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The low energy limit for the yN scattering amplitude is derived with the aid of single-nu
cleon invariant amplitudes. Subsequent terms in v for Q2 = 0 and the expression for the 
limiting value of the first derivative in Q 2 as Q 2 - 0 can be obtained by taking into account 
the conditions of crossing symmetry. 

BMW" [ 2W Q2 ] 
T• + T. = (W•-M•)• I+ M (W +MJ• (Ra -R•) 

16W3Q2 

- (W + M)2 (W"- M•)• (Rl - R•), 

where W is the total c.m.s. energy and v and 

l. Low, Gell-Mann, and Goldberger showed [1] that 
the condition of relativistic and gauge invariance 
makes it possible to express the limiting value of 
the amplitudes for the scattering of low energy y 
quanta on spin-1/ 2 particles and the limiting value 
of the derivative of the amplitude with respect to 
the frequency as v- 0 in terms of the charge and 
magnetic moment of the particle. This result was 
later generalized [2] to the case of elastic scatter
ing of y quanta by particles with other spins and 
also to the case of bremsstrahlung. [a] The result 
for elastic scattering also holds when only CP in
variance is assumed. Consideration of the single
nucleon terms in the dispersion relations for '}'N 
scattering [4- 6] also leads to the limit theorem. 
(A similar result holds for bremsstrahlung.['[]) 

Q2 are two invariants characterizing the kinemat
ics of the process; W2 - M2 = 2Mv + 2Q2• 

The pole terms for Ti(v, Q2) have the form [6] In the present note, we derive the limit theorem 
for '}'N scattering on the basis of the single-nu
cleon terms. The requirement of crossing sym
metry for the invariant functions Ti(v, Q2) 

( = 1, ... , 6} makes it possible to obtain addi
tional terms for the limiting values of the functions 
Ri(v, 0), which characterize the 'YN scattering 
matrix in the center-of-mass system, and also 
the limiting values of the derivatives of the ampli
tudes with respect to Q2 as v- 0. (For the defi
nition of the quantities Ti and Ri see, e.g.,[GJ.) 

2. The invariant functions Ti(v, Q2) are related 
to the scalar functions Ri(v, Q2) (i = 1, ... , 6) in 
the following way: 

BMW2 [ W- MQ"] 
TI - Ta = (W• _ M•j• v- W + M M (Ra + R4) 

4W [ 4Q•w• J 
-(M+W) 1-(W•-M•)• (Rt +R•), 

BMW 2 [ 2W Q2 ] 
T2- T4 = (W•- M•)• I+ M (W + M•) (Ra + R4) 

4W [ 4Q•w• ] + (W + M)" 1- (W•- M•)• (Rt + R•), 

o e2 v 
r. = M Q4/M2 - '11 2 ' 

~=0, 

o e1 (1 +A.)' v 
T.=- M Q4/M2 -v2 ' 

o o e2 (1 +A.) Q2 

Ts = MTs = M Q'IM"- v•, 

where we have used the system of units in which 
11 = c = 1 and the magnetic moment is 
11 = e ( 1 + A. )/2M. 

For Q2 = 0, it follows from (1) that 

(2) 

2~ 2~ 
(Tt + Ta)o = Mv (Ra- R4)o, (T2 + T•)o = Mv• (Ra -R•)o, 

w• 
(Ts)o = - Mv (Ra - R•)o, 

w 
(Ts)o = Mv 12 (Rs + Rs) + Ra + R•J. 
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Differentiating the relations in (1) with respect 
to Q2, we obtain, in the limit Q2 = 0, 

• 2W2 • 4W • 
(T1 - Ta)o = Mv (Ra + R4)o- w + M (R1 + R2)o 

2 (2W3 + M2W + M3) 

- M•v• (W + M) (Ra + R4)o 

+ w (W 4+ M) [ :.:. - w ~ M J (RI + R2}o, 

• 2W2 ' 4W ' 
(T2- T4)o = Mv• (Ra + R4)o + <W + M)• (R1 + R2)o 

4 [ ws M•J + M•v• (W + MJ• - M- v (Ra + R4)o 

4 [ W3 1 2 J 
- (W + M)' M•v•- W + M + W (RI + R2)o, 

• 2W2 • 
(T1 + Ta)0 = Mv (Ra - R4)o 

2 (2W3 + WM• + Ms) 
- M•v• (W + M) (Ra - R4)o 

4W3 

+ (W + M) M•v• (R1- R2)o, 

, 2W2 • 
(Ta + T1)0 = Mv• (Ra - R4)o 

+ 4 (Rs- R4)o [ W3 _ M _ M'] 
M 2v2 (W + M)• v 

4W3 (R1- R2lo 
(W + M)2 M 2v2 

· w• [ 2w• · (T s)o = Mv M•v• (Rs - Rs}o - (Ra - R4)o 

+ W~v (Ra - R4}o] , 

• W [ .2W2 

(Ts)o = Mv - M•v• (Rs + Rs}o 

+ (2Rs + 2Rs + Ra + R4)' 

M+v J - w2v (2Rs + 2Rs + Ra + R4) . (4) 

It is seen from (2) that the terms T1 - T3 and 
T2 + T4 do not contain poles for Q2 = 0. It then 
follows from (1) that (R1 + R2)0 and (Ra ± R4)o/ v 
are finite when v- 0. 

