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We consider reflection of electromagnetic waves in a ferrite or in an infinite homogeneous 
plasma from a magnetic-field wave (moving magnetic "mirror"), and also reflection from 
a moving plasma and from an ionization wave produced in a stationary plasma. The calcu
lations are made in the geometric optics approximation, and a more exact solution is found 
near the point at which this approximation becomes invalid. It is shown that in all cases 
considered the frequency increases upon reflection. The wave amplitude and total energy 
of the wave packet also increase after reflection; an exception is reflection from an ioniza
tion wave, for which the amplitude of the reflected wave is equal to the amplitude of the in
cident wave and the total energy of the wave packet decreases upon reflection. 

INTRODUCTION 

THE increase in frequency and amplitude, occur
ring when electromagnetic waves are reflected 
from a plasma moving in a medium with dielectric 
constant E > 1, were discussed by Lampert[!] and 
by Feinberg and Tkalich. [2] Zagorodnov et al [aJ re
ported an experiment in which an increase in fre
quency was observed when electromagnetic waves 
were reflected from a plasma moving inside a he
lical transmission line. 

An analogous effect can be obtained by using the 
dependence of the effective dielectric constant or 
permeability of certain types of electromagnetic 
waves, propagating in a plasma or in a ferrite, on 
the magnetic field intensity. For example, the ef
fective dielectric constant for a right-hand polar
ized plane wave, propagating in a plasma along the 
direction of the magnetic field, is 

Eeff == d~2 - (o>~l + ww11)J/w (w- wn). (1) 

Here w~l = 47re2N/ Em is the square of the plasma 
frequency, WH = eH0 /cm the Larmor frequency, 
N the electron density, H~ the intensity of the mag
netic field, e the absolute value of the electron 
charge, and E the dielectric constant of the me
dium in which the plasma is situated. The expres
sion for the effective dielectric constant of waves 
with left-hand polarization differs in the sign of 
WH from expression (1) for right-hand polarized 
waves. 

It is seen from (1) that Eeff can be negative not 
only in a region with sufficiently high electron den-

sity, but also in a region with sufficient magnetic 
field intensity. Consequently, such a region, like 
a region with large electron concentration, can 
serve as a mirror for an electromagnetic wave with 
right-hand polarization; a "mirror" for left-hand 
polarized waves will be a region where the mag
netic field intensity H0 decreases. 

It is also easy to verify that a region with in
creasing magnetization field intensity can serve 
as a mirror for several types of waves propagat
ing in a ferrite. For example, quasi-transverse 
waves in a two-dimensional waveguide (Fig. 1) 

FIG. 1. Two-dimensional waveguide; 1-perfectly cOftduct
ing plates, 2- ferrite. 

filled with ferrite and right-hand polarized waves 
in a homogeneous unbounded ferrite will be re
flected from the region where 

0 < w- 4nMr < yliu, 

for the effective magnetic permt)ability for these 
waves will be negative in this region [4] (here y 
is the absolute value of the gyromagnetic ratio 
for the electron spin, and M is the saturation 
magnetization of the ferrite). 
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By producing fields that vary in space and in 
time, it is possible to obtain "mirrors" moving 
with high velocities, and consequently increase 
the frequency greatly.* However, reflection from 
such a moving "mirror" has certain features dis
tinguishing it from reflection from regions where 
the magnetic field is constant in time. We consider 
in the present paper the reflection of quasi-trans
verse waves in a two-dimensional waveguide filled 
with ferrite, and of right-polarized waves in an un
bounded plasma, from the traveling wave of a lon
gitudinal magnetic field. For comparison, we con
sider the reflection of electromagnetic waves from 
a plasma moving in a medium with E > 1, and from 
an ionization wave produced in a stationary plasma. 

