­
son. To do this, for example, one can compare 
the general expressions for fl), obtained by both 
methods, and consider how they turn into one an­
other for weak spin-orbit interaction, as is done, 
for example, in[SJ (Appendix B). It is not, of 
course, necessary to write out in explicit form 
the matrices <Ps z ( J) for both cases. 

Below we consider a number of examples 
where both methods are used. 

4. THE EFFECT OF DEFORMATION ON THE 
ENERGY SPECTRUM OF WURTZITE-TYPE 
CRYSTAI.B 

In [t] we considered the effect of deformation 
on the spectrum of wurtzite-type crystals ignoring 
spin-orbit interaction. The formulae obtained are 
valid when the splitting of the bands due to spin­
orbit interaction is small in comparison with both 
kT and the splitting caused by the deformation. 

Of the crystals in this group CdS has been 
studied best. By analyzing experimental data on 
the absorption and reflection of light in these crys­
tals, BirmanC6J and Thomas and Hopfield[T] con-

r; 
iG -D,D/6('{ 

!i' 
die_ ~~tn& 

r, -1-----'-'-r; 
a 

Genesis of the bands: a- according to Birman(•], h-ac­
cording to Thomas and Hopfield. [•] 
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eluded that the extremum of the valence band in 
CdS lies on the .:l, axis, apparently at the point r 
( k = 0 ), where the wave functions at the extremum 
point, ignoring spin-orbit interaction, transform 
according to the representation r 8 (in the nota­
tion ef(BJ). 

However, the representation r 1 also lies close 
to the edge of the band at a distance .:l c from it. 
Owing to spin-orbit interaction, the representation 
rs is split into two double-valued representations 
r; and r&, where r; corresponds to the maximum 
energy of the electrons, and r 1 goes over to r7. 
According toC8J, the spin-orbit splitting .:lso is 
smaller than .:lc but comparable with it, whereas, 
according to CTJ, .:l so is greater than .:l c. The 
geneses of the bands according toC&, 7 J are shown 
schematically in the figure. We consider the ef­
fect of deformation on the spectrum of CdS for 
both these models. Thus, we must construct flJ 
simultaneously for both the representations r 1 

and r 8• We first write down ~. using the first 
method. The characters of the single-valued 
representations at the point r calculated by 
Rashba[aJ are given in Table I in[1J. Both the 
representations r1 and rs belong to case a1; 
therefore, according to ( !.20 ), there must appear 
in ~ even functions of X which transform accord­
ing to the representations [< r1 + rs) ~ = 2r1 + 
r 5 + r 8, and odd functions which transform ac­
cording to {< r 1 + r 8 ) 2} = r2 + r 8• 

In addition to the functions given in Table III 
of [1], we now include in fl) terms with ai not 
dependent on k and linear in k. All these func­
tions are given in Table I. Also given are nine 
functions q; ( j) transforming according to the 
representations quoted above. Using these func­
tions, we form_fu in accord with the require­
ments of Part 1 of Sec. 4 [1 J: 
• 2 • • • 2 2 

flJ-= !:i1Jz + !:i2Jzcrz + !:i3 (cr+J- + J_cr+) + B1kz + B2kJ. 

+ Ba (J'tk2__ + J2__k't) + B4J;ki + B.Jik3_ 

+ B6kz ( [J zof) k_ + [J .J _] k+) + iB1 (kJ _ - k_J +) 

+ i (~1 + ~aJ;) (cr+k_- cr_k+)+ i~2 (J'tk_cr'_- j2__kJJ+) 

+ i~4U2{ [J zof +] k_- [J zJ _] k+) + i~okz (IJ zof +] (J_ 

- [Jzof_] cr+) + C18zz+ C28J. + C3J;8zzi+ C4J~8J. 
+ C5 (J2_8+ + J't8J + C6 (IJ zJ +] 8+z + [J zof _] Lz). 

Here (15) 

2 [J;J/) = J1J I+ J1J;, 

8± = 8xx ± 2i8xy - 8yy, 8 J. = Bxx + Byy, 

k± = kx ± iky, k}_ = k~ + k~. 
We shall not write out 9J in a general form, but 
consider limiting cases. 

