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Detailed formulas are derived for the frequency and angular distributions of the scattered 
radiation. Numerical estimates indicate a quite substantial magnitude for the effect, which 
makes possible its use in determining the velocity of "zero sound" in He3• 

SoME time ago, we investigated the problem of 
the scattering of light in liquid He3 .CtJ One of the 
objects ofthis work was to examine the possibility 
of using Rayleigh scattering of light to determine 
the velocity of the so-called "zero," or high-fre
quency, sound ( WsT » 1, where T is the time be
tween collisions of the quasi-particles). The oc
currence of this form of sound was predicted by 
Landau on the basis of his theory of a Fermi 
liquid. [2•3] Calculations[!] showed that the scatter
ing of visible light is extremely small, and that 
detection of this effect would evidently lie beyond 
the bounds of experimental feasibility. However, 
since the scattering increases rapidly with fre
quency ( ~ w4 or w5 ), it was clear, even then, that 
an increase in the frequency of the electromag
netic radiation might significantly improve the 
conditions for observation. 

Now, thanks to the discovery of the Mossbauer 
effect and the possibility it provides for the meas
urement of relatively insignificant variations in 
the energy of 'Y quanta, one may raise the question 
of the feasibility of determining the velocity of 
zero sound in He3 using Rayleigh scattering of 'Y 
quanta. As we shall see below, this allows the ef
fect to be enhanced by approximately five orders 
of magnitude, as compared with visible light. 

Inasmuch as the change in the wave vector of 
the 'Y quantum equals the wave vector of the sound 
quantum, it is the angular range for which this 
latter quantity is sufficiently small which interests 
us: 

q = 2 ( w!c) sin (0/2) ~ po!li, (1) 

where Po is the Fermi boundary momentum. Only 
in this region does the concept of sound have 
meaning. The quantity Polti is of the same order 
as the reciprocals of the interatomic distances. 
To fulfill condition (1), therefore, we may employ 
the formulas already derived,[!] except that for 

the dielectric constant D we must use the expres
sion 1 - 47TNee2/mew2, where Ne and me are the 
number of electrons per unit volume and their 
mass, respectively, while w is the frequency of 
the 'Y quanta. The derivative of D with respect to 
the density of atoms, aD/oN, clearly equals 
- 27Teo/mew2, and in consequence, the coefficient of 
w4 becomes simplified while the extinction coeffi
cient dh ceases to depend upon the frequency of 
the incident radiation (or, for a given q and tlw, 
upon the change in frequency of the 'Y quantum). 

It is especially desirable to obtain the entire 
dispersion curve from ordinary ( WsT « 1) to zero 
sound ( WsT » 1 ). In this case the final equation 
(23) of[1] is sufficient, since it was derived under 
the assumption that T tlw » 1. 

In view of this fact, we have made several 
changes in the derivations given previously.[!] In 
place of the form used in that paper for the colli
sion integral, I ( n) =- on/T, where on is the 
change in the distribution function, we have taken 
it in the form 

1 [' dO ' dO I ( n) = - - ( on - \ on , ___ , - 3cos 0 \ on cos 01 ,.::.'o ). 
' ·. .: 'i.[ .l ·i:T 

(2) 

This form for the collision integral insures that 
the conservation laws for momentum and particle 
number will be fulfilled, and makes it possible to 
go over to the hydrodynamic approximation (i.e., 
the case WsT « 1 ). 

We have already used this kinetic equation to 
investigate the dispersion of sound.[4] In addition 
it is assumed, as in [4], that the function f ( x) in
troduced in Landau's theory,C2J includes not only 
the zeroth, but also the first harmonic: f = fo 
+ f1 cos x. The rest of the calculations corresponded 
completely to those performed in [i]. 

As a result, the extinction coefficient turns out 
to be 
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1 ( I I 2 ") dQ d A • X 2 1 COS u 4n nW, 

[ /i!!.ro !]-' t il!.ro-r- 1 o = iqvr:, 
n (11w) = exp ---y - , '<> = iqv-r ' 

s i; + 1 3 
V=Pofm*, W=2ln£-1-l' Fo=foPom*jn•ti; (3) 

m* is the effective mass of an excitation in He3, 

m* = mHe' (I + FI/3). 