REFLECTION OF QUASI TRANSVERSE WAVES 
IN A TWO DIMENSIONAL WAVEGUIDE FILLED 
WITH A FERRITE, FROM THE WAVE OF THE 
MAGNETIZATION FIELD 

It follows from the results of Suhl and Walker[4J 

that when a two-dimensional waveguide filled with 
a ferrite magnetized to saturation is sufficiently 
thin, the components of the field of the quasi-trans
verse wave can be regarded as being independent 
of the transverse coordinates, except when the fre
quency is close to a certain critical value: t 

wcr = r V Ho (Ho + 4nM) • 

This, obviously, remains valid also when the mag
netization field H0 varies sufficiently slowly in 
time and in the coordinate z along which the wave 
propagates. In this approximation, the problem of 
the propagation of quasi-transverse waves is one
dimensional, and Maxwell's equations as well as 
the equation for the magnetization vector can be 
readily reduced to the form 

iJmx 
at=- wBmy, (2) 

It is assumed here that the dissipative term in the 
equation for the magnetization vector vanishes, the 
magnetization field H0(t, z) has only a longitudinal 
component Hoz = H0 ( t, z ) , and the y axis is per
pendicular to the walls of the two-dimensional 

*It can be shown that in a two-dimensional waveguide and 
in an unbounded ferrite, such a 'mirror' can be a shock elec
tromagnetic wave5 ' 6 with front duration longer than the period 
of the incident wave. If the duration of the front of the shock 
wave is shorter than the period of the incident weak electro
magnetic wave, no reflection can take place. 7 

tit should be noted that [•] states erroneously that 

Wcr = yHo• 

waveguide (see Fig. 1). In addition, the following 
notation is used 

WM = r4:n:M, 

M is the magnetization vector. 
If H0( t, z) is a sufficiently slow function, the 

propagation of quasi-transverse waves can be in
vestigated by the method of geometric optics. [B-iOJ 
We seek the solution in the form 

hx = (h0 + h1 + ... ) e'<~>, m = (m0 +m1 + ... ) ei<~>, 
ev = (eo + e1 + ... ) ei<~>, (3) 

where h0 » h 1 » ... ; I m 0 I » I m 1 I » ... ; e 0 » e 1 

» ... and olf!lot and olf!/oz are slow functions com
pared with the eikonal l/J. 

The equations obtained from (2) and (3) for the 
eikonal l/J and for the successive approximations 
of the field amplitudes can be readily integrated 
in quadratures, if the magnetization field has the 
form of a wave traveling at a constant velocity V 
along the z axis, i.e., if H0 ( t, z ) depends oniy on 
the quantity ~ = Vt- z. In this case the field am
plitude depends only on ~. and we have, in particu
lar, in the zeroth approximation 

ho = ho (- oo) [ 'Pz + ~ ~e 'Pt ( 1 + ~ X2 ) r 
-co 

x[ 'lJz+~~e 'Pt (1 + :: x2 ) r1 dd~Bd~}· 
(4) 

The wave number l/Jz and the frequency l/Jt also de
pend only on ~, and are determined from the equa
tions 

while the eikonal l/J is equal to 
~ 

¢ = - ~ 'Pz (£) d~ + 'Ptof. 
Eo 

Here lfito is an arbitrary integration constant, 
equal to the frequency at the point where l/Jz = 0; 
~ 0 is an arbitrary constant. 

(5) 

(6) 

Let us examine the case when an electromag
netic wave with initial frequency lfit; 1 (- oo), sa tis
fying the condition lf!t;i (- oo) > wB(- oo), propa
gates in a direction opposite to the wave of the 
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magnetization field, which is a monotonically in
creasing function of ~. Analyzing the properties 
of the solutions of (5), we readily see that the fre
quency I/Jt; 1 increases with increasing L i.e., 
with increasing magnetization field, while the 
wave number 1/Jz;i decreases, vanishing at a point 
~ 1 determined from the condition lfit; 1 ( ~ 1) = lfito 
= WB( ~1). 

When (3 = 0, i.e., when the magnetization field 
is independent of the time, the geometric optics 
is no longer valid in the vicinity of this point. How
ever, if (3 > 0 and H0( ~) is a sufficiently slow and 
smooth function, the first approximation in the 
vicinity of ~ 1 remains much smaller than the 
zeroth approximation, since htfh0 ~ ( dH0 I d~ ) 2, 

d2H0 1d~ 2 , and the proportionality coefficients re
main finite in ~ 1 when (3 > 0. Consequently, geo
metric optics still applies at this point,* although 
the sign of the wave number, and consequently the 
direction of the phase and group velocities, does 
change (Fig. 2). The group velocity, however, is 
smaller than the V. The electromagnetic wave 
can therefore again be regarded as incident rela
tive to the magnetization-field wave. 