1. .:lc ~ .:l so. In this case it is possible to 
ignore the representation r 1. Then ')) must con­
tain only matrices which transform according to 
the representations ra X ra = r1 + r2 + r5, i.e., 
1, J~, J! and J:. Since the representation r 8 is 
twofold degenerate, and the functions f (X) were 
chosen in accordance with the requirements of 
Part 4 of Sec. 4E1J, the matrices of these opera­
tors, according to ( 1.46 ), can be put, respectively, 
equal to I, O"z, O"+' and u_. (In fact, this corre­
sponds to a choice of the basis functions in the 
form u ::1:: = ( ::1:: X - iy) I n.) 

If we now write, in accordance with (1.4 ), the 
matrix fl) in the basis u_ 01 +, u+ 01_, u+ a+, u_ c:t., 
we obtain 

').- ll2 F a I 
p• lv-!:i2 r a· 

flJ= a· r '), + !:i2 0 (16) 

r a 0 '). + fl2 

where A= B1k~ + B2ki + C1Ezz + C2E1, F = -ii-3~+• 
G = B 3k! + C3E+, I= ii-3 1k_, .:l 2 = .:lso/2. Here the 
constants fji are of the first order of smallness 
with respect to i-3 2, and the remaining constants of 
zero order. If we omit the terms associated with 
the deformation, this matrix coincides with that 
obtained previously by Rashba and Sheka.(BJ 

The secular equation II flJ - E II = 0 according 
to (16) has the form 
(lv- £')2 [(!.- E' - 2!:i2)2 - I F 121 - 2 (lv- £') [('), - E' 

- 2!:i2) (I I \2 +I a 12)- rpa·- Ira] 
+ (I a 12 - i I 12)2 = 0. (17) 

Here E' = E - .:l 2, i.e., the energy of the electrons 
measured relative to the edge of the valence band. 

If, in this equation, of the terms proportional 
to i-3 2, only those not dependent on k are retained, 
its solution will be 

E' = '),- !:i ± {!:i2 + mk}. + 2B3C3 [(k;- k~) (8xx- 8uv) 

+ 48xykxky] + Bi [(Bxx- Byy}2 + 48;y]}. (18) 

Close to the extremum, i.e., for E' ~ .:l so 

E = '), + 2B3C3 [(k; - kz) (8xx - 8yy} + 48xykxkull flso· (19) 

It follows from (18) that when .:lso exceeds both 
kT and the splitting of the bands due to the defor­
mation, the deformation causes only a change of 
the effective masses. These changes are rela­
tively large-of the order C3 E/ .:lso; comparatively 
large values of the piezo-resistance constants 
llxxxx, llxxyy. and llxyxy. can therefore be ex­
pected here; however, in distinction from the case 
considered in Sec. 5 of [iJ, these coefficients are 
now proportional to C:/.:lso• i.e., they do not de­
pend on temperature. 
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Table U. Characters of the double-valued 
representations for the point .A. ( wurtztte) 

Numbe1 As ~~ of ele- Elements of the class !!.1 
ments 

i (eiO) 2 2 2 

i (£jo) -2 -2 -2 

2 ( -,~to) ll,,t\ 2 y3 Tll< -l"3 T]k 0 

2 ( 11:. F!jo ) i -2 

2 (II' "PjO) -i -i 2 
,, 8 

2 ( s-~to) II e. lis 2. -¥3 Tll< l"3 Tll< 0 

2 ( ('Ia 631~) 
\ 8t 8 0 0 0 

6 (al, a2, aajO), (~, cr;, cra.\0) 0 0 0 

6 ( ' ' 'Ito) (-• -• _, jtoJ al, az, aa2, al,a z.~ a 2, 0 0 0 

Note: 71k = exp likzoto/21; for the point r the quantity 77k = 1. 