In the limit qvr « 1, ~WT « 1, we obtain 
from Eq. (3) 

4 ( e2 J 2 Porn• dh = ,-5 --. -i"' nL1wn (11w) 
l! mec 1 Jt n' 

( 1 + F ,j3)2 ,; (qv)4 

x +(I + cos2 9) ~~ dL1w; 

A (s) = _1_- (w (s) + 1)•- 3w• (s), 
s2 -1 s 

B(s)=C.~ 1 -w(s))(l + ~')-2w2 (s)s2F,, 
s s+ 1 I w (s) = 2 1n 5 _ 1 - , 

while the quantity s satisfies the equation 

w (s) = [Fo + F1s2/(1 + F,/3)]-1. 

In the limit as T - oo we obtain from (6) 

dh1 = -4
1 (-~ Y P~';:: 1iL1wn (L1w) (1 + ~1 ) w2 (s) tnec 1 n u 

(7) 

u1 = v [1/a (1 + Fo) (1 + h/3)!'\ (4) x[s•~ 1 - w (s) (1 + ~')-2w2 (s) s•Fir 

u1 is the velocity of sound in He3 (see [2] ). It can 
readily be seen from Eq. (4) that the frequency 
distribution corresponds to two narrow Rayleigh 
satellites whose frequencies are displaced relative 
to that of the fundamental line by ~w = :1: u1 q. The 
absence of a central line corresponding to the en
tropy fluctuations is due to our having neglected 
effects of order 1 - cplcv in choosing a collision 
integral of the form (2). Letting T- 0, we ob
tain from (4) 

an= i ( rn::. r ~~~: tiL1wn (11w) 

X (1 + Fo)-1 ~ (1 + cos2 6) dQdL1w. (5) 

In the opposite limit, qvr » 1, we obtain two 
narrow satellites displaced from the fundamental 
line by .6w = :1: u2q, where u2 is the zero sound 
velocity, and a central plateau for I ~w I < qv. For 
the satellites we have 

A (s) {(I ,:1 1 )2 X B• (s) W I - u2q 

' ___!__[A(s) s" (1 + II__)]•}-'_!_ (I +cos2 9)~dl1w (6) 
I ,;2 B (s) 3 2 4:rt ' 

where 

X [II (11w - U2q) 

+II (11w + u2q)l f (1 + cos2 6) dQdL1w. (8) 

The central plateau depends little upon T for 
qvT » 1. We shall give, therefore, only the ex
pression for the limit r-oo: 

dh = __!_ (~ ') 2 Porn* n!1 n (.:1w) (I + .f2.) 8 (qv -I !!.ro I) 
2 8 rn c2 :rt2/i3 w 3 qv e . 

x{[l+ ~'-w(S)(Fo(1+ ~')+s•F,)J" 

+ s•:·[Fo(l + ~') + £2F,JT'~(l +cos• 6) dQdL1w, 

(9) 

where 

!!.ro ~ 6 1 +£ s = qr; , w = 2 ln 1 _ i; - I, { 1 x>O 
E>(x) = 0 x<O' 

It should be pointed out that whether one or the 
other of the limiting cases occurs depends solely 
upon the relation between qv and 1/r; i.e., upon 
the scattering angle of the light. This is clear in 
the case qvr « 1, since u1 ~ v and .6w = qui ~ q.r 
« 1/r. For qvr » 1, however, both T~w » 1 (for 
the satellites, since u2 ~ v, and for the edge of 
the Doppler plateau) and r~w « 1 are possible. 
It can be shown with the aid of Eq. (3) that the case 
qvr » 1, r~w « 1 is in actuality not a special 
one, but is described by Eq. (9), obtained under 
the assumption that ~w ~ qv » 1/ r. 



SCATTERING OF GAMMA RAYS IN LIQUID He 3 391 

Let us now make some numerical estimates. 
According to the most recent specific heat meas
urements on He3 at low temperatures [5] the ratio 
of the effective mass to the mass of the He3 atom 
m* /m = 2. The remaining parameters (see [G]) 

are: p0/ti = 0. 76 x 108 em - 1, and u1 = 183 m/sec, 
whence F0 = 6.95, F 1 = 3, v = 79.5 m/sec, s = u2/v 
= 2.45, u2 = 195 m/sec, and w ( s) = 0.0625. 