Jl,., 

z 

FIG. 2. Amplitudes of the magnetic fields of the incident 
(1), reflected (2), and refracted (3) waves and of the magneti
zation field H0 ( 4), as functions of z at the instant t. The 
arrows show the direction of the energy, averaged over the 
period of the flux, in various regions of space. 

When 0 < (3 < 1, geometric optics does not hold 
for an arbitrarily slow variation of H0( ~ ) in the 
vicinity of the point ~ where dlf!t I d~ = 00 , an~ the 
group velocity is equal to V. The frequency lfit, 
the wave number ~z, and the coordinate ~ of this 
point, from which we shall henceforth measure ~, 

are determined from (5) and from 

'lj)z + ~ (Y-e/c) \(11 (1 - Wo X2/WM) = 0. (7) 

The vicinity of ~ reflects a wave whose group ve

*This can be seen also from the fact that the point .;, has 
no singularities in a coordinate system moving with velocity V. 

locity is greater than the velocity of the magneti
zation-field wave. We shall henceforth call this 
the reflected wave. As (3- 1, the reflected wave 
appears only when the maximum value of the mag
netization field tends to infinity. When (3 ::: 1, 
there can be no reflected wave, and the field at 
any point is described by formulas (4)- {6), which 
in this case have for Wine > WB(- oo) only one 
solution, describing a wave incident with respect 
to the magnetization-field wave. 

To determine the connection between the ampli
tudes and phases of the incident and reflected waves, 
we assume, as is usually done, E8• 9J that the coeffi
cient of refraction varies linearly in the region 
where geometric optics is invalid. In the case 
considered below, it is sufficient for this purpose 
to put 

ws = w8 (1 + 2a£). (8) 

When aV « lfit, a solution of (2) can be sought in 
the form 

hx (t, z) = [h0 (£) + h1 (£) + ... ) exp li (~t + 'IJzz)J, 

m (t, z) = [m 0 (£) + m1 (£) + ... ] exp li (\i)tt + 'IJzz)J, 

ey (t, z) = [e0 (£) -f-e1 (£) + ... ] exp l i (1j)tt + 'iJzz) I. 

Here I hoI » I h1l » ... ; I mo I » I m1l » .. ·; 
I e 0 I » I e 11 » ... are slowly varying functions, 
so that I 8m 01Elt I « 11/Jtmo I and so on, but their 
second derivatives cannot be regarded as small. 

(9) 

We restrict ourselves to a case when the mag
netization-field wave velocity is so high that 
0 < ( 1- (3) « 1. We then obtain in the zeroth ap
proximation the following equation for the ampli
tude of the magnetic field 

cJ2h0/dTJ2 - (2a\jJZ/~2(2TJh0 = 0, TJ = 2a ('ll;s/~2 - i1j)z), 

(10) 

the solution of which has the form E8, 9] 

Here 4> is the Airy function. From the properties 
of this function EB, 9] it is seen that when ~ > 0 the 
amplitude of the refracted wave is a damped func
tion, which for large ~ is proportional to* 

From a comparison of (11) with the solution 
(4)- (6), in the approximation of geometric optics, 
it is seen that when ~ is negative and large in ab
solute value, the field is a sum of the incident and 
reflected waves h0;1 and h 0;2 respectively: 

*The refracted wave is described, apart from a constant 
factor, by formulas (12) and (14), where the index used is 1. 
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[ f3 fe 1 w0x2) ]-1 dw8 
X '¢z; 1.2 + -c- '¢t; 1,2 \I + WB- df: d£ 

+ i ( '¢1,2 =t ~) }; 
~ 

'¢1.2 = - ~ '¢z; 1,2 d'£ + '¢tot. 