2 . .A.so ~ .A.c- In this case we can consider 
only the two split-off half-integral representations 
r& and r7. The corresponding expression for f)) 

can be obtained from (15); it is, however, more 
convenient here to use the second method, and to 
consider only these two representations. In 
Table II are given the characters of the double­
valued representations at the point .A. , calculated 
by Rashba and Sheka.CeJ* 

The representations re and ry belong to 
case c1, and therefore, according to (7), f)) con­
tains even functions of X which transform ac­
cording to the representations { ( r! + r 8 ) 2} = 
2r1 + r 5 + r8, and odd functions which transform 
according to [< r! + r&) 2] = 2r2 + r 3 + r 4 + r 5 + 
r 1• These functions can be chosen from Table I. 
In the same table are given sixteen corresponding 
functions ({' ( J) that transform according to these 
representations. Here, as shown above, can ap­
pear in f)) in case c1 products only of even func­
tions of ;;c and J, or only of odd. 

We construct cJJ following Part 1 of Sec. 4 of cq 
5J = b1J~2 + B1k~ + !!_2k}_ + ~; (J~k:_ + J:k~) + B4lik~ 

+ B5J~2k}_ + V; Belzkz ((J.J..J k_ + [J,J_] k+) 

+ i"Jf ~ B 7 (J +k_-J_k+) + fJf ~ ~1 (11:21 +I k_ (20) 

- [J;2J_l k+) + C18zz + C2e.1 + :Sea (J~e- + J:e+) 

+ C~J~28zz + Cs1~28 .1 + V ~ Cs ( [J zl +) 8_z 

*Throughout the tables of the groups the following nota­
tion is used for the operators: 8 - rotation, p - reflection 
rotation, u ·- reflection. 

Here 
J•,2 = 2.. ( ~- J2) J:2 = ~- J;, 

z 2\4 Zt 4 

2 [J,Jk] = J;Jk + Jkl;. 
This choice of the numerical coefficients in (20) 
is made with the aim of obtaining a matrix 5J 
closest to (16), to simplify the comparison of the 
two cases. The constants Bi and Ci in (16) and 
(20) are not, of course, identical. In the approxi­
mation of weak spin-orbit coupling, these con­
stants can be expressed in terms of one another 
by the use, for example, of the method mentioned 
above due to Luttinger.C5 J 

We shall not make such a comparison, but only 
point out that from (15) and (20) it follows at once 
that all the constants Bi and Ci in (20) are of 
zero order in ~ 2 • Only the constant~ 1 for the 
cubic term in Ji is of the first order of small­
ness in ~ 2 • Of course, the remaining constants 
can also include contributions of the same order. 
The complete set of functions Y~ with j = % are 
the basis for f1). Therefore the actual choice of 
the representation for ({'( J) can be arbitrary 
here. The corresponding matrices are given, for 
example, in,Cto]~· 171. In the representation 
Y!{}2 • Y!{}2 , YM2 , Y!'h, the matrix 5J takes the 
form 

A.+ij F G I+ H 
F* A.+O I*- H* G* 

:JJ= G* 1- H A. 0 

!* + H* G 0 A. 
where 

I. = B1ki + B2kl + C1ezz + C2e.1, 

0 = !\ + B4k; + Bsk'i + C4ezz + Cse..L, 
2 . 

F = - V:f t (B7 + ~ 1) k+, G = B3k! + C3e . .., 

(21) 
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The secular equation II 5J - E II = 0 has the 
form 

(A.- E)2 !(A.+ e- E)2- IF 12J_ 2 (A.- E) 

x !(A. + e -E) (I I 12 + I H 12 + I a 12) 

- Fa• r - F*GI] + I G 14 - 21 GJ2 (I I 12 - I H 12) 
+ (I2 - H2) (r2 - W 2) = 0. (22) 

It is not difficult to verify that here, just as in 
(17), kx and ky appear in the terms not containing 
£ only in the combination kf = ki + k~. This means 
that in the undeformed crystal the extremum in the 
lowest band rT, is in both cases a ring-with k1 = 
const. However, in distinction from (17), the term 
in (20) linear in k is not small, since it arises, 
not due to the spin-orbit interaction, but as are­
sult of the interaction of the two bands r. and r,. 
Therefore the extremum can be far from the point 
k = 0, where terms of the fourth order in k, not 
included .in (20), play an important part. 