For observation of the satellites it is essential 
that condition (1) be fulfilled. Inasmuch as we are 
dealing with small angles, this condition may be 
written in the form 

0 < (:h = cpo!liw. (10) 

For tiw....., 10 kev this yields e1 ....., 0.15 f'::! 9°. 
Further, the degree of "quantization" of the 

process is of interest. This may be established by 
comparing ti~w with T. For the acoustical satel
lites quantum effects begin to play a part for 
angles exceeding 

lh ~ cT/Iiwu = 10-2T (T in degrees). (11) 

It may therefore be presumed that a purely quan
tum situation prevails for the acoustical satellites 
at temperatures below 0.1 o K and y-quantum en
ergies greater than 10 kev. It follows from this 
that only the Stokes satellite with ti~w » T will 
be observed. 

To resolve the question of which form of sound 
will be observed it is necessary to compare qv 
with 1/ T. In accordance with [G] and Landau's 
paper [a] the quantity T, which for ti~w « T has 
the form T = 2.3 x 1o-12T-2, ( T in degrees), must 
in the case ti~w » T be replaced by 

-r = 1.6 ·1012 (llwr2 , sec (ilwin sec-1). (12) 

The limiting angles up to which the zero-sound 
satellite is observable are given by the relation 
~w = u2q ....., 1/ T, or 

Sa ~ 1.5 · 1012 c!wu. (13) 

Angles smaller than e3 correspond to zero sound. 
Substitution of numerical data shows that e3 closely 
approximates e1, as determined by Eq. (10). (The 
order-of-magnitude agreement is quite obvious, 
but in this case there is also numerical agreement). 
As a consequence, only the zero-sound satellite 
will be observed over the whole angular range for 
which the study of acoustical satellites is feasible, 
for the energies and temperatures under consider
ation. 

The amplitude of the scattering can be esti
mated with the aid of Eq. (18). As a result, one 
obtains 

dh = ~ d~~ dilw = 5 · IO"IiwOdQ, em - 1 . (14) 

For an energy ti w = 10 kev and for angles ....., 1 o, 

this yields di1 f'::! 10-4dn cm- 1• This is 105 times 
as great as the amplitude found for the optical 
region. This should clearly be regarded as a 
limiting figure. An increase in the y-quantum 
energy does not lead to enhancement of the effect, 
since, in accordance with the condition (10), it is 
necessary in this case to take proportionately 
smaller scattering angles. 

One of the characteristics of scattering in the 
zero-sound region is the central plateau. This 
corresponds to tiflw < vq; i.e., its edge is ap
proximately half-way between the undisplaced line 
and the satellite. The intensity of the plateau is 
given by Eq. (9), and is nearly independent of ~w. 
For ~w/vq = %, substitution of numerical values 
yields 

dh2 = 2 · 109d (li!lw) dQ,cm - 1. (15) 

Over the whole plateau one finds, for ti w = 10 kev 
and e = 1° 

d/2 = ~ d~~ dLlw = I0-7 dQ, cm- 1 . 

Finally, let us consider the problem of y
quantum scattering in liquid He4• The appropriate 
formulas have been derived by Ginzburg. [7] Set
ting BD/BN = - 27Te2/mew2 and taking the quantum 
factor into account, we obtain for the normal 
doublet 

dh1 = + (e2lmec2)2 (p/m2ui) liLlwn (ilw) [o (ilw- urq) 

+ o (Llw + U1 q)] T (1 + cos2 0) dQd!lw, (16) 

where p is the density of the He4, m is the 
atomic mass, and u1 is the first-sound velocity. 
The intensity of the anomalous doublet associated 
with second sound is smaller by the factor 

(cp!cv - 1)/( 1 - u:lui)2 

The restriction (10) on the angles and the es
timate (11) of the quantum limit remain approxi
mately correct for He4 as well. At temperatures 
below 1° K, therefore, one can study a purely 
quantum situation. In this case we find, from Eq. 
(16), the intensity for the Stokes satellite 

dlr = ~ d~~~ dilw = 4 · 1047iw8dQ, cm-1 • 

The intensity of the anomalous doublet below 
1 oK is practically zero. 

In conclusion, we express our thanks to 
Academician L. D. Landau for his consideration 
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of this work, and to V. P. Peshkov, at whose 
initiative this calculation was undertaken. 
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