(12) 

The ratio of the amplitude of the incident wave 
( h1 ) to the amplitude of the reflected wave ( h2 ) 

far ahead of the front of the magnetization-field 
wave is approximately equal to the ratio of the 
wave frequencies in this region: 

h2/hl ;::::::: '¢t; d- 00 )l'¢t; 1 (- 00 ). (13) 

The dependence of the frequency and of the wave 
numbers on ~ is determined from Eq. (5), which 
in the case w0 « lf!t can be approximately written 
in a more convenient form: 

X ( I - :: ( I - x7~;2 ) ) r} ' 
'Pz; 1.2 = c (;~ [3") {- ~'lito ::i~ [ ~:;0 - (I - ~2) (J)~ 

(14) 

The square_ bracket in (14) vanishes at the point 
of reflection ~, and consequently the frequencies 
and wave numbers of the incident and reflected 
waves are equal to each other. On going further 
into the region of weaker magnetization field, the 
frequency of the incident wave decreases, while 
that of the reflected wave increases. Consequently, 
an increase in frequency takes place upon reflec
tion, and, as can be readily verified, this increase 
obeys the usual Doppler formula. According to 
(13), the amplitude of the reflected wave increases, 
as does also the total energy of the reflected wave 
packet, W2• Indeed, the energy of the wave packet 
is proportional to the energy flux density averaged 
over the period and to the duration of the wave 
packet, which varies upon reflection as the recip
rocal of the frequency. It then follows from (12) 
- (14) that the ratio of W2 (total energy of there
flected wave packet) to W 1 (total energy of the 
incident wave packet) is 

w2 = (~·) 2 \jl;;l <- oo) I \jlz;2 <- oo) I 
W, h, \jl:;2 (- oo) I \jlz;l (- oo) I 

and is greater than unity. 

(15) 

REFLECTION OF PLANE ELECTROMAGNETIC 
WAVES IN UNBOUNDED PLASMA FROM A 
LONGITUDINAL MAGNETIC-FIELD WAVE, 
FROM A UNIFORMLY MOVING INHOMOGE
NEOUS PLASMA, AND FROM AN IONIZATION 
WAVE IN A STATIONARY PLASMA 

For all the three ca~es mentioned in the heading, 
Maxwell's equations can be readily written in the 
form 

(16) * 

We confine ourselves to a very simple plasma 
model, without pretending to describe fully the 
processes occurring in the plasma. Namely, we 
assume that in the case of reflection from a mag
netic field that varies in space and in time, and 
from a moving plasma, the current density j is 

j = -eNv. (17) 

In this equation N is the electron density, which is 
constant in the former case and depends on ~ = 

Vt - z in the latter ( V is the velocity of motion of 
the plasma); v is the forced solution of the equa
tion of motion of the electrons: 

dvjdt =- (e/m) e- (ejmc) [vH]. (18)t 

In the case of reflection from an ionization 
wave t it is necessary to take into account the al
ternating current produced by the uniform motion 
of the electrons, at a velocity determined by the 
initial conditions at the instant of ionization. As
suming the initial velocity upon ionization to be 
equal to zero and replacing the summation by in
tegration we find that in an ionization wave 

I 
• iJV 

j = -eNv + e ~ v (t) -Jtdt. (19) 

Investigating the solution of (16)- (19) by the same 
method as the solution of (2), we find that far in 
front of the reflecting point the fieid is equal to 
the sum of the fields of the incident and reflected 
waves ( e0; 1 and e0;2 respectively). 

*rot = curl. 
t[vH] = v x H . 

. t ~n ionization wave, namely a moving boundary of a region 
w1t~ 1ncrease.d electron concentration, can be obtained by ex
pos.tng .a stationary gas to ionizing radiation of intensity that 
vanes tn space and in time. Obviously, no limitations are im
posed on the velocity of the ionization wave. 
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In reflection from a moving plasma, we confine 
ourselves to the case of nonrelativistic plasma 
velocity,* V « c, so that the effect of the magnetic 
field of the wave on the electrons can be disre
garded, and we can assume dv/dt = av/ot. In re
flection from a magnetic-field wave, we consider 
only a right-hand polarized wave, and also assume 

that w H « Wpl < lf!t and f} « 1. Then the depend
ence of the frequencies and wave numbers of the 
incident and reflected waves on ~ will have in all 
three cases the following explicit form: 

'1Jlt;l.2 = 1 ~ ~· {'Jlto =f ~ ['1Jl70 - (1 - ~ 2 ) w2pl -'PtoWH]'/,}, 

tiJz;l,2 '= c (t~ ~2) {- ~'Pto ± ['Jl70 - (1 - ~2) w~1 - tiJtaWHJ'I'}. 