In the uppermost band r;. which corresponds 
to the minimum energy of holes, the extremum is 
at the point k = 0. Close to this point for 
E ( k, € ) ~ 61 we have 

E , B~ {k2 1 4Ca (k2 k2 =IV+ -6- j_ T Jf!ftJ ( x- y) (Bxx- Bgy} 

+ 4kxkyBxy]} + ~ {BsCs [(k; - k:) (Bxx- £1111) 

+ 4kxkyBx11 l + BsCs (kxkzBxz + k11kzByz)}. (23) 

Here we neglect terms of the order {3 2k, and also 
ignore the splitting of the bands caused by the de­
formation and proportional to Ek, since this 
splitting leads to effects of higher order in €. It 
can be expected that the coefficient B,/6 in (23) 
greatly exceeds B2. In this case the principal 
contribution to m! = 112/2 ( B2 + Bi/6) is pro­
vided by the interaction of the bands r, and r •. 
and the change of the corresponding effective 
masses under deformation in the plane xy is 
basically determined by the first term in (23) 
proportional to B~3/6 2 . 

We note that, in distinction from (19), a large 
change of the effective mass and, consequently, 
of the conductivity also, can occur·not only under 
deformations £xx, £yy, and Exy, but, as seen 
from (23), also under deformation Exz and £yz· 

By the use of Table I it is also easy to con­
struct the operator 5J for an arbitrary point on 
the fl. axis, where an extremum can also exist. 
At these points time inversion imposes no ad­
ditional conditions on $, and in it there can ap­
pear products of any even and odd functions of 
X and J which transform according to conjugate 
(equivalent) representations. 

We shall not linger on this, but consider the 
spectrum at the point H3, where there is also a 
point of zero slope in wurtzite. 

3. Spectrum for the representation H3• To 
construct 5J we use the first method. The char­
acters of the single-valued representations at 
the point H are given in Table n of [tJ. As shown 
in [1], the representation H3 belongs to the case 
a2, and, according to (I .25 ) , there can appear in 
5J odd functions transforming according to the 
representations r 2 and r 5, and even functions 
transforming according to r 1 and r 1. 

These functions are given in Table I. The ma­
trices Asl can be chosen according to ( !.46). 
The basis of these matrices will be denoted as 
IPt• '7'2· 

5J = Al [Blk~ + B2k'i + i~l (cr+k-- cr_k+) + CleZZ 

+ C2e.ll + A 2 ~cr. + A31 [B3kzk+ + C3e+z 

+ i~2azk+ + i~3cr+k.l + Aa2 [B3kzk_ + C3e-z 

- i~2cr.k_- i~scr_kzl. (24) 
In the basis ( q> 101+, q> 201_, q> 101_, q> 201+) the matrix 
5J is 

A.+~ F a 1+H 

5J= 
F* A.+~ 1*-H* a• 
a• 1-H A.-~ 0 

(25) 

1*+H* a 0 A.-A 

where 
A. = B1k~ + B2k'i + C1ezz + C2e .l> 

I = Bakzk+ + Csez+• H = i~2k+, 
F = i~skz, G = i~ 1k_. 

When the terms proportional to £ are ignored, 
this matrix agrees with that obtained previously 
in [BJ. In form (25) is similar to (21), and the sec­
ular equation U 5J - E II = 0 is similar to (22). 
Of course, the explicit form of the matrix elements 
in (25) and (21) is different. If, of the terms pro­
portional to {3 2 in 5J, we retain only those inde­
pendent of k, the solution of the secular equation 
is of the form 

E =A.±{~+ B~k'i_k~ + 2BaCa (Bxzkxkz + Byzkukz) 

+ B~ (e~. + e~z)}'1'. 
(26) 

Close to the extremum point for E' ~ fl. 

E' = E- ~ = A.± (BsCa / ~) (kxkzBxz + kvkzB11z). (27) 

Thus, in distinction from (23) and (19), a sig­
nificant change of the effective masses occurs here 
only for deformations Exz and Eyz• and large 
values of the constants llxzxz = llyzyz can be 
expected. 