Since the functions (T2 :r T4)0 have a singularity 
of the form 

it then follows from (1) that 

(Rs ± R4)o = _ ~ [1 ± (1 + A.)2) (5} 
v 2M2 

as v- 0, which is in accordance with the limit 
theorem. 

Since T5 and T6 do not contain poles when 
Q2 = 0, the quantity (R5 + R8)/v should remain 
constant as v- 0. Similarly, from the condition 
that (T1 ± T3)6 contains a pole of the second order 

(Tr ± Ta)~p = -2e2/Mv2, 

and that v(T2 - T4)0 does not contain a pole, it 
follows that 

(6) 

and (R3 ± R4)6- const and v(R1 ± R2)6- const as 
v- 0. 

Since 

we conclude that 

(Rs ± Rs}o = ± e1 (1 +A.) v/2M2, (7) 

and (2R5 + 2Rs + R3 + R4)0- const as v- o. 
We see that formulas (5)-(7) obtained from 

consideration of the pole terms (2} contain the re
sults of the limit theorem for Q2 = 0. 

3. It is of interest to note that with the aid of 
the conditions of crossing symmetry one can ob
tain additional information on the low energy limit. 
It follows from crossing symmetry that, for ex
ample, the quantity T1 - T3 should be an even 
function of v. If in the first relation of (3) we make 
the substitution 

e• 
(R1 + R2}o = - M + a1v + ... , 

(Ra +R4}o = - 2~2 [1 + (1 +A.}2) v +aav2 +... (8) 

and take into account the fact that W = (M2 + 2Mv)112 

Rl M(1 + v/M) for small v, then from the condition 
that there is no linear dependence on v we obtain 
the relation 

o:aM- 0:1 = (e2/M) [+ + (1 + 11,}2]. (9) 

It follows from the requirement of crossing 
symmetry that the quantity v(T2 - T4) should be 
an even function of v. 

The absence of a linear dependence of the terms 
on v leads to the relation 

aaM = (e2/M) [f + (1 + A.) 2]. (10) 

From (8)-(10) we have 

(R1 + R2)o = - ~ ( 1-~) + 0 (v1), 

(Ra + R4}o = - 2~2 ( 1 - ~) v 

- 2~2 (1 + A) 2 ( 1-~)v + 0 (v3). (11) 

The functions T1 + T3, T5, (T2 + T4), and T6 

should be even functions of v. Similar considera
tions lead to 

(Ra- R4)o =- :!~2 [1- (1 + A)2 l (1-~)v + 0 (v3), 

(12) 
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and 

12 (R• + R6) + Rs + R4lo 

e2 2 ' v) s 
=- 2M"/.. ( l-M v + 0 (v ), (13) 

e! (1 +A.) 
(R6 + Rs)o = 2M 2 v 

+ ::.r .. l/..2 - 3 - 2 (l + /..) 21 v2 + 0 (v3). (13') 

The function (T1 - T3)0 is an even function of 
v. Inserting in (4) 

(Rs + R4)~ =a; + ... , (R1 + R2)~ = a~/v + ... , 

we obtain from the condition that there is no term 
proportional to 1/v 

2Ma;- 2a~ = (e2/M) II- 2 (l + /..) 2 1. 

A similar condition for the even function 
v(T2 - T4)0 leads to 

2Ma; =- (e2/M) 13 +2 (1 + /..)2 ). 

Then ai = - 2e2/M2, and therefore 

• e2 1 
(R1 +R2)o = -2M•v+O(l), 

' ~ ( (Rs + R4)o = - 2M 2 13 + 2 (l + /..)21 + 0 (v). 14) 

The condition that the poles of the first order in 
the even functions (T1 + T3)0 and v (T2 + T4) vanish 
leads to 

(R1- R2)o = -~(1-~) + 0 (v2), 

(Rs- R4)~ = 2~. 1- 3 + 2 (I +WI + o (v). (15) 

Similar conditions for the functions (T5)6 and 
(T6)0 require that 

, - e• (1 + A.) e• I ' 1 ') (R• - R6)o - - 2M2 v +4M3 - 2 T 8 ( + r. 

+ (1 + /..)21 v2 + 0 (v3), 

It should be kept in mind that the expression for 
the limiting energy is valid for amplitudes in the 
center-of-mass system. The result obtained can 
be useful for analysis of the scattering of 'Y 
quanta by nucleons with the aid of the dispersion 
relation technique. 
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