(20) 

From a comparison of (20) with (14) we see that in 
all three cases the change in frequency and wave 
number is qualitatively similar to that in reflection 
from a magnetization-field wave in a ferrite. 

The amplitudes of the incident wave and the wave 
reflected from a magnetic-field wave vary as 

eJ; 1.2 = e1,2 { [ 'Jlz; 1.2 + ~e ~( 'IJlt; 1.2+ w~1 wH)/( 'llt- wH)Z ] -oo 

X [ 'Jlz; 1.2 + ~E ~ ('Jlt; 1,2 + (!)~! WH/('IJlt- WH) 2) J~T/' 

{ Ve w~! ~ dwH [ 
X exp ~ -c- -4- .\ df ('\ft; 1,2- WH)2 

-00 

X [•h ' feB (•h + W~!WH ) rj-1 d~} (21) 
'YZ; 1.2 I c ' 'YI; 1,2 (1pl- WH)' j • 

The ratio of the amplitudes of these waves at in
finity e 0; 1 (-oo)/e 0;2 (-oo) = etfe2 is equal in this 
case to the ratio of the corresponding exponential 
factors in (21) with an upper integration limit 
equal to zero. This ratio is less than unity, i.e., 
the amplitude of the wave increases upon reflec
tion, and, as can be readily shown, t in a way' as 
to increase also the energy of the wave packet. 

In reflection from a moving plasma (a) and 
from an ionization wave in a stationary plasma (b), 
the amplitudes are determined respectively by the 
equations 

eo; 1,2 = eJ~d['Jl;~- (1- ~2) 

Xw~1 (- oc)l!hp(0 - (1- ~2) w~1 (£)l}'/•cp(£); 

e2/e1 = 'IJlt; 2(- 00 )Nu (- oo ), cp = '11-'t; 1.2 (~)N't; 1.2 (- 00 ); 

ez/e1 = I, cp = 1. (22) 

It follows from (12), (13), (21), and (22) that re-

*At relativistic plasma velocities, a solution in the geo
metrical-optics approximation was obtained by Ostrovskii. [ •o] 

tin the calculation of the ratio of the energies of the re
flected and incident wave packet it is necessary to replace 
the ratio of the squares of the magnetic-field amplitudes in 
(15) by the ratio of the squares of the electric-field amplitudes. 

flections from a magnetization-field wave in a two
dimensional waveguide filled with a ferrite, from 
a magnetic-field wave in a homogeneous moving 
plasma, and from a moving inhomogeneous plasma 
all are qualitatively alike; in addition to increasing 
the frequency, the reflection increases the ampli
tude of the reflected wave and the energy of the 
reflected wave packet. 

The increase in energy of the reflected wave 
packet can be attributed in the first two cases to 
the fact that the magnetic moment per unit volume 
of the ferrite, deflected by the high-frequency field 
from the direction of the magnetizing field (or the 
magnetic moment of the electron produced by the 
high-frequency field) is situated in an increasing 
magnetic field. This increases energy of interac
tion between these moments and the magnetic field,* 
and therefore more energy is reradiated than was 
originally expended by the high-frequency field. 

In reflection from an ionization wave, the fre
quency increases in exactly the same way as in 
reflection from a moving plasma. The amplitude 
of the reflected wave, however, is equal to the am
plitude of the incident wave, and consequently the 
energy of the wave packet is decreased by reflec
tion. Part of the energy of the incident wave packet 
goes into the kinetic energy of uniform motion of 
the electrons. 

The author is grateful to A. V. Gaponov for 
advice and for a discussion of the manuscript. 

*From the equation for the adiabatic invariantl'~it is seen 
that for an electron this increase is equal to the increase in 
kinetic energy of its rotational motion. 
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