Consequently, the study of the effects of piezo­
resistance in these crystals can serve as one of 
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Table m. Characters of the irreducible repre­
sentations for the point r (germanium) 

Single-valued Double-valued 
N umber 

I 
f ele- Elements of the class r± r± 
ents 1 2 

0 
m 

1 (e!O) } 1 (eiO) 1 1 

6 (b !\O), (6!\0) 1 1 

6 (64\-c ). (6 :1-c) } 1 -1 
(64\t ). (6!\t) 6 

12 (62jt ). (62\t) 1 -1 

8 (6ajo), (6 :lo) } 1 
8 (6sjo), (6 :!o) 

48 (i!T) X z 

the methods for determining the positions of the 
extremum points. 

5. THE CHANGE OF THE ENERGY SPECTRUM 
DUE TO DEFORMATION IN LATTICES OF 
THE GERMANIUM TYPE 

We shall not consider here the spectrum at all 
the points of zero slope where there are degenerate 
representations, but limit ourselves to two of them 
only: the points r at the center of the Brillouin 
zone, and X at its edge on the [001) axis. 

1) The point r. The characters of the single­
valued and double-valued representations of r are 
given in Table m.CHJ At this point there are three 
pairs of degenerate single-valued representations. 
Two of them, rij and ri5, are threefold degen­
erate (without spin); due to spin-orbit interaction, 
these representations break up, respectively, into 
r1' + rf and ri + rf. To construct the spec­
trum for the fourfold degenerate representations 
rf, derived from r~ or r~. it is more con-

1 

I rfz I r~ I rii '± r6 I '± I '± r7 r9 

2 2 4 
2 3 3 -2 -2 -4 

2 -1 -1 0 0 0 

v2 -v2 0 
0 1 -1 

-v2 V2 0 

0 -1 1 0 0 0 

1 1 -1 
-1 0 0 

I -1 -1 1 
+X (z) 

venient to use the second method. The functions 
f (X) and <p ( J) transforming according to the 
corresponding representations r are given in 
Table IV. Since the representations r{ belong 
to case c1, then there appear in :JJ, according 
to Sec. 3, only products of even functions which 
transform according to the representations 
{rf2 } = ri + ri2 + r25 , and odd functions which 
transform according to [rf 2] = r2 + 2ri5 + r25• 

Therefore !J) will have the form 

1tJ =B1k2 + B2 (J1k2 + J2k1) + B3 ([Jxiul kxky 

+ [JxJzl kxkz + [JuJzlkukz)+ C1e + C2 (J1e2 + J2e1) 

+ c3 ([J xi y] exy + [J J zl exz + [J yJ zl eyz), (28) 

h _ 2 R2 2R2 R _ *· ( R2 J2 k2 w ere Rt- Rx + w :Y + w z, 2- Rt i- i' i 
or Eii and w =e 2 '~~' 1 / 3 ). 

As is well known, the wave functions in ger­
manium and silicon at the extremum point of the 
valence band transform according to the repre­
sentation r25 , where the upper of the split-off 
representations is - r;. Thus (28) describes the 

Table IV. The distribution of f {:)'£') and <p( J) over 
the representations r (germanium) 

Repre-J 
q> (J) 

sentation f (h) f (e) f (a) f (a, k) 
Odd Even 

r+ 
1 

k2 e I 

r~ kxcrx + kycry + k2 ::i 2 

r+ J,JyJz+JzJix 2 

r; 
<. kl, k. E!J E2 

r~. (kcr)v (kcr)2 

r:. crx, ay, csz Jx, Jy, Jz, J!· J~· J~ 
r~. kx, ky, k2 (kxcry), (kycr 2 }, {kxcrz) 

r;. kxky, kxkz, kykz 8 xy' BXZ' Byz Vx, Vy, Vz 
r;, [kxcry], lkxcr2 ], [kycrz] 

Note: R1 = Rx +wRy+ W 2R 2 , R2 = R~· and R;-+ k~, 8;;, k;cr i' J~, w = e21ti/s, V x= (Jx(J;- J~)] etc. 
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Table V. Characters of the representations 
for the point X (germanium) 

Nwnber I Elements of 

I 
II Number Elements of I X1,21 of ele- the class x1.2 Xa,4 of ele- the class Xa.4 

ments 

1 (e\ 0) 2 2 

1 (el t) -2 -2 
1 (62Z I 0) 2 -2 

1 ( 62Z It) -2 

4 (P4z• P~; / O,t) 0 

4 ( 62X' 62y I O,t) 0 

2 (crxy• crxy I 0) :+-2 

spectrum obtaining in these crystals. Ignoring 
terms proportional to €, for germanium 'i! in 
operator form has been given in CsJ, where all 
the coefficients Bi are of zero order in [3 2; it is 
not difficult to show that this is also true for the 
coefficients Ci. The change of the energy spec­
trum of p germanium under deformation has been 
considered in detail in[12J, where the matrix 15:! 
was obtained with the aid of perturbation theory 
(equation (13) ). The same results are, of course, 
obtained from (28). We shall not, therefore, con­
sider this question in detail here. We merely 
establish the correspondence between the coef­
ficients in (28) and inC 12 J 

B1 = 1/4 (4A- 9B), B 2 = B, 

Bs=2f}/3D, C1 = 1/,(4a-9b), 
(29) 

c2 =b, Ca = 2fV3d. 
We now consider the spectrum for the twofold 

degenerate representation r~. Taking into ac­
count spin-orbit interaction, this representation 
goes over to rt, i.e., in principle 5J is also 
given here by expression (28). But now some of 
the coefficients are of order {3 2• It is better, 
therefore, to use the first method: 5J will contain 
even functions of :It transforming according to 
[r~2] = ri + ri2• and odd ones transforming ac­
cording to {r/22} = r2. 

2 

0 

0 

0 

ments 

2 (crxy• crxy / t) ;-2 0 

2 (i IT, T + t) 0 0 
2 (crz IT, T + t) 0 0 

4 (64Z' {)~: IT, T + t) 0 0 

4 (crx,cryl-r,-r+t) 0 0 

2 (l\xyl T),(62Xy J-r+t) 0 ±2 

2 (6zxy/T),(62XY I -r+t) 0 :t'2 

It is apparent that 5J contains no terms of 
order {3 2 which do not depend on k or are linear 
in k. Quadratic terms of this order we shall ig­
nore. Then ftJ is 

ftJ = B1k2 + B 2 (J1k2 + J 2k1) + C18 + C2 (J 182 + J 281). 

(30) 
Since this representation is two -dimensional, the 
matrices J 1 and J 2 in accordance with ( 1.46) can 
be chosen to be equal to u + and u_ . Hence, 

E = B1k2 + C18 ± {B2 ( k4 - 3 2]_ kJkJ) 
' •>J 

+ B 2C2 ( 3 2] k78u- k2e_) + 1/£2 2] (eu- eii)2}'/• (31) 
i i>i 

This differs from Eqs. (14)-(17) of(121 only in the 
absence of terms containing the constants D and 
d. Therefore, according to [tsJ, in this case the 
piezo-resistance coefficients 11 1111 and 11 1122 will 
be large, but the coefficient ~It 212 will be small. 
It is interesting that for the representation r~ 
in the undeformed crystal the degeneracy is not 
lifted along the [ 111) axes, where the term in B2 

in (31) goes to zero. 
2) The point X. In conclusion, in order toil­

lustrate the ways of constructing ffj in cases when 
the wave vector group is not equivalent to the point 
group, we consider the point X. The characters of 
the representations in this group are given in 

Table VI. Characters of the representations 
of the groups D2dl and D2d 

Nwnber of I 
elements 

1 
1 

2 

2 

2 

8 

Elements of 
the class 

e 
li2Z 

P,z• P~1 

11 zx' 5.u 
a xy• 0 xy 

iXz 
(only for D2d /) 

1 
1 
1 

1 

1 

1 1 1 2 
1 1 1 -2 

1 -1 -1 0 

-1 1 -1 0 

-1 -1 1 0 

±.X (z) 
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Table VU. The distribution of f(X) and tp( J) 
over the representations D~I and D~ 

Representation 

D2dl D2d 
f (k, •· a) <p (J) 

A+ k~. k~. e22, E .L 1 
A1 I 

A-
1 a 2k2 , axkx + aiY 

A+ az 
Jz 2 A2 

A- axky-aykx 2 

B+ 
1 

81 
k~- k!, Exx- EYY 

J!-J~ 
B-

1 ~xkx-aiY 
B+ 

2 82 
kxk11, exy { J XJ y} 

B-
2 k 2 , axky + aJx 

£+ 
E 

kxkz, kykz; &xz• E:yz; ax, all 

B- kx• k 11; a.kx• a2ky; a,k2, ay~z 

Table v.CttJ The point X is the point of zero 
slope for the representations X3, 4 • These repre­
sentations belong to the case at, and for them 
there appear in '!D even functions which transform 
according to the representations X, coinciding 
with th~ representations of the corresponding point 
group X= D~I. appearing in [x~. 4 ] = Ai + Bi" + 
B2, and odd functions transforming according to 
{x~ .• } = A2. 

The characters of the representations of the 
group D2(1I are given in Table VI, and the distri­
bution off (.'rt) over these representations in 
Table VII. 

Then 

fiJ = A 1A. + iAa~1 (axkx- a11k11) +A, (Bskxk11 + C:iex11), (32) 

where A= Btki + B 2k3_ + Ct€zz + Cz€1.~ 
In the case considered, since the representa­

tions X 3, 4 are two-dimensional, according to 
(1.43) .the matrix At = 1, and As and ~ can be 
chosen to be, respectively, CTx and CT • 

For comparison, we write down ?, using the 
general method given in Part 3 of. Sec. 4 of [tJ. 
By excluding the element (iiT.) we obtain, in 
place of the group X, the point group D2(l. of 
which the characters of the representations are 
given in Table VI. The representations x3 4 . . 
go over mto E; therefore ~ contains f (:!C) and 
IP(J), transforming according to Ext= At+ 
A2 + Bt + B2• 

We take these functions from Table VII, where 
the correspondence of the representations of the 
point group D:ni and the group D:n is shown. We 
at once include in .~ only those f (X) which appear 
in (28), and then obtain 

.f\ • A 2 .... 2 ... A 

~=A.+~~~ (Jx- J 11 ) (a,.k,.- a11k11) 

+ 2[JxJ11] (Bskxk11 + Csex11). (32a) 

• 2 2 ·r i The matrices Jx - Jy and 2 JxJy. = JxJy + 
JyJx in the representation 11± = ( 1 I 2 ) ( "'x - iy) 
are once again equal to CTx and CTy· 

The solution of the equation U ~ - E II = 0 
has the form 

E (k, e) = A. ± {(Bakxk11 + Csex11) 2 + ~~k}_}'1', (33) 

i.e., the twofold degeneracy is retained. Close to 
the extremum in the undeformed crystal the sur­
faces of constant energy have the form of a torus: 

(34) 

where k I = fJ t I 2B2• As Rashba [aJ showed, semi­
conductors with bands of this type have a number 
of interesting peculiarities. For large k terms 
with fJi can be neglected. Then 

E (k, e) =A. ± (B 3kxkg + C3ex11). (35) 

Here the surfaces of constant energy are ellip­
soids, where deformation causes splitting of the 
band at k = 0, i.e., the relative displacement of 
these ellipsoids. Large changes of resistance 
under shear deformations can, therefore, be ex­
pected. In addition, due to the relative displace­
ment of the extrema situated at non-equivalent 
points of the star k 0, i.e., on the axes x, y, and 
z, there will be large effects also for the defor-
mations £xx• £YY and €zz· . 

As is well known, the extrema in n-8i are 
disposed along the [100) axes, but in the interior 
of the zone. Thus, there should be observed only 
effects associated with the displacement of the 
extrema, and shears £xy• £xz, and £yz should 
not cause resistance changes. Experimentally 
the value of the constant Y2 (IT1111 - IT 1212 ) in n-8i 
is, in fact, approximately eight times larger than 
n121z· IJ&J